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In this paper we first review the development of high order ADER finite volume and ADER

discontinuous Galerkin schemes on fixed and moving meshes, since their introduction

in 1999 by Toro et al. We show the modern variant of ADER based on a space-time

predictor-corrector formulation in the context of ADER discontinuous Galerkin schemes

with a posteriori subcell finite volume limiter on fixed and moving grids, as well as

on space-time adaptive Cartesian AMR meshes. We then present and discuss the

unified symmetric hyperbolic and thermodynamically compatible (SHTC) formulation of

continuum mechanics developed by Godunov, Peshkov, and Romenski (GPR model),

which allows to describe fluid and solid mechanics in one single and unified first order

hyperbolic system. In order to deal with free surface and moving boundary problems,

a simple diffuse interface approach is employed, which is compatible with Eulerian

schemes on fixed grids as well as direct Arbitrary-Lagrangian-Eulerian methods on

moving meshes. We show some examples of moving boundary problems in fluid and

solid mechanics.

Keywords: Godunov-Peshkov-Romenski model, high order, finite volume, discontinuous Galerkin, diffuse

interface

1. INTRODUCTION AND REVIEW OF THE ADER APPROACH

The development of high order numerical schemes for hyperbolic conservation laws has been
one of the major challenges of numerical analysis for the last decades. Godunov [1] proved that
for the linear advection equation no monotone linear schemes of second or higher order of
accuracy can be constructed. Therefore, even if physical viscosity is considered, a linear high order
scheme will present spurious oscillations near discontinuities, as it can be seen, for instance for
the Lax-Wendroff scheme, Lax and Wendroff [2]. A first idea to circumvent this theorem has been
proposed in Kolgan [3], where limited slopes are employed to produce a non-linear scheme of
second order of accuracy in space. Since then, many high order numerical methods have been
developed like the Total Variation Disminishing methods (TVD) and Flux limiter methods (see,
for instance, [4–9]). Despite these methodologies being already well-established at the end of the
last century, their major drawback was that they just provided global second order of accuracy and
reduced locally to first order in the vicinity of smooth extrema.

More advanced non-linear methods for advection dominated problems involve the family of
ENO andWENO schemes, see Harten andOsher [10], Harten et al. [11], and Shu [12]. In particular,
the method of Harten et al. [11] is a fully discrete high order scheme that can be re-interpreted
in terms of the solution of a generalized Riemann problem (GRP), see Castro and Toro [13].
Moreover, it can be seen as a generalization of the MUSCL-Hancock method of van Leer, see van
Leer [8], Toro [9], and Berthon [14].
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Following the idea of solving a generalized Riemann problem
(GRP), see also Ben-Artzi and Falcovitz [15], LeFloch and Tatsien
[16], Ben-Artzi et al. [17], and Han et al. [18], the ADER
approach (Arbitrary high order DErivative Riemann problem)
has been first put forward for the linear advection equation
with constant coefficients by Millington et al. [19] and Toro
et al. [20]. The first step of the methodology involves piece-
wise polynomial data reconstruction, where a non-linear ENO
reconstruction is applied in order to avoid spurious oscillations
of the numerical solution. Then, a GRP is defined at each
cell interface. Classically, the initial condition for the GRP
was given as piece-wise linear polynomials and second order
schemes could be obtained by constructing a space-time integral
of the solution in an appropriate control volume [21, 22], or
following a MUSCL approach, van Leer [23] and Colella [24].
An alternative methodology proposed in Ben-Artzi and Falcovitz
[25] consists in expressing the solution of the GRP as a Taylor
series expansion in time. The ADER approach obtains the high
order time derivatives of the GRP solution at the cell interface
via the Cauchy-Kovalevskaya procedure, which replaces time
derivatives by spatial derivatives using repeated differentiation of
the differential form of the PDE. The spatial derivatives, which
may also jump at the interface, are defined via the solution
of linearized Riemann problems for the derivatives, where
linearization is carried out about the Godunov state obtained
from the classical Riemann problem between the boundary
extrapolated values at the interface. In Figure 1, the classical
piece-wise constant polynomials are plotted against a high order
reconstruction and the similarity solutions for both cases are
sketched. Finally, these similarity solutions are used to construct
the numerical flux. The resulting schemes are arbitrary high order
accurate in both space and time, in the sense that they have no
theoretical accuracy barrier.

Since their introduction in Toro et al. [20] and Millington
et al. [19], many extensions of the ADER methodology have
been proposed. Regarding 2D linear PDEs, one may refer
to Schwartzkopff et al. [26] and their simplification for the
particular case of structured grids in Schwartzkopff et al. [27].
Moreover, non-linear systems have been initially addressed in
Toro and Titarev [28] and Titarev and Toro [29]. Further
applications of ADER on non-Cartesian meshes have been
presented in Käser [30], Käser and Iske [31], Dumbser et al.
[32], and Castro and Toro [13]. One should also mention
the development of ADER schemes in the framework of
discontinuous Galerkin (DG) finite element methods, see Qiu
et al. [33], Dumbser and Munz [34] and Gassner et al. [35]. One
of the main advantages of using DG is that the reconstruction
step of classical ADER finite volume (ADER-FV) schemes can
be skipped, since the discrete solution is already given by high
order piecewise polynomials that can be directly evolved during
each time step. Furthermore, ADER-DG schemes avoid the use
of classical Runge-Kutta time stepping and thus provide efficient
communication-avoiding schemes for parallel computing, see
Fambri et al. [36] and allow for simple and natural time-accurate
local time stepping (LTS), see Dumbser et al. [37].

An important step forward in the development of more
general ADER schemes was achieved in Dumbser et al. [38],

where a new class of ADER-FV methods has been introduced.
The main contribution of this paper consists in the introduction
of a new element-local space-time DG predictor, which allows
at the same time the treatment of stiff source terms, as well
as the replacement of the cumbersome Cauchy-Kovalevskaya
procedure. First, a high order WENO method is employed
to compute a polynomial reconstruction of the data inside
each spatial element; then, an element-local weak formulation
of the conservation law is considered in space-time and the
predictor is applied to construct the time evolution of the
WENO polynomials within each cell. Note that, in this step,
the integration by parts is performed only in time, which differs
from global space-time DG schemes [39, 40], which are globally
implicit. Finally, the cell averages are updated with an explicit
fully discrete one-step scheme, considering the integral form of
the equations. As a result, the proposed methodology maintains
arbitrary high order of accuracy, while avoiding the issues related
to the use of a Taylor series expansion in time. As already
mentioned above, it naturally provides an approach for the
treatment of stiff source terms [for further details on this topic,
see [41] and references therein].

The above methodology can also be applied in the
discontiuous Galerkin framework as presented in Dumbser
et al. [42], where, a unified PNPM framework for arbitrary
high order one-step finite volume and DG schemes has been
introduced. For other reconstruction-based DG schemes, see
e.g., Luo et al. [43, 44]. Afterwards, the methodology has been
extended to solve a wide variety of different PDE systems,
such as the resistive relativistic MHD equations, Dumbser
and Zanotti [45]; non-conservative hyperbolic systems found
in geophysical flows, Dumbser et al. [46] in which a well-
balanced and path-conservative version of the scheme has been
developed; compressible multi-phase flows Dumbser et al. [47],
the compressible Navier-Stokes equations, Dumbser [48]; the
compressible Euler equations and divergence-free schemes for
MHD, Balsara et al. [49], and Balsara and Dumbser [50],
where ADER schemes were used in combination with genuinely
multidimensional Riemann solvers. The last extensions concern
the special and general relativistic MHD equations, see Zanotti
et al. [51], and Fambri et al. [36], as well as the Einstein field
equations of general relativity [52, 53].

Later, ADER schemes have been extended to adaptive mesh
refinement on Cartesian grids (AMR), in combination with time
accurate local time stepping (LTS). This technique has initially
been introduced in Dumbser et al. [54, 55] for conservative and
non-conservative hyperbolic systems, respectively. Moreover, the
schemes of the ADER family were the first high order methods to
be applied for the numerical solution of the unified first order
hyperbolic formulation of continuum mechanics by Godunov,
Peshkov and Romenski [56–58], see Dumbser et al. [59–61]. In
the rest of this paper, we will refer to the Godunov-Peshkov-
Romenski model of continuum mechanics as GPR model.

The ADER approach has also been extended to the direct
Arbitrary-Lagrangian-Eulerian framework (ALE), where the
mesh moves with an arbitrary velocity, taken as close as possible
to the local fluid velocity. Initially developed for one space
dimension, it has been soon extended to the case of the two

Frontiers in Physics | www.frontiersin.org 2 March 2020 | Volume 8 | Article 32

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

FIGURE 1 | Classical piece-wise reconstruction polynomials used in the ADER approach, pi (x) and pi+1(x), and the structure of the Riemann problem solution at the

intercell boundary xi+ 1
2
. (Left) classical piece-wise constant data. (Right) piece-wise smooth reconstruction.

and three dimensional Euler equations on unstructured meshes,
Boscheri and Dumbser [62, 63], including the discretization of
non-conservative products. Further works in this area involve
the use of local timestepping techniques, [64, 65]; coupling
with multidimensional HLL Riemann solvers, Boscheri et al.
[66]; solution of magnetohydrodynamics problems (MHD), [67,
68]; development of a quadrature-free approach to increase the
computational efficiency of the overall method, Boscheri and
Dumbser [69]; use of curvilinear unstructured meshes, Boscheri
andDumbser [70]; or extension to solve the GPRmodel, Boscheri
et al. [71] and Peshkov et al. [72]. Furthermore, in Gaburro et al.
[73] a novel algorithm to deal with moving non-conforming
polygonal grids has been presented. The methodology reduces
the typical mesh distortion arising in shear flows and provides
high quality elements even for long-time simulations. An exactly
well-balanced path-conservative version of this approach for the
Euler equations with gravity can be found in Gaburro et al.
[74]. Still in the ALE framework, within this article, we will
present new results for the family of ADER-FV and ADER-
DG schemes on moving unstructured Voronoi meshes [75], as
recently introduced in Gaburro [76] and Gaburro et al. [77].

It is well-known that when dealing with high order schemes
special care must be paid to the limiting methodology employed.
In most of the previous referenced papers classical a priori
limiters have been used, such as WENO reconstruction.
Nevertheless, some alternative contributions to this topic can
be found in the series of papers [51, 77–85], where a novel a
posteriori sub-cell FV limiter of high order DG schemes, based on
the MOOD paradigm of Clain et al. [86] and Diot et al. [87, 88],
has been employed.

Besides the references given above, which focus on the
development of the ADER methodology with a local space-time
Galerkin predictor, many recent papers have been devoted to
the development of other families of ADER schemes, like the
classical ADER finite volume methods. Without pretending to
be exhaustive, we may refer to Castro et al. [89], Toro and

Hidalgo [90], Taube et al. [91], Toro [9], Montecinos et al. [92],
Montecinos and Toro [93], Toro and Montecinos [94, 95], Toro
et al. [96], Busto [97], Montecinos et al. [98], Busto et al. [99],
Contarino et al. [100], Busto et al. [101], and Dematté et al. [102]
and references therein.

In this paper, as a promising application of the family of
ADER schemes, we solve a diffuse interface formulation of
the GPR model of continuum mechanics. In comparison with
existing continuum mechanics models, the novel feature of the
GPR model is in that it incorporates the two main branches of
continuum mechanics, fluid and solid mechanics, in one single
unified PDE system. Recall that traditionally fluid and solid
mechanics are described by PDE systems of different types, i.e.,
parabolic (viscous fluids) and hyperbolic (linear elasticity and
hyperelasticity), which imposes many theoretical and technical
difficulties if one wishes tomodel natural and industrial processes
involving co-existence of the fluid and solid states such as
in fluid-structure interaction (FSI) problems, modeling of
general solid-fluid transition such as in melting and solidification
processes, e.g., additive manufacturing, see for example Francois
et al. [103], flows of granular media [104], viscoplastic flows,
e.g., debris flows, avalanches, mantle convection, flows of many
industrial Bingham-type fluids, see Balmforth et al. [105]. Due to
the unified treatment of fluids and solids, the GPR model thus
has a great potential for simplifying the modeling process and
code development for solving the aforementioned problems. Yet,
before to be applied to practical problems, the GPR model may
require a coupling with an interface tracking/capturing technique
for the modeling of moving material boundaries such as in free
surface flows or solid body motion. In particular, in this paper, we
couple the GPR model with a simple diffuse interface approach,
see Tavelli et al. [85], Dumbser [106], Gaburro et al. [107], Kemm
et al. [108]. For example, very interesting computational results
with similar diffuse interface approaches and level set techniques
for compressible multi-material flows have been obtained for
example in Gavrilyuk et al. [109], Favrie et al. [110], Favrie and
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Gavrilyuk [111], Ndanou et al. [112], de Brauer et al. [113],
Michael and Nikiforakis [114], Jackson and Nikiforakis [115],
and Barton [116]. Finally, we demonstrate that the ADER family
of schemes is capable to resolve the GPR model in both solid and
fluid regimes.

The paper is organized as follows. In section 2 we present
the family of ADER finite volume and ADER discontinuous
Galerkin finite element schemes on fixed Cartesian and moving
polygonal meshes in two space dimensions. Next, in section 3
we introduce the diffuse interface formulation of the GPRmodel.
In section 4 we show some computational results obtained with
different kinds of ADER schemes (ADER-FV and ADER-DG)
on different mesh topologies, including moving unstructured
Voronoi meshes, as well as fixed and adaptive Cartesian grids.
The paper is rounded off by some concluding remarks and an
outlook to future work in section 5.

2. ADER FINITE VOLUME AND
DISCONTINUOUS GALERKIN SCHEMES

The numerical method adopted in this paper is the variant of
the arbitrary high-order accurate ADER approach based on the
space-time predictor-corrector formalism, which we have briefly
reviewed in the previous section 1. It easily applies to the context
of finite volume (FV) and discontinous Galerkin (DG) methods,
using either space-time adaptive Cartesian grids (AMR), see
Bungartz et al. [117],Weinzierl and Mehl [118], Dumbser et al.
[54], Zanotti et al. [80], Fambri et al. [36, 84] and references
therein, or unstructured meshes, and both on fixed Eulerian
domains or in a moving Arbitrary-Lagrangian-Eulerian (ALE)
framework, see Boscheri et al. [65, 68], Boscheri and Dumbser
[62, 63, 119], Boscheri [82], Gaburro [120], Gaburro et al. [77],
and references therein.

Here, we briefly describe the key features of our numerical
scheme, keeping the notation as general as possible, and
referring to the literature for further details. We start by
introducing the general form of our governing PDE system and a
moving unstructured discretization of two-dimensional domains
(sections 2.1 and 2.2); next, in section 2.3 we describe the data
representation of the discrete solution. Then, we explain how
to obtain high order of accuracy in space: this is available by
construction in the DG case, and obtained via some variants
of the well-known WENO procedure [32, 121–125] for the FV
approach. Finally, we focus on the predictor-corrector version
of the ADER scheme that allows to achieve arbitrary high order
of accuracy in space and time. Since it is out of the scope of
this paper to recall all the details, a general overview is given in
sections 2.5 and 2.7, and an inedited proof of the convergence of
the predictor for a non-linear conservation law is presented in
section 2.6.

We would like to emphasize that, besides this novel
convergence proof, other progress has been introduced within
this work. Indeed, up to our knowledge, it is the first time
that: (i) the ADER approach is used to solve a diffuse interface
formulation of the GPR model that addresses the free surface
problem in both solid and fluid mechanics context (previously, a

similar formulation was used only in the solid dynamics context
[112, 126, 127]); (ii) non-conservative products are taken into
account in the high order direct ALE scheme of Gaburro et al.
[77], where they have to be integrated also on degenerate space–
time control volumes (see section 2.5.2).

2.1. Governing PDE System
In this paper we consider high order fully-discrete schemes for
non-linear systems of hyperbolic PDE with non-conservative
products and algebraic source terms of the form

∂Q

∂t
+ ∇ · F (Q)+ B(Q) · ∇Q = S(Q), (1)

where Q = Q(x, t) ∈ �Q ⊂ R
m is the state vector, t ∈ R

+
0 is the

time, x ∈ � ⊂ R
d is the spatial coordinate, d is the number of

space dimensions, �Q is the so-called state space or phase space,
F(Q) is the non-linear flux tensor,B(Q)·∇Q is a non-conservative
product and S(Q) is a purely algebraic source term. Introducing
the system matrix A(Q) = ∂F/∂Q + B(Q) the above system can
also be written in quasi-linear form as

∂Q

∂t
+ A(Q) · ∇Q = S(Q). (2)

The system is said to be hyperbolic if for all n 6= 0 and for all
Q ∈ �Q the matrix A(Q) · n has m real eigenvalues and a full
set of m linearly independent right eigenvectors. The system (1)
needs to be provided with an initial condition Q(x, 0) = Q0(x)
and appropriate boundary conditions on ∂ �.

In this paper we focus on a particular, but very general,
example of a first-order system (1) describing elastic and visco-
plastic heat-conducting media; it will be discussed in section 3.

2.2. Domain Discretization
In the general ALE case, we consider a moving two-dimensional
(d = 2) domain �(t) and we cover it using an unstructured
mesh made of NP non-overlapping polygons Pi, i = 1, . . .NP.
The mesh is first built at time t = 0 and then it is rearranged
at each time step tn: elements and nodes are moved following the
local fluid velocity and when necessary, in order to prevent mesh
distortion, also the mesh topology (i.e., the shape of the elements
and their connectivities) is changed.

Given a polygon Pni we denote by V(Pni ) = {vni1 , . . . , v
n
ij
,

. . . , vniNn
Vi

} the set of its Nn
Vi

Voronoi neighbors (the neighbors

that share with Pni at least a vertex), and by E(Pni ) =
{eni1 , . . . , e

n
ij
,. . . ,eniNn

Vi

} the set of its Nn
Vi

edges, and by D(Pni ) =
{dni1 , . . . , d

n
ij
,. . . ,dniNn

Vi

} the set of its Nn
Vi

vertexes, consistently

ordered counterclockwise. Finally, the barycenter of Pni is noted
as xn

bi
= (xn

bi
, yn

bi
). When necessary, by connecting xn

bi
with each

vertex ofD(Pi) we can subdivide a polygon P
n
i inN

n
Vi
subtriangles

denoted as T (Pni ) = {Tn
i1
, . . . ,Tn

ij
, . . . ,Tn

iNn
Vi

}.
The coordinates of each node at time tn are denoted by xn

k
,

and V
n
k represents the velocity at which it is supposed to move,
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so that its new coordinates at time tn+1 are given from the
following relation

xn+1
k

= xnk +1tV
n
k . (3)

More details on how to obtain V can be found in Boscheri
et al. [68], Boscheri and Dumbser [63, 119] for what concerns
classical direct ALE schemes on conforming unstructured grids,
in Gaburro et al. [73, 74] for non-conforming unstructured grids,
in Boscheri and Dumbser [70] for curvilinear meshes, and we
refer in particular to section 2.4 and 2.5 of Gaburro et al. [77]
for what concerns moving unstructured polygonal grids allowing
for topology changes, which indeed is the ALE case considered
in this paper (see case B below). Moreover, working in the ALE
framework, we are allowed to takeV = 0, i.e., we can also work in
a fixed Eulerian system where the initial mesh is never modified.

In particular, in this paper we will consider the following two
situations for our domain discretization:

A. A fixed Cartesian mesh made of NP quadrilaterals elements,
which is not moved during the simulation, but which can
be successively refined, with a general space-tree-type data
structure that allows element-by-element refinement with a
general refinement factor r ≥ 2, in order to increase the
resolution in the areas of interest, as can be seen in Figure 2

(for the details on the refinement procedure we refer to
Dumbser et al. [54] and Fambri et al. [36]). To ease the
description of the numerical method, we will associate to
each quadrilateral element Pni , a set of indices that refer to
its Cartesian coordinates,

{

j, k
}

, such that Pn
jk
: = Pni =

[xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
], 1xj = xj+ 1

2
− xj− 1

2
, 1yk =

yk+ 1
2
− yk− 1

2
.

B. A moving polygonal grid as the one described in Gaburro
et al. [77] that (i) moves with the fluid flow in order to reduce
the numerical dissipation associated with transport terms and
(ii) also allows for topology changes at any time step in order to
maintain always a high quality of the movingmesh; in this case
we remark that our method is also able to deal with degenerate
space time control volumes at arbitrary high order of accuracy.

2.2.1. Space-Time Connectivity
To better understand the context of moving meshes we refer
the reader to Figure 3: note that the tessellation at time tn has
been evolved resulting in a slightly different tessellation at time
tn+1; for each element Pni the new vertex coordinates xn+1

k
,

k = 1, . . . ,Nn
Vi
, are connected to the old coordinates xn+1

k
via

straight line segments, yielding the multidimensional space-time
control volume Cn

i , that involvesN
n,st
Vi

+2 space-time sub-surfaces.
Specifically, the space-time volume Cn

i is bounded on the bottom
and on the top by the element configuration at the current time
level Pni and at the new time level Pn+1

i , respectively, while it is

closed with a total number of Nn,st
Vi

lateral space–time surfaces

∂Cn
ij
, j = 1, . . . ,Nn,st

Vi
that are given by the evolution of each

edge enij of element Pni within the time step 1t = tn+1 − tn. A

priori, ∂Cn
ij
are not parallel to the time direction: thus to be treated

numerically they can be mapped to a reference square by using a

FIGURE 2 | Sketch of the mesh refinement structure of three AMR levels with

refinement factor r = 3. Solid lines indicate active cells, whereas the dashed

ones are the virtual cells allowing interpolation between the coarse and the

refined mesh, needed in the case of high order WENO reconstruction.

set of of bilinear basis functions (see Boscheri andDumbser [62]).
To resume, the space-time volume Cn

i is bounded by its surface
∂Cn

i which is given by

∂Cn
i =





⋃

j

∂Cn
ij



 ∪ Pni ∪ Pn+1
i . (4)

Note that in the fixed Cartesian case, Cn
i reduces to a right

parallelepiped with four lateral space–time surfaces ∂Cn
ij
parallel

to the time-direction, so many simplifications are possible.
We close this part by emphasizing that the family of direct

ALE schemes proposed in this work, based on the ADER
predictor-corrector approach, is based on the integration of
the governing Equation (1) in space and in time directly over
these space–time control volumes, see section 2.7. Note that this
procedure, which is more evident when Cn

i is an oblique prism, is
also hidden when Cn

i is just a right parallelepiped.

2.3. Data Representation
The conserved variables Q in (1) are discretized in each polygon
Pni at the current time tn via piecewise polynomials of arbitrary
high order N, denoted by un

h
(x, tn) and defined as

unh(x, t
n) =

N−1
∑

ℓ=0

ϕℓ(x, t
n) ûnℓ,i=ϕℓ(x, tn) ûnℓ,i, x ∈ Pni , (5)

where in the last equality we have employed the classical tensor
index notation based on the Einstein summation convention,
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FIGURE 3 | Space time connectivity. (Left) The tessellation at time tn and time tn+1. (Middle) Pni is connected with Pn+1
i to construct the space–time control volume

Cn
i . (Right) The sub-triangle Tnij is connected with Tn+1

ij
to construct the sub–space–time control volume sCn

ij
.

which implies summation over two equal indices. The functions
ϕℓ(x, t

n) can be either:

i. Nodal spatial basis functions given by a set of Lagrange
interpolation polynomials of maximum degree N with
the property

ϕℓ(x
m
GL) =

{

1 if ℓ = m;
0 otherwise; ℓ,m = 1, . . . , (N + 1)d, (6)

where {xmGL} are the set of the Gauss-Legendre (GL) quadrature
points on Pni (see Stroud [128] for the multidimensional case).
In particular, when employing these basis functions on a
Cartesian grid, each quadrilateral Pni is easily mapped to a
reference square, we only need the tensor product of the GL
quadrature points in the unit interval [0, 1], and the ϕℓ are
simply generated by multiplying one-dimensional nodal basis
functions, i.e.,

ϕℓ(x, t
n) = ϕℓ1

(

ξ (x)
)

ϕℓ2
(

η(y)
)

(7)

with ϕℓi satisfying (6) with d = 1, and x = xj− 1
2
+ ξ1xj,

y = yk− 1
2
+η1yk being the set of reference coordinates related

to Pni . In this case, the total number of GL quadrature points
per polygon, as well as the total number of basis functions
{ϕℓ} and expansion coefficients ûnℓ,i, the so-called degrees of

freedom (DOF), is N = (N + 1)d. These basis functions are
used on Cartesian grids, i.e., for Case A.

ii. Modal spatial basis functions written through a Taylor series
of degree N in the variables x = (x, y) directly defined on the
physical element Pni , expanded about its current barycenter xn

bi
and normalized by its current characteristic length hi

ϕℓ(x, t
n)|Pni =

(x− xn
bi
)pℓ

pℓ! h
pℓ
i

(y− yn
bi
)qℓ

qℓ! h
qℓ
i

,

ℓ = 0, . . . ,N − 1, 0 ≤ pℓ + qℓ ≤ N, (8)

hi being the radius of the circumcircle of Pni . In this case the

total number N of DOF ûn
l
is N = 1

d!

d
∏

m=1
(N + m). We

employ this kind of basis functions in themoving unstructured
polygonal Case B.

The discontinuous finite element data representation (5) leads
naturally to discontinuous Galerkin (DG) schemes if N > 0,
but also to finite volume (FV) schemes in the case N = 0. This
indeed means that for N = 0 we have ϕℓ(x) = 1, with ℓ = 0
and (5) reduces to the classical piecewise constant data that are
typical of finite volume methods. In the case N > 0 (DG) the
form given by (5) already provides a spatially high order accurate
data representation with accuracy N + 1, where instead for the
case N = 0 (FV), if we are interested in increasing the spatial
order of accuracy, up toM + 1 for examle, we need to perform a
spatial reconstruction. With this notation, our method falls within
the more general class of PNPM schemes introduced in Dumbser
et al. [42] for fixed unstructured meshes.

2.4. Data Reconstruction
In this section we focus on the reconstruction procedure needed
in the finite volume context (N = 0, M > 0) in order to obtain
order of accuracy M + 1 in space starting from the piecewise
constant values of un

h
(x, tn) in Pni and its neighbors, i.e., in order

to obtain a high order polynomial of degree M representing our
solution in each Pni

wn
h(x, t

n) =
M−1
∑

ℓ=0

ψℓ(x, t
n) ŵn

ℓ,i=ψℓ(x, tn) ŵn
ℓ,i, x ∈ Pni , (9)

where the ψℓ functions simply coincide with the ϕℓ basis
functions of (5). Our reconstruction procedures are based on the
WENO algorithm in its polynomial formulation as presented in
Dumbser et al. [38], Dumbser and Käser [32, 123], Titarev et al.
[129], Tsoutsanis et al. [130], Levy et al. [131], Dumbser et al.
[132], and Semplice et al. [133], and not based on the original
version of WENO proposed in Jiang and Shu [121], Balsara and
Shu [122], Hu and Shu [134], and Zhang and Shu [124] which
provides only point values. For each Pni , the basic idea consists in
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(i) selecting a central stencil of elements S0
i with a total number of

ne = f · 1

d!

d
∏

m=1

(M +m) (10)

elements, containing the cell Pni itself, its first layer of Voronoi
neighbors V(Pni ) and filled by recursively adding neighbors of
those elements that have been already included in the stencil,
and in (ii) using the cell-average values of the elements of S0

i to
reconstruct a polynomial of degree M by imposing the integral
conservation criterion, i.e., by requiring that its average on each
cell match the known cell average. If f > 1 (which occurs in
the unstructured case, where we take f = 1.5), this of course
leads to an overdetermined linear system, which is solved using
a constrained least-squares technique (CLSQ) [123], i.e., the
reconstructed polynomial has exactly the cell average ûn0,i on
the polygon Pni and matches all the other cell averages of the
remaining stencil elements in the least-square sense.

However, as well-known thanks to the Godunov theorem
[1], the use of only one central stencil (which is indeed a
linear procedure) would introduce oscillations in the presence of
shock waves or other discontinuities. So, in order to make the
reconstruction procedure non-linear, we will compute the final
reconstruction polynomial as a non-linear combination or more
than only one reconstruction polynomial, each one defined on a
different reconstruction stencil Ss

i .
We refer to the cited literature for further details, and here we

just highlight the main characteristics of the two reconstruction
procedures adopted in this work.

2.4.1. Case A: Cartesian Mesh
In Case A, of a fixed Cartesian mesh, we employ the polynomial
WENO procedure given in Dumbser et al. [54], which is
implemented in a dimension by dimension fashion. For each
cell, we define its related sets of one-dimensional reconstruction
stencils as

S
s,x
i =

j+R
⋃

m=j−L

Pnmk, S
s,y
i =

k+R
⋃

m=k−L

Pnjm, (11)

where L = {M, s} and R = {M, s} denote the order and stencil
dependent spatial extension of the stencil to the left and to the
right. For odd order schemes we consider three stencils, one
central, one fully left–sided, and one fully right–sided stencil in
each space dimension (see Figure 4 for a graphical interpretation
for M = 2), while for even order schemes we have four stencils,
two of which are central, while the remaining two are again
given by the fully left–sided and fully right–sided in each space
dimension. In both cases the total amount of elements in each
stencil is always ne = M + 1, the order of the scheme.

Focusing on the reconstruction procedure on the x direction,
given a element Pni , we start by expressing the first coordinate
of the reconstruction polynomial at each stencil in terms of one
dimensional basis functions,

ws,x
h
(x, tn) =

M
∑

ℓ1=0

ψℓ1 (ξ) ŵ
n,s
jk,ℓ1

=ψℓ1 (ξ) ŵn,s
jk,ℓ1

. (12)

FIGURE 4 | Reconstruction stencils for a fixed Cartesian mesh with M = 2,

where L, C, and R denote the left–sided, central and right–sided stencils,

respectively. (Left) Reconstruction on x direction. (Right) Reconstruction on

y direction.

Then, we integrate on the stencil elements obtaining an algebraic
system on the polynomial coefficients:

1

1xm

∫ x
m+ 1

2

x
m− 1

2

ψℓ1
(

ξ (x)
)

ŵn,s
jk,ℓ1

dx = ūnmk, ∀Pnmk ∈ S
s,x
i (13)

with ūn
mk

the average value obtained by integrating the solution
at the previous time step on the cell Pmk. Once the coefficients,
and thus the polynomials, related to all the stencils are obtained,
we compute a reconstruction polynomial in the x direction as the
data-dependent non-linear combination of these,

wx
h

(

x, tn
)

= ψℓ1 (ξ) ŵ
n
jk,ℓ1

, ŵn
jk,ℓ1

=
ns
∑

s=1

ωsŵ
n,s
jk,ℓ1

, (14)

where ns is the number of stencils, ns = 3 if M = 2̇ and ns = 4
otherwise; and ωs denote the non-linear weights (see Dumbser
et al. [54] for further details).

To complete the reconstruction polynomial, we now repeat
the above procedure in the y direction for each degree of freedom
ŵn
jk,ℓ1

. First, we write the reconstruction polynomial in terms of

the basis functions,

w
s,y

h
(x, y, tn) = ψℓ1 (ξ) ψℓ2 (η) ŵ

n,s
jk,ℓ1ℓ2

. (15)

Then, we solve the algebraic system

1

1ym

∫ y
m+ 1

2

y
m− 1

2

ψℓ2
(

η
(

y
))

ŵn,s
jk,ℓ1ℓ2

dy = ŵn
jm,ℓ1

, ∀Pnjm ∈ S
s,y
i

(16)
and calculate

ŵn
jk,ℓ1ℓ2

=
ns
∑

s=1

ωsŵ
n,s
jk,ℓ1ℓ2

. (17)
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Finally, we get the WENO reconstruction polynomial

wn
h

(

x, tn
)

= ψℓ1 (ξ) ψℓ2 (η) ŵ
n
jk,ℓ1ℓ2

. (18)

In order to enforce bounds on the WENO reconstruction
polynomial, such as the condition 0 ≤ α ≤ 1 on the
volume fraction function of for example (56a), we rescale
the reconstruction coefficients ŵn

jk,ℓ1ℓ2
around the cell average

as follows:

ŵ∗
jk,ℓ1ℓ2

= ū∗jk + ϕjk
(

ŵn
jk,ℓ1ℓ2

− ū∗jk

)

, (19)

where the scaling factor ϕjk is computed via the Barth and
Jespersen limiter (see Barth and Jespersen [135]) applied to the
volume fraction function α in all Gauss-Legendre and Gauss-
Lobatto quadrature nodes, i.e., ϕjk = min(ϕjk,p) is the global
minimum in each element, with the nodal limiter values given by

ϕjk,p =















min
(

1, αmax−ᾱ
αp−ᾱ

)

, if αp − ᾱ > 0,

min
(

1, αmin−ᾱ
αp−ᾱ

)

, if αp − ᾱ > 0,

1, if αp − ᾱ = 0.

(20)

Here αmax = 1 − ε ≤ 1 is the upper bound of the volume
fraction function and αmin = ε ≥ 0 is its lower bound; ᾱ
denotes the cell average of α and αp denotes the node value of
α in the quadrature point xp under consideration. As already
mentioned above, this strategy is inspired from the Barth and
Jespersen limiter [135], but also from the new bound-preserving
polynomial approximation introduced in Després [136] and
Campos-Pinto et al. [137]. Since the physical solution of α must
satisfy 0 ≤ α ≤ 1, the above bound preserving limiter does
not reduce the formal order of accuracy of the reconstruction,
as proven in Després [136].

2.4.2. Case B: Moving Polygonal Mesh
In Case B of our moving and topology changing polygonal mesh
we adopt a CWENO reconstruction algorithm, first introduced
in Levy et al. [138–140] and Semplice et al. [133], and which can
be cast in the general framework described in Cravero et al. [141].
We closely follow the work outlined in Dumbser et al. [132] and
Boscheri et al. [142] for unstructured triangular and tetrahedral
meshes, and extended it to moving polygonal grids in Gaburro
et al. [77].

We emphasize that the main advantages of such a procedure
is that only one stencil (the central one) is required to contain
the total amount of elements stated in (10) and only this one
is used to construct a polynomial of degree M; the other ones
are used to compute polynomials of lower degree. In particular,
we consider Nn

Vi
stencils Ssi , each of them containing exactly

n̂e = (d + 1) cells, i.e., the central cell Pni and two consecutive
neighbors belonging to V(Pni ). Refer to Figure 5 for a graphical
description of the stencils. For each stencil Ssi we compute a
linear polynomial by solving a simple reconstruction system
which is not overdetermined. According to the above mentioned
literature, the reconstructed polynomial obtained via a non-
linear combination of the polynomial of degree M, computed

over Ss0, and of the Nn
Vi

linear polynomials, computed over Ssi ,
maintains the order of convergence of the method and avoids
unwanted spurious oscillations. In particular, in the case of
movingmeshes with topology changes, where the set of neighbors
may change at any time step, the use of smaller so-called sectorial
stencils significantly speeds up computations.

For the sake of uniform notation, in the DG case, i.e., when
N > 0 and M = N, we trivially impose that the reconstruction
polynomial is given by the DG polynomial, i.e., wn

h
(x, tn) =

un
h
(x, tn), which automatically implies that in the case N = M

the reconstruction operator is simply the identity.

2.5. Space-Time Predictor Step
In this section we focus on the key feature, the element-local
space-time predictor step, of our ADER FV-DG schemes: this
part of the algorithm (the predictor) produces a high order
approximation in both space and time of Q in all Pni . This allows
to obtain a fully discrete one-step scheme that is uniformly high
order accurate in both space and time.

The predictor step consists in a completely local procedure
which solves the governing PDE (1) in the small, see Harten
et al. [11], inside each space-time element Cn

i , and it only
considers the geometry of volume Cn

i , the initial data w
n
h
on Pni

and the governing Equations (1), without taking into account
any interaction between Cn

i and its neighbors. Because of this
absence of communications, we refer to it as local. The procedure
finally provides, for each Cn

i , a space-time polynomial data
representation qn

h
, which serves as a predictor solution, only valid

inside Cn
i , to be used for evaluating the numerical fluxes, the

non-conservative products and the algebraic source terms when
integrating the PDE in the final corrector step (see section 2.7) of
the ADER scheme.

The predictor qn
h
is a polynomial of degreeM, which takes the

following form

qnh(x, t) =
Q−1
∑

ℓ=0

θℓ(x, t)q̂
n
ℓ , (x, t) ∈ Cn

i , (21)

where θℓ(x, t) can be either

i. For fixed and adaptive Cartesian grids (Case A), nodal
space-time basis functions of degree M given by the
product of one-dimensional nodal basis functions
verifying (6) (with d = 1 ),

θℓ(x, y, t) = ϕℓ1
(

ξ (x)
)

ϕℓ2
(

η(y)
)

ϕℓ3
(

τ (t)
)

, (22)

two of them mapped to the unit interval [0, 1] as in (7) and
with the time coordinate mapped to the reference time τ ∈
[0, 1] via t = tn + τ1t. In this case, the total number of GL
quadrature points per cell, as well as the total number of DOF
isQ = (M + 1)d+1, see also Figure 6.

ii. For our moving polygonal meshes (Case B),modal space time
basis functions of degree M in d + 1 dimensions (d space
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FIGURE 5 | Stencils for the CWENO reconstruction of order three (M = 2) with f = 1.5 for a pentagonal element Pni . Left: central stencil made of the element itself Pni
(in violet) and ne − 1 = 8 of its neighbors (in blue). In the other panels we report two of the Nn

Vi
= 5 sectorial stencils containing the element itself and two consecutive

neighbors belonging to V (Pni ).

FIGURE 6 | Quadrature points on a space-time element, Cn
i , of a fixed

Cartesian mesh with M = 2.

dimensions plus time) are used, which read

θℓ(x, y, t)|Cn
i
=

(x− xn
bi
)pℓ

pℓ! h
pℓ
i

(y− yn
bi
)qℓ

qℓ! h
qℓ
i

(t − tn)qℓ

qℓ! h
qℓ
i

,

ℓ = 0, . . . ,Q, 0 ≤ pℓ + qℓ + rℓ ≤ M,

(23)

with the total number of DOF Q = 1
(d+1)!

d+1
∏

m=1
(M + m), see

also Figure 7.

Now, multiplying our PDE system (1) with a test function
θk and integrating over the space-time control volume Cn

i

(see section 2.2.1), we obtain the following weak form of the
governing PDE, where both the test and the basis functions are
time dependent

∫

Cn
i

θk(x, t)
∂qn

h

∂t
dx dt +

∫

Cn
i

θk(x, t)
(

∇ · F(qnh)

+B(qnh) · ∇qnh
)

dx dt =
∫

Cn
i

θk(x, t)S(q
n
h) dx dt . (24)

Since we are only interested in an element local predictor
solution, i.e., we do not need to consider the interactions with
the neighbors, we do not yet take into account the jumps of qn

h
across the space–time lateral surfaces, because this will be done
in the final corrector step (section 2.7).

Instead, we insert the known discrete solutionwn
h
(x, tn) at time

tn in order to introduce a weak initial condition for solving our
PDE; note that wn

h
(x, tn) uses information coming from the past

only (following an upwinding approach) in such a way that the
causality principle is correctly respected. To this purpose, the first
term is integrated by parts in time. This leads to

∫

Pn+1
i

θk(x, t
n+1)qnh(x, t

n+1) dx−
∫

Pni

θk(x, t
n)wn

h(x, t
n) dx

−
∫

Cn
i

∂

∂t
θk(x, t)q

n
h(x, t) dx dt +

∫

Cn
i\∂Cn

i

θk(x, t)∇ · F(qnh) dx dt

=
∫

Cn
i\∂Cn

i

θk(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt. (25)

Equation (25) results in an element-local non-linear system
for the unknown degrees of freedom q̂nℓ of the space-time
polynomials qn

h
. The solution of (25) can be found via a simple

and fast converging fixed point iteration (a discrete Picard
iteration) as detailed e.g., in Dumbser et al. [42] and Hidalgo
and Dumbser [41]. For linear homogeneous systems, the discrete
Picard iteration converges in a finite number of at most N + 1
steps, since the involved iteration matrix is nilpotent, see Jackson
[143]. Moreover a proof of the convergence of this procedure in
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FIGURE 7 | Space–time quadrature points for third order methods, i.e., M = 2, on a moving polygonal mesh with topology changes. (Left) Quadrature points for the

volume integrals and the space–time predictor. (Middle) quadrature points for the surface integrals, i.e., for flux computation. (Right) Quadrature points for the

volume integrals and the space–time predictor of a sliver element.

the case of a non-linear homogeneous conservation law in 1D is
given in next section 2.6.

2.5.1. Simplification in the Case of a Fixed Cartesian

Mesh
The space-time predictor step formerly presented can be
simplified in the case of a Cartesian mesh with nodal basis
functions resulting in a more efficient algorithm. Under these
assumptions the governing PDE (1), can be rewritten as

∂Q

∂τ
+ ∂f⋆

∂ξ
+ ∂g⋆

∂η
+ B⋆1

∂Q

∂ξ
+ B⋆2

∂Q

∂η
= S⋆ (26)

with

f⋆ = 1t

1xj
f, g⋆ = 1t

1yk
g, B⋆1 =

1t

1xj
B1, B⋆2 =

1t

1yk
B2,

B = [B1,B2] , S⋆ = 1tS.
(27)

Next, wemultiply each term by a test function θk and we integrate
over the reference space-time control volume I0 = [0, 1]3

∫ 1

0

∫ 1

0

∫ 1

0
θk

(

∂Q

∂τ
+ ∂f⋆ (Q)

∂ξ
+ ∂g⋆ (Q)

∂η

)

dξdηdτ

=
∫ 1

0

∫ 1

0

∫ 1

0
θk

(

S⋆ (Q)− B⋆1 (Q)
∂Q

∂ξ

−B⋆2 (Q)
∂Q

∂η

)

dξdηdτ .

(28)

Now, by substituting the discrete space-time predictor solution
qn
h
with its expansion on the nodal basis and after integrating by

parts in time, we obtain

∫ 1

0

∫ 1

0

∫ 1

0
θk (ξ , η, 1) θℓ (ξ , η, 1) q̂

n
ℓdξdηdτ

+
∫ 1

0

∫ 1

0

∫ 1

0

∂θk (ξ , η, τ)

∂τ
θℓ (ξ , η, τ) q̂

n
ℓdξdηdτ

=
∫ 1

0

∫ 1

0

∫ 1

0
θk (ξ , η, 0)w

n
h

(

ξ , η, tn
)

dξdηdτ

−
∫ 1

0

∫ 1

0

∫ 1

0
θk

(

∂f⋆
(

qn
h

)

∂ξ
+
∂g⋆

(

qn
h

)

∂η

)

dξdηdτ

+
∫ 1

0

∫ 1

0
×
∫ 1

0
θk

(

S⋆
(

qnh
)

− B⋆1
(

qnh
) ∂qn

h

∂ξ

−B⋆2
(

qnh
) ∂qn

h

∂η

)

dξdηdτ .

(29)

To recover the value of the unknown degrees of freedom q̂nℓ , it
is sufficient to solve the above equation locally for each element.
One important advantage of using the nodal Gauss-Legendre
basis is that the terms in (29) can be evaluated in a dimension-
by-dimension fashion.

2.5.2. Space-Time Predictor for Sliver Space–Time

Elements
When a topology change occurs, some space–time sliver
elements, as those shown on the right side of Figure 8, are
originated (see Gaburro et al. [77]), and the predictor procedure
over them needs particular care. The problem connected with
sliver elements is the fact that their bottom face, which consists
only in a line segment, is degenerate, hence the spatial integral
over Pni vanishes, i.e., there is no possibility to introduce an
initial condition for the local Cauchy problem at time tn into
their predictor. Thus, in order to couple however (24) with
some known data from the past, we will end up with a formula
different from (25). We underline that we first carry out the
space–time predictor for all standard elements using, which can
be computed independently of each other, and only subsequently
we process the remaining space–time sliver elements. Then, when

Frontiers in Physics | www.frontiersin.org 10 March 2020 | Volume 8 | Article 32

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

FIGURE 8 | Space time connectivity with topology changes and sliver element. Left: at time tn the polygons Pn2 and Pn3 are neighbors and share the highlighted edge,

instead at time tn+1 they do not touch each other; the opposite situation occurs for polygons Pn1 and Pn4. This change of topology causes the appearance of

degenerate elements of different types (refer to Gaburro et al. [77] for all the details). In particular, so-called space–time sliver elements (right) need to be taken into

account when considering the space–time framework, so the predictor and the corrector step have to be a adapted to their special features. Sliver elements (right) are

indeed completely new control volumes which do neither exist at time tn, nor at time tn+1, since they coincide with an edge of the tessellation and, as such, have zero

areas in space. However, they have a non-negligible volume in space–time. The difficulties associated to this kind of element are due to the fact that wh is not clearly

defined for it at time tn (thus the predictor has to be modified) and that contributions across it should not be lost at time tn+1 in order to guarantee conservation (thus

the corrector has to be modified).

considering a sliver, we use the upwinding in time approach on
the entire space–time surface ∂Cn

i that closes a sliver control
volume, and again respecting the causality principle, we take
the information to feed the predictor only from the past, i.e.,
only from those space–time neighborsCn

j whose common surface

∂Cn
ij exhibit a negative time component of the outward pointing

space–time normal vector (ñt < 0). In this way, we can introduce
information from the past into the space–time sliver elements.

As a consequence, the predictor solution qn
h
is again obtained

by means of (24), but by treating the entire ∂Cn
i with the

upwind in time approach, i.e., by considering also the jump
terms between the still unknown predictor of the slivers (call
it qn,−

h
) and the already known predictors of its neighbors (call

them qn,+
h

),

∫

Cn
i

θk(x, t)
∂

∂t
qnh(x, t) dx dt

−
∫

∂C−
i

θk(x, t
n)
(

qn,+
h

− qn,−
h

)

− (B · ñ)(qn,+
h

− qn,−
h

)
)

dS dt

+
∫

Cn
i \∂Cn

i

θk(x, t)∇ · F(qnh) dx dt

=
∫

Cn
i \∂Cn

i

θk(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt,

(30)

where ∂C−
i = ∂Cn

i with ñt < 0 is the part of the space-time
boundary that has a negative time component of the space-time
normal vector. Note that here we have taken into account also the
jump of the non-conservative terms, and that these contributions
have been added entirely [i.e., not only half of them, as in (49)].
Indeed, in (49) half of the jump contribution goes to one element,
while the other half goes to the neighboring element; here instead,

since the interaction between neighbors is only computed from
the side of the sliver element, the entire jump contributes to the
predictor in the sliver element.

2.6. Convergence Proof of the Predictor
Step for a Non-linear Conservation Law
In this section, the convergence proof of the predictor for a
non-linear conservation law is given. The proof is provided, for
simplicity, in the case of a fixed mesh in one space dimension,
following the nomenclature already employed in section 2.5.1,
but it still holds in higher dimensions. Let us consider a general
hyperbolic system of conservation laws of the form

∂Q

∂t
+ ∂f

∂x
= 0. (31)

Then, the corresponding space-time DG predictor used in the
ADER-DG framework reads

1
∫

0

1
∫

0

θk
∂qh

∂τ
dξdτ + 1t

1x

1
∫

0

1
∫

0

θk
∂fh

∂ξ
dξdτ = 0. (32)

For convenience, all derivatives and integrals in (32) have
been transformed to the reference space-time element [0, 1]2.
Moreover, the discrete solution is given by qh = θl(ξ , τ )q̂ℓ, and

the flux is expanded in the same basis as fh = θℓ(ξ , τ )f̂ℓ. When
using a nodal basis, we can compute the degrees of freedom for

the flux interpolant fh simply as f̂ℓ = f
(

q̂ℓ
)

. We also recall that
the initial condition given by the DG scheme at time tn reads
wh = ϕℓ(ξ )ŵℓ. Then, integration of the first term in (32) by parts
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in time yields

1
∫

0

θk(ξ , 1)qhdξ −
1
∫

0

1
∫

0

∂θk

∂τ
qhdξdτ

+1t

1x

1
∫

0

1
∫

0

θk
∂fh

∂ξ
dξdτ =

1
∫

0

θk(ξ , 0)whdξ , (33)

and insertion of the definitions of the discrete solution leads to





1
∫

0

θk(ξ , 1)θl(ξ , 1)dξ −
1
∫

0

1
∫

0

∂θk

∂τ
θldξdτ



 q̂l

+1t

1x

1
∫

0

1
∫

0

θk
∂θl

∂ξ
dξdτ f̂l =

1
∫

0

θk(ξ , 0)ϕl(ξ )dξ ŵl. (34)

The iterative scheme employed to find the solution for the space-
time degrees of freedom q̂, at any Picard iteration r, can therefore
be rewritten in compact matrix-vector notation as

K1q̂
r+1 + 1t

1x
Kξ f

(

q̂r+1
)

= F0ŵ
n (35)

with

K1 =
1
∫

0

θk(ξ , 1)θl(ξ , 1)dξ −
1
∫

0

1
∫

0

∂θk

∂τ
θldξdτ , (36)

Kξ =
1
∫

0

1
∫

0

θk
∂θl

∂ξ
dξdτ , F0 =

1
∫

0

θk(ξ , 0)ϕl(ξ )dξ , (37)

where we have dropped the indices to ease the notation. After
inverting K1 (this matrix is built using the linearly independent
basis functions so that it is invertible), we obtain the explicit
iteration formula

q̂r+1 = K−1
1 F0ŵ

n − 1t

1x
K−1
1 Kξ f

(

q̂r
)

. (38)

To prove that the former iterative formula will converge, we
introduce the operator

ϕ
(

q̂
)

= K−1
1 F0û

n − 1t

1x
K−1
1 Kξ f

(

q̂
)

, (39)

and the induced matrix norm

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ . (40)

Furthermore, we assume the flux to be Lipschitz continuous with
Lipschitz constant L > 0 so that

∥

∥f
(

p̂
)

− f
(

q̂
)∥

∥ ≤ L
∥

∥p̂− q̂
∥

∥ . (41)

We now need to show that the operator ϕ is a contraction:

∥

∥ϕ
(

q̂
)

− ϕ
(

p̂
)∥

∥ =
∥

∥

∥

∥

K−1
1 F0û

n − K−1
1 F0û

n − 1t

1x
K−1
1 Kξ f

(

q̂
)

+ 1t

1x
K−1
1 Kξ f

(

p̂
)

∥

∥

∥

∥

= 1t

1x

∥

∥K−1
1 Kξ

(

f
(

p̂
)

− f
(

q̂
))∥

∥

≤ 1t

1x

∥

∥K−1
1 Kξ

∥

∥

∥

∥f
(

p̂
)

− f
(

q̂
)
∥

∥

≤ L
1t

1x

∥

∥K−1
1 Kξ

∥

∥

∥

∥p̂− q̂
∥

∥ . (42)

The operator is therefore a contraction under the CFL-type
condition on the time step1t

0 < L
1t

1x

∥

∥K−1
1 Kξ

∥

∥ < 1, (43)

which connects the Lipschitz constant L with the mesh spacing
1x and the matrix norm of

∥

∥K−1
1 Kξ

∥

∥. Since the operator
is contractive under the above assumptions, the Banach fixed
point theorem, Banach [144], guarantees convergence of the
iterative method.

In the previous reasoning, we have assumed that the inequality
in the right hand side of (43) be strict. Thus, to conclude the
proof, let us assume that the equality holds, this is true if and
only if

∥

∥K−1
1 Kξ

∥

∥ = 0. By taking into account the definition of

the induced matrix norm (40), it implies
∥

∥K−1
1 Kξ x

∥

∥ = 0 for

any x in the metric space. Thus, K−1
1 Kξ = 0. Direct substitution

in (38) gives

K1q̂
r+1 = F0ŵ

n, (44)

so that no iterative procedure is done.
Note: The matrix K−1

1 Kξ has been proven to be nilpotent
and thus all its eigenvalues are zero, see Jackson [143], which
guarantees convergence to the exact solution in a finite number
of steps for linear homogeneous PDE.

2.7. Corrector Step
The corrector step is the last step of our path-conservative ADER
FV-DG scheme, where the update of the solution from time tn up
to time tn+1 can take place in a single step procedure thanks to
the use of the predictor qn

h
.

The update formula is recovered starting from the space–time
divergence form of the PDE

∇̃ · F̃(Q)+ B̃(Q) · ∇̃Q = S(Q), F̃ = (F,Q),

B̃ = (B, 0), and ∇̃ = (∂x, ∂t)
T , (45)

which is multiplied by a set of space–time test functions ϕ̃k and
integrated over each space–time control volume Cn

i

∫

Cn
i

ϕ̃k(x, t)
(

∇ · F̃(Q)+ B̃(Q) · ∇Q
)

dx dt

=
∫

Cn
i

ϕ̃k(x, t)S(Q) dx dt .

(46)
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Note that the employed test functions ϕ̃k coincide with the
θk of (22) for the Cartesian Case A. Instead, for the moving
polygonal Case B, they need to be tied to the motion of the
barycenter xbi (t) and must be moved together with Pi(t) in such
a way that at time t = tn they refer to the current barycenter xn

bi

and at time t = tn+1 they refer to the new barycenter xn+1
bi

, thus

they are defined as follows

ϕ̃ℓ(x, y, t)|Cn
i
= (x− xbi (t))

pℓ

pℓ! h
pℓ
i

(y− ybi (t))
qℓ

qℓ! h
qℓ
i

,

with xbi (t) =
t − tn

1t
xnbi +

(

1− t − tn

1t

)

xn+1
bi

,

ℓ = 0, . . . ,N , 0 ≤ p+ q ≤ N.

(47)

These moving modal basis functions are essential to the moving
approach presented in Gaburro et al. [77] and used in this paper.
They naturally allow for topology changes, without the need
of any remapping steps, which we want to avoid in a direct
ALE formulation.

Now, (46) by applying the Gauss theorem to the flux-
divergence term and by splitting the non-conservative products
into their volume and surface contribution, becomes

∫

Pn+1
i

ϕ̃kuh(x, t
n+1) dx =

∫

Pni

ϕ̃kuh(x, t
n) dx

−
Nn,st
Vi
∑

j=1

∫

∂Cn
ij

ϕ̃kD(qn,−
h

, qn,+
h

) · ñ dS

+
∫

Cn
i \∂Cn

i

∇̃ϕ̃k · F̃(qh) dxdt

+
∫

Cn
i \∂Cn

i

ϕ̃k(x, t)
(

S(qnh)− B(qnh) · ∇qnh
)

dx dt,

(48)

where Q on Pn+1
i is represented by the unknown un+1

h
, on

Pni is taken to be the current representation of the conserved
variables un

h
, in the interior of Cn

i is given by the predictor qn
h

and on the space–time lateral surfaces ∂Cn
ij is given by qn,−

h
and

qn,+
h

which are the so-called boundary-extrapolated data, i.e., the
values assumed respectively by the predictors of the two neighbor
elements Cn

i and C
n
j on the shared space–time lateral surface ∂Cn

ij.

Furthermore, we have employed a two-point path-conservative
numerical flux function of Rusanov-type

D(qn,−
h

, qn,+
h

) · ñ = 1

2

(

F̃(qn,+
h

)+ F̃(qn,−
h

)
)

· ñ

−1

2
smax

(

qn,+
h

− qn,−
h

)

+ 1

2





1
∫

0

B̃
(

9(qn,−
h

, qn,+
h

, s)
)

· n dx



 ·
(

qn,+
h

− qn,−
h

)

,

(49)

where smax is the maximum eigenvalue of the ALE Jacobian
matrices AVn(q

n,+
h

) and AVn(q
n,−
h

) being

AVn(Q) =
(√

ñ2x + ñ2y

)

[

∂F

∂Q
· n− (V · n) I

]

,n =
(ñx, ñy)

T

√

ñ2x + ñ2y

,

(50)
and the path9 = 9(q−

h
, q+

h
, s) is a straight-line segment path

ψ = ψ(q−
h
, q+

h
, s) = q−

h
+ s

(

q+
h
− q−

h

)

, s ∈ [0, 1] , (51)

connecting qn,−
h

and qn,+
h

which allow to treat the jump of the
non-conservative products following the theory introduced in
Dal Maso et al. [145], Parés [146], and Castro et al. [147], and
extended to ADER FV-DG schemes of arbitrary high order in
Dumbser et al. [46] and Dumbser and Toro [148]. Despite in this
paper we only consider the Rusanov flux, the above methodology
can be extended to different flux functions, adapting to the new
flux splitting techniques like the ones presented in Toro and
Vázquez-Cendón [149]. Finally, the time step size1t is given by

1t < CFL
hmin

(2N + 1)

1

|λmax|
, (Case A),

1t < CFL





|Pni |
(2N + 1) |λmax|

∑

∂Pnij
|ℓij |



 (Case B), (52)

where hmin is the minimum characteristic mesh-size, ℓij is the
length of the edge j of Pni and |λmax| is the spectral radius of
the Jacobian of the flux F. Stability on unstructured meshes is
guaranteed by the satisfaction of the inequality CFL < 1

d
, see

Dumbser et al. [42].
We close this section by remarking that the integration of the

governing PDE over closed space-time volumes Cn
i automatically

satisfies the geometric conservation law (GCL) for all test
functions ϕ̃k. This simply follows from the Gauss theorem and
we refer to Boscheri and Dumbser [63] for a complete proof.

2.8. A Posteriori Subcell Finite Volume
Limiter
Up to now, we have presented a family of FV and DG type
schemes which achieves arbitrary high order of accuracy in space
and time; the main difference between the FV and the DG
approach lies in the fact that FV schemes, thanks to the WENO-
type non-linear reconstruction procedure, are robust in the
presence of shocks and discontinuities, while the DG formulation
as presented so far, being linear in the sense of Godunov, is
subject to the appearance of spurious oscillations. Thus, in order
to employ a DG scheme in the context of solving hyperbolic
partial differential equations, where usually discontinuities are
developed, a technique that is able to limit spurious oscillations
(called limiter) should be introduced. Several attempts in that
direction can be found in the literature. For example, we could
recall the artificial viscosity technique used in Hartmann and
Houston [150],Persson and Peraire [151], and Cesenek et al.
[152] which consists in adding a small parabolic term in the
equation in order to smooth out the discontinuities.
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Here, instead, we follow a different approach based on
exploiting the respective strengths of FV and DG schemes, i.e.,
the resolution of DG in smooth regions and the robustness
of FV across discontinuities. Thus, we first evolve the solution
everywhere by using our DG scheme; then, we check a posteriori,
at the end of each time step, if the obtained DG solution in
each cell respects or not some criteria [as density and pressure
positivity, a relaxed discretemaximumprinciple, specific physical
bounds, or more elaborate choices as those of Guermond et al.
[153]], and we mark as troubled those cells where the obtained
DG solution is marked as not acceptable. Only for these troubled
cells we repeat the time step using, instead of the DG scheme,
a second order TVD FV method, which always assures a
robust solution.

This idea is founded on works as those of Cockburn and Shu
[154], Qiu and Shu [155, 156], Balsara et al. [157], Luo et al.
[158], Krivodonova [159], Zhu et al. [160], Zhu and Qiu [161],
Clain et al. [86], Diot et al. [87, 88], Loubére et al. [79], Boscheri
et al. [162],and Boscheri and Loubére [83]; but in particular,
here, we adopt a so-called subcell approach aimed at not losing
the resolution of the DG scheme when switching to the FV
method, as forwarded in Sonntag andMunz [163], Dumbser et al.
[78], Zanotti et al. [80], Dumbser and Loubére [81], Boscheriand
Dumbser [119], Fambri et al. [84], Rannabauer et al. [164], de la
Rosa and Munz [165], and Boscheri et al. [142]. Indeed, at the
beginning of the time step we project the DG solution un

h
of a

troubled cell Pni on a subdivision of it in sub-cells sni,α obtaining a
value for the cell averages on sni,α at time tn

vni,α(x, t
n) = 1

|sni,α|

∫

sni,α

unh(x, t
n) dx

= 1

|sni,α|

∫

sni,α

ϕℓ(x) dx û
n
l =P(unh) ∀α. (53)

We evolve the cell averages up to time tn+1 using a classical TVD
FV scheme, obtaining vn+1

i,α (x, tn+1). Finally, we recover a DG

polynomial representation of the solution at time tn+1 over Pn+1
i

using the values on the sub-grid level vn+1
i,α and by applying a

reconstruction operator as

∫

Sni,α

un+1
h

(x, tn+1) dx =
∫

Sni,α

vn+1
i,α (x, tn) dx=R(vn+1

i,α (x, tn))∀α,

(54)
where the reconstruction is imposed to be conservative on the
main cell Pn+1

i yielding the additional linear constraint

∫

Pn+1
i

uh(x, t
n+1) dx =

∫

Pn+1
i

vh(x, t
n+1) dx. (55)

Thus, the limited solution on a troubled cell is robust thanks
to the use of a TVD scheme and accurate thanks to the
subcell resolution.

For all the details of the a posteriori subcell FV limiter used in
this work, we refer to Dumbser et al. [78] and Fambri et al. [36]
for the fixed Cartesian Case A and to Gaburro et al. [77] for the
moving polygonal Case B.

3. A UNIFIED FIRST ORDER HYPERBOLIC
MODEL OF CONTINUUM MECHANICS

3.1. Governing PDE System
A simplified diffuse interface formulation of the unified
continuum fluid and solid mechanics model [57, 59, 60, 166],
which can be used for modeling moving boundary problems of
fluids and solids of arbitrary geometry, is given by the following
PDE system (throughout this paper we make use of the Einstein
summation convention over repeated indices)

∂α

∂t
+ vk

∂α

∂xk
= 0, (56a)

∂(αρ)

∂t
+ ∂(αρvk)

∂xk
= 0, (56b)

∂(αρvi)

∂t
+
∂
(

αρvivk + αpδik − ασik
)

∂xk
= ρgi, (56c)

∂Aik

∂t
+
∂(Aijvj)

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= − 1

θ1(τ1)
EAik

, (56d)

∂(αρJi)

∂t
+ ∂ (αρJivk + Tδik)

∂xk
= − 1

θ2(τ2)
EJi , (56e)

∂(αρS)

∂t
+
∂
(

αρSvk + EJk
)

∂xk

= ρ

T

(

1

θ1
EAik

EAik
+ 1

θ2
EJkEJk

)

≥ 0, (56f)

∂(αρE)

∂t
+
∂
(

vkαρE+ αvi(pδik − σik)
)

∂xk
= ρgivi. (56g)

Here, (56a) is the evolution equation for the color function α
that is needed in the diffuse interface approach as introduced
in Tavelli et al. [85] for the description of linear elastic solids
of arbitrary geometry and as used in Dumbser [106] and
Gaburro et al. [107] for a simple diffuse interface method for
the simulation of non-hydrostatic free surface flows. We assume
that the color function α equals to 1 in the regions of the
computational domain occupied by the material and 0 outside
these regions. In the computational code, α = 1 − ε inside
of the material and α = ε outside the material. Here, ε is a
small parameter ε ≪ 1, see section 4. Then, inside of the diffuse
interface, α may take any values between 0 and 1 (between ε
and 1 − ε in the computational code). Equation (56b) is the
mass conservation law and ρ is the material density; (56c) is
the momentum conservation law, where vi is the velocity field
and gi is the gravity vector; (56d) is the evolution equation
for distortion field Aik (non-holonomic basis triad, see Peshkov
et al. [167]); (56e) is the evolution equation for the specific
thermal impulse Jk constituting the heat conduction in thematter
via a hyperbolic (non-Fourier–type) model. Finally, (56f) is the
entropy balance equation and (56g) is the energy conservation
law. Other thermodynamic parameters are defined via the total
energy potential E = E(α, ρ, S, v,A, J): 6ik = pδik − σik is the
total stress tensor (δik is the Kronecker delta); p = ρ2Eρ is the
thermodynamic pressure; σik = −ρAjkEAji is the non-isotropic
part of the stress tensor, T = ES is the temperature, and the
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notations such as Eρ , EAik
, etc. stand for the partial derivatives

of the energy potential, e.g., Eρ = ∂E
∂ρ
, EAik

= ∂E
∂Aik

, etc.

The dissipation in the medium includes two relaxation
processes: the shear stress relaxation characterized by the scalar
function θ1(τ1) > 0 depending on the relaxation time τ1
and thermal impulse relaxation characterized by θ2(τ2) > 0
depending on the relaxation time τ2. Both these relaxation
processes then contribute to the entropy production term [the
source on the right hand-side of (56f)] which is positive because
it is quadratic in EAik

and EJk .
From the mathematical standpoint, the unification of the

model (56) consists in the use of only first-order hyperbolic
equations for both dissipative and non-dissipative processes in
contrast to the classical continuum mechanics relying on the
mixed hyperbolic-parabolic formulations such as the famous
Navier-Stokes-Fourier equations, for example. From the physical
standpoint, the unification of Equations (56) consists in treating
solid and fluid states of matter from the solid-dynamics
viewpoint. Indeed, as discussed in Peshkov and Romenski [57]
and Dumbser et al. [59, 166], similarly to standard continuum
solid-dynamics, the distortion field introduces additional degrees
of freedom (in comparison to the classical continuum fluid
mechanics) which characterizes deformation and rotational
degrees of freedom of the continuum particles, represented not
as scaleless mathematical points but characterized by a finite
length scale, or equivalently, time scale τ1, e.g., see Dumbser et al.
[166]. In such a formulation, solid-type behavior corresponds
to relaxation times τ1 such that Tproblem ≪ τ1, while the fluid-
type behavior corresponds to τ1 ≪ Tproblem, where Tproblem is the
characteristic time scale of the problem under consideration.

In order to close system (56), that is, in order to define pressure
p = ρ2Eρ , stresses σik = −ρAjkEAji , temperature T = ES, and
the dissipative source terms, one needs to provide the energy
potential E. In this paper, we rely on a rather simple choice of
E, which is, however, enough to deal with Newtonian fluids and
simple hyperelastic solids. Thus, we assume that the specific total
energy can be written as a sum of three contributions as

E(α, ρ, S, vi,Aik, Jk) = E1(ρ, S)+ E2(α,Aik, Jk)+ E3(vi), (57)

with the specific internal energy given by the ideal gas equation
of state

E1(ρ, S) =
c20

γ (γ − 1)
, c20 = γργ−1eS/cv , or

E1(ρ, p) =
p

ρ(γ − 1)
, (58)

in the case of gases, and given by either the so-called stiffened gas
equation of state

E1(ρ, S) =
c20

γ (γ − 1)

(

ρ

ρ0

)γ−1

eS/cv + ρ0c
2
0 − γ p0
γρ

(59)

or the well-known Mie-Grüneisen equation of state

E1(ρ, p) =
p− ρ0c20 f (ν)

ρ0Ŵ0
,

f (ν) =
(ν − 1)(ν − 1

2Ŵ0(ν − 1))

(ν − s(ν − 1))2
, ν = ρ

ρ0
, (60)

in the case of solids and liquids. Here, cv is the specific heat
capacity at constant volume, γ is the ratio of the specific heats,
p0 is the reference (atmospheric) pressure, ρ0 is the reference
material density, and Ŵ0, and s are some material parameters.
The specific energy stored in material deformations and in the
thermal impulse is

E2(α,Aik, Jk) =
1

4
c̄2s

◦
Gij

◦
Gij +

1

2
c̄2hJkJk, (61)

where
◦
Gij= Gij− 1

3Gkk δij is the trace-free part of themetric tensor
Gij = AkiAkj, which is induced by the mapping from Eulerian
coordinates to the current stress-free reference configuration.
The coefficients c̄s(α) and c̄h(α) in (61) are the characteristic
velocities for propagation of shear and thermal perturbations
accordingly. In the present diffuse interface model, we choose the
following simple linear mixture rule for the computation of the
shear sound speed and of the heat wave propagation as a function
of the volume fraction α

c̄s(α) = αcs + (1− α)cgs , c̄h(α) = αch + (1− α)cg
h
, (62)

where cs and ch are the material parameters inside the continuum
and c

g

h
≪ 1 and c

g
s ≪ 1 are free parameters that can be chosen for

the region outside the continuum. The specific kinetic energy is
contained in the third contribution to the total energy and reads
E3(vk) = 1

2vivi.
With the equation of state chosen above, we get the following

expressions for the stress tensor, the heat flux and the dissipative
sources EAik

and EJk present in the relaxation source terms:

σik = ρ c̄2sGij

◦
Gjk, qk = ρTc̄2hJk, (63)

EAik
= c̄2sAij

◦
Gjk, EJk = c̄2hJk. (64)

The functions θ1 and θ2 are chosen in such a way that a
constant viscosity and heat conduction coefficient are obtained
in the stiff relaxation limit, see Dumbser et al. [59] for a formal
asymptotic analysis,

θ1(τ1) =
1

3
τ1c̄

2
s |A|

5
3 , θ2(τ2) = τ2c̄

2
h

ρ T0

ρ0T
. (65)

Thus, following the procedure detailed in Dumbser et al. [59],
one can show via formal asymptotic expansion that in the stiff
relaxation limit τ1 → 0, τ2 → 0, the stress tensor and the heat
flux reduce to

σ = −1

6
ρ0c̄

2
s τ1

(

∇v + ∇vT − 2

3
(∇ · v) I

)

(66)
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and

q = −c̄2hτ2
T0

ρ0
∇T, (67)

that is the effective shear viscosity and effective heat conductivity
of model (56) are

µ = 1

6
ρ0τ1c̄

2
h, κ = τ2c̄

2
h

T0

ρ0
(68)

with ρ0 and T0 are reference density and temperature, see
Dumbser et al. [59], where also an explanation has been provided
of how the relaxation times τ could be obtained experimentally
via ultrasound measurements.

3.2. Symmetric Godunov Form of the Model
It is important to note an interesting structural feature of
Equations (56) that may affect future developments of the ADER
schemes in an attempt to respect such structural properties at the
discrete level that may help to improve physical consistency of
the numerical solution. Thus, as many PDE systems studied in
some other of our papers [59, 60, 168, 169], system (56) belongs to
the class of so-called Symmetric Hyperbolic Thermodynamically
Compatible (SHTC) PDE systems originally studied by Godunov
[170, 171] and later by Godunov and Romenski [172], Godunov
et al. [173], Romenski [168] and Romensky [174].

Indeed, by simply rescaling the quantities ρ̄ = αρ, p̄ =
αp = ρ̄2Eρ̄ , and σ̄ik = ασik = −ρ̄AjkEAji and replacing the
non-conservative Equation (56a) by an equivalent (on smooth
solutions) conservative form (69a), system (56) can be written as

∂(αρ̄)

∂t
+ ∂(αρ̄vk)

∂xk
= 0, (69a)

∂ρ̄

∂t
+ ∂(ρ̄vk)

∂xk
= 0, (69b)

∂(ρ̄vi)

∂t
+
∂
(

ρ̄vivk + p̄δik − σ̄ik
)

∂xk
= 0, (69c)

∂Aik

∂t
+
∂(Aijvj)

∂xk
+ vj

(

∂Aik

∂xj
−
∂Aij

∂xk

)

= − 1

θ1
EAik

, (69d)

∂(ρ̄Ji)

∂t
+ ∂ (ρ̄Jivk + ESδik)

∂xk
= − 1

θ2
EJi , (69e)

∂(ρ̄S)

∂t
+
∂
(

ρ̄Svk + EJk
)

∂xk
= ρ̄

αT

(

1

θ1
EAik

EAik
+ 1

θ2
EJkEJk

)

≥ 0,

(69f)

where we have omitted the energy equation. Now, this system
looks exactly as the system studied in Dumbser et al. [59], apart
from the additional Equation (69a) which has the same structure
as (69b) and does not change the essence. Then, after denoting
E = ρ̄E and introducing new variables P = (̺1, ̺2, vi,αik,2i, σ )

̺1 = Eαρ̄ , ̺2 = Eρ̄ , vi = Eρ̄vi , αik = EAik
, 2i = Eρ̄Ji , T = Eρ̄S,

(70)
which are thermodynamically conjugate to the conservative
variables Q = (αρ̄, ρ̄, ρ̄vi,Aik, ρ̄Ji, ρ̄S), and a new

thermodynamic potential L(P) = Q · EQ − E = Q · P − E ,
system (69) can be written in a symmetric form

∂L̺i
∂t

+ ∂(vkL)̺i
∂xk

= 0, i = 1, 2, (71a)

∂Lvi
∂t

+ ∂(vkL)vi
∂xk

+ Lαij
∂αkj

∂xk
− Lαjk

∂αjk

∂xi
= ρgi, (71b)

∂Lαil
∂t

+ ∂(vkL)αil
∂xk

+ Lαjl
∂vj

∂xi
− Lαil

∂vk

∂xk
= − 1

θ1
αil, (71c)

∂L2i

∂t
+ ∂(vkL)2i

∂xk
+ ∂T

∂xi
= − 1

θ2
2i, (71d)

∂LT

∂t
+ ∂(vkL)T

∂xk
+ ∂2k

∂xk
= ̺22

̺1T

(

1

θ1
αikαik +

1

θ2
2k2k

)

≥ 0.

(71e)

In this PDE system, the first two terms in each equation form the
canonical Godunov form introduced in Godunov [170] which
can be immediately written as a quasilinear symmetric form, e.g.,
see Peshkov et al. [169], Romenski [168], and Romensky [174].
The other (non-conservative) terms obviously form a symmetric
matrix. Therefore, the entire system (71) can be written in
a symmetric quasi-linear form and hence, it is a symmetric
hyperbolic system if the thermodynamic potential L is convex.

We note that the understanding of the structural properties
of the continuous equations might be beneficial for developing
of so-called structure-preserving numerical integrators (e.g.,
symplectic integrators). Thus, the energy conservation law (56g)
is in fact a consequence of the other Equations (56) or (71), e.g.,
see Dumbser et al. [59] and Peshkov et al. [169], and can be
viewed as a constraint of the system (71). Its non-violation at
the discrete level cannot be guaranteed by the general purpose
ADER family of schemes studied in this paper and hence, usually,
as well as in our implementation, it is included into the set of
discretized PDEs instead of the entropy equation. In principle, a
structure-preserving scheme which satisfies all SHTC properties
[169] of the continuous equations at the discrete level should
guarantee the automatic satisfaction of the energy conservation
law, without its explicit discretization. We hope to cover this
topic in future work.

4. NUMERICAL RESULTS

In this section, we present some numerical results in order
to illustrate the capabilities and potential applicability of
the proposed numerical approach in non-linear continuum
mechanics. The first three test problems are carried out without
making explicit use of the diffuse interface approach, i.e., setting
α = 1 everywhere in the entire computational domain. The
last three test problems illustrate the full potential of the diffuse
interface extension of the GPR model in the context of moving
free boundary problems. Gravity effects are neglected in all test
cases, apart from the dambreak problem shown in subsection 4.6.
Whenever values for ν = µ/ρ0 and cs are provided, the
corresponding relaxation time τ1 is computed according to (68).

Frontiers in Physics | www.frontiersin.org 16 March 2020 | Volume 8 | Article 32

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Busto et al. ADER Schemes for Continuum Mechanics

4.1. Numerical Convergence Studies in the
Stiff Relaxation Limit
In order to verify the high order property of our ADER schemes
in both space and time in the stiff relaxation limit, we first
represent the numerical convergence study that was already
carried out in Dumbser et al. [59] on a smooth unsteady flow, for
which an exact analytical solution is known for the compressible
Euler equations, i.e., in the stiff relaxation limit τ1 → 0 and τ2 →
0 of the GPR model. The problem setup is the one of the classical
isentropic vortex, see Hu and Shu [175]. The initial condition
consists in a stationary isentropic vortex, whose exact solution
can easily be found by solving the compressible Euler equations
in cylindrical coordinates. Due to the Galilean invariance of the
Euler equations and of the GPR model, one can then simply
superimpose a constant velocity field to this stationary vortex
solution in order to get an unsteady version of the test problem.
The vortex strength is chosen as ε = 5 and the perturbation of
entropy S = p

ργ
is assumed to be zero. For details of the setup, see

Hu and Shu [175] and Dumbser et al. [59]. In this test we set the
distortion field initially to A = 3

√
ρ I, while the heat flux vector is

initialized with J = 0. As computational domain we choose � =
[0; 10]×[0; 10] with periodic boundary conditions. The reference
solution for the GPR model in the stiff relaxation limit is given
by the exact solution of the compressible Euler equatons, which
is the time–shifted initial condition Qe(x, t) = Q(x − vct, 0),
where the convective mean velocity is vc = (1, 1). We run this
benchmark on a mesh sequence until the final time t = 1.0. The
physical parameters of the GPR model are chosen as γ = 1.4,
cv = 2.5, ρ0 = 1, cs = 0.5, and ch = 1. The volume fraction
function is set to α = 1 in the entire computational domain.
The resulting numerical convergence rates obtained with ADER-
DG schemes using polynomial approximation degrees from N =
M = 2 to N = M = 5 are listed in Table 1, together with the
chosen values for the effective viscosity µ and the effective heat
conductivity coefficient κ . From Table 1 one can observe that
high order of convergence of the numerical method is achieved
also in the stiff limit of the governing PDE system.

4.2. Circular Explosion Problem in a Solid
In this Section, we simulate a circular explosion problem in
an ideal elastic solid. We compare the results obtained with
a third order ADER-WENO finite volume scheme on moving
unstructured Voronoi meshes with possible topology changes,
Gaburro et al. [77], with those obtained with a fourth order
ADER discontinuous Galerkin finite element scheme on a very
fine uniform Cartesian mesh composed of 512 × 512 elements,
which will be taken as the reference solution for this benchmark.
The computational domain is � = [−1, 1] × [−1, 1] and the
final simulation time is t = 0.25. We set α = 1, v = 0, A = I

and J = 0 in the entire domain. For r =
√

x2 + y2 ≤ 0.5 the
initial density and the initial pressure are set to ρ = 1 and p = 1,
while in the rest of the domain we set ρ = 0.1 and p = 10−3. The
parameters of the GPR model are chosen as follows: cs = 0.2,
ch = 0, τ1 → ∞ (in order to model an elastic solid). We use
the stiffened gas equation of state with γ = 2 and p0 = 0.
For the simulation on the moving Voronoi mesh, we employ a

TABLE 1 | Experimental errors and order of accuracy at time t = 1 for the density

ρ for ADER-DG schemes applied to the GPR model (cs = 0.5, α = 1) in the stiff

relaxation limit (µ≪ 1, κ ≪ 1).

Nx ε(L1) ε(L2) ε(L∞) O(L1) O(L2) O(L∞)

ADER-DG P2P2 (µ = κ = 10−6)

20 9.4367E-03 2.2020E-03 2.1633E-03

40 1.9524E-03 4.4971E-04 4.2688E-04 2.27 2.29 2.34

60 7.5180E-04 1.7366E-04 1.4796E-04 2.35 2.35 2.61

80 3.7171E-04 8.6643E-05 7.3988E-05 2.45 2.42 2.41

ADER-DG P3P3 (µ = κ = 10−6)

10 1.7126E-02 4.0215E-03 3.6125E-03

20 6.0405E-04 1.7468E-04 2.1212E-04 4.83 4.52 4.09

30 8.3413E-05 2.5019E-05 2.7576E-05 4.88 4.79 5.03

40 2.1079E-05 6.0168E-06 7.6291E-06 4.78 4.95 4.47

ADER DG P4P4 (µ = κ = 10−7)

10 1.5539E-03 4.5965E-04 5.1665E-04

20 4.3993E-05 1.0872E-05 1.0222E-05 5.14 5.40 5.66

25 1.8146E-05 4.4276E-06 4.1469E-06 3.97 4.03 4.04

30 8.6060E-06 2.1233E-06 1.9387E-06 4.09 4.03 4.17

ADER DG P5P5 (µ = κ = 10−7)

5 1.1638E-02 1.1638E-02 1.8898E-03

10 3.9653E-04 9.3717E-05 6.5319E-05 4.88 6.96 4.85

15 4.4638E-05 1.2572E-05 1.9056E-05 5.39 4.95 3.04

20 9.6136E-06 3.0120E-06 3.9881E-06 5.34 4.97 5.44

The reported errors are floating point numbers that have been obtained for numerical

simulations carried out in double precision arithmetics.

mesh with 82 919 control volumes. The computational results
obtained with the unstructured ADER-WENO ALE scheme
and those obtained with the high order Eulerian ADER-DG
scheme are presented and compared with each other in Figure 9.
We can note a very good agreement between the two results.
The high quality of the ADER-WENO finite volume scheme
on coarse grids is mainly due to the natural mesh refinement
around the shock, which is typical for Lagrangian schemes.
Furthermore, Lagrangian schemes are well-known to capture
material interfaces and contact discontinuities very well, since the
mesh is moving with the fluid and thus numerical dissipation
at linear degenerate fields moving with the fluid velocity is
significantly lower than with classical Eulerian schemes.

4.3. Rotor Test Problem
A second solid mechanics benchmark consists in the simulation
of a plate on which a rotational impulse is initially impressed,
in a circular region centered with respect to the computational
domain. This rotor will initially move according to the rotational
impulse, while emitting elastic waves which ultimately determine
the formation of a set of concentric rings with alternating
direction of rotation. The test is analogous to the rotor problem
shown in Peshkov et al. [72], but with a weakened material in
order to show stronger motion of the Voronoi grid.

The results of the third order ADER-WENO finite volume
method on a moving Voronoi grid with variable connectivity,
composed of 150 561 cells, are compared against a reference
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FIGURE 9 | Simulation results for the explosion problem obtained with a third order ADER-WENO ALE finite volume scheme on a moving Voronoi grid composed of

82 919 cells and with a fourth order ADER-DG scheme on a Cartesian grid of size 5122 = 262144 (4.2× 106 DOF). In the top row, two cuts of the solution along the

x-axis are shown; in the middle row, from the left, the solution for A11 obtained with the ADER-WENO ALE scheme and with the ADER-DG Eulerian scheme; in the

bottom row, the Voronoi grid at the final simulation time and the results from the ADER-WENO ALE scheme on a coarser grid of 2 727 elements.
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FIGURE 10 | Simulation results for the solid rotor problem obtained from a third order ADER-WENO ALE finite volume scheme on a moving Voronoi grid composed of

150 561 cells and with a fourth order ADER-DG scheme on a cartesian grid of size 5122 = 262144 (4.2× 106 DOF). In the top row, the solutions for the u component

of the velocity field are shown, on the left those obtained with the unstructured ADER-WENO ALE scheme on moving Voronoi meshes and on the right those of the

ADER-DG scheme on a fixed Cartesian grid; in the bottom panels the cells are colored according to their mesh numbering to show the mesh motion between the

beginning of the ALE simulation and the final time.

solution obtained with a fourth order ADER discontinuos
Galerkin scheme on a very fine uniform Cartesian mesh counting
512×512 elements, for a total of over four million spatial degrees
of freedom.

The computational domain is the square � = [−1, 1] ×
[−1, 1] and the final simulation time is set to t = 0.5. With
exception made for the velocity field, all variables are initially
constant throughout the domain. Specifically we set α = 1,
ρ = 1, p = 1, A = I, J = 0, while the velocity field is
v = [−y/R, x/R, 0] if r =

√

x2 + y2 ≤ R, and v = 0 otherwise,
that is, outside of the circle of radius R = 0.2; this way, the
initial tangential velocity at r = R is one. The solid is taken
to be elastic (τ1 → ∞), heat wave propagation is neglected
(ch = 0), and the characteristic speed of shear waves is cs = 0.25.
The constitutive law is chosen to be the stiffened-gas EOS with
γ = 1.4 and p0 = 0. We can see in Figure 10 that, although
some of the finer features are lost (specifically the small central

counterclockwise-rotating ring) due to the lower resolution of the
finite volume method on a coarser grid, the shear waves travel
outwards with the correct velocity and the moving Voronoi finite
volume simulation can be said to be in agreement with the high
resolution discontinuous Galerkin results. Also in Figure 10,
it is shown that the central region of the computational grid
has undergone significant motion but thanks to the absence of
constraints on the connectivity between elements, the Voronoi
control volumes have not been stretched excessively as would
instead happen for a similar moving unstructured grid, but with
fixed connectivity.

4.4. Elastic Vibrations of a Beryllium Plate
The first benchmark for our new diffuse interface version of the
GPRmodel consists in the purely elastic vibrations of a beryllium
plate, subject to an initial velocity distribution, see for example
Sambasivan et al. [176], Maire et al. [177], Burton et al. [178],
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FIGURE 11 | Vibration of an elastic beryllium plate. Temporal evolution of the volume fraction function α (left) and of the pressure field (right) at times t = 5, t = 14,

t = 23, and t = 28, from top to bottom.

Boscheri et al. [71], and Peshkov et al. [72] for a setup of the same
test problem in the framework of Lagrangian and ALE schemes.

Unlike in the Lagrangian simulations, the computational
domain considered here is larger and is set to � = [−5; 5] ×
[−2.5; 2.5]. The computational grid consists of 512×256 uniform
Cartesian cells with a characteristic mesh size of about h = 0.02.
We use a third order ADER-WENO finite volume scheme in the
entire domain. The initial geometry of the beryllium bar is now
simply defined by setting α(x, 0) = 1 − ε inside the subdomain

�b = [−3, 3] × [−0.5, 0.5], while the solid volume fraction
function α is set to α(x, 0) = ε elsewhere, with ε = 5 · 10−3.
The initial velocity field inside�b is imposed according to Burton
et al. [178], Boscheri et al. [71], and Peshkov et al. [72] as

v(x) =
(

0,Aω
{

C1

(

sinh(�(x+ 3))+ sin(�(x+ 3))
)

−S1
(

cosh(�(x+ 3))+ cos(�(x+ 3))
)}

, 0
)

, (72)
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with � = 0.7883401241, ω = 0.2359739922, A =
0.004336850425, S1 = 57.64552048, and C1 = 56.53585154,
while we simply set v = 0 outside �b. For this test case we set
ε = 5 · 10−3. The distortion field is initially set to A = I. The
material properties of Beryllium in the Mie-Grüneisen equation
of state are taken as follows: ρ0 = 1.845, c0 = 1.287, cs =
0.905, Ŵ = 1.11, and s0 = 1.124. We furthermore neglect heat
conduction and set ch = 0 and J = 0.

Unlike in Lagrangian schemes, no boundary conditions need
to be imposed on the surface of the bar. We simply use
transmissive boundaries on ∂�. The entire computational
domain is initialized with the reference density for beryllium
as ρ(x, 0) = ρ0, while the pressure is set to p(x, 0) = 0. The
distortion field is initialized with A = I. According to Burton
et al. [178], the final time is set to tf = 53.25 so that it corresponds
approximately to two complete flexural periods. The simulations
are carried out with a third order ADER-WENO scheme on two
uniform Cartesian meshes composed of 256× 128 and 512× 256
elements, respectively.

For the fine grid simulation in Figure 11, we present the
temporal evolution of the color contour map of the volume
fraction function α, which represents the moving geometry of
the bar. Here, dark gray color is used to indicate the regions with
α > 0.5 and white color is used for the regions of α < 0.5. In
the same figure, we also depict the pressure field in the region
α > 0.5 at times t = 5, t = 14, t = 23, and t = 28. These
time instants cover approximately one flexural period. The time
evolution of the vertical velocity component v(0, 0, t) in the origin
is depicted in Figure 12. For comparison, in the same figure we
also show the results obtained on the coarse mesh for the same
test problem with a fourth order ADER-DG scheme with second
order TVD subcell finite volume limiter (red line).

Our computational results compare visually well against
available reference solutions in the literature, see Sambasivan
et al. [176], Maire et al. [177], Burton et al. [178], Boscheri et al.
[71], and Peshkov et al. [72], which were all carried out with
pure Lagrangian or Arbitrary-Lagrangian-Eulerian schemes on
moving meshes, while here we use a diffuse interface approach
on a fixed Cartesian grid.

4.5. Taylor Bar Impact Problem
So far, we have only considered ideal elastic material, i.e., the
limit case τ1 → ∞. In this section we consider also non-
linear elasto-plastic material behavior. Following Barton et al.
[179, 180], Boscheri et al. [71], and Peshkov et al. [72] we choose
the relaxation time τ1 as a non-linear function of an invariant of
the stress tensor as follows:

τ1 = τ0

(σ0

σ

)m
, (73)

where τ0 is a constant characteristic relaxation time, σ0 is the
yield stress of the material and the von Mises stress σ is given by

σ =
√

1

2
((σ11 − σ22)2 + (σ33 − σ11)2 + (σ33 − σ22)2 + 6(σ 212 + σ 231 + σ 232)

=
√

3

2

◦
σ ij

◦
σ ij. (74)

FIGURE 12 | Temporal evolution of the vertical velocity component v(0, 0, t)

obtained with a third order ADER-WENO scheme applied to the diffuse

interface GPR model using two different mesh resolutions of 256× 128

elements (coarse mesh) and 512× 256 grid cells (fine mesh). For comparison,

also a fourth order ADER-DG simulation on the coarse mesh is shown

(red line).

In the formula (74) above,
◦
σ ij= σij − 1

3σkkδij is the stress
deviator, i.e., the trace-free part of the stress tensor. The non-
linear relaxation time (73) tends to zero for σ≫σ0, while it tends
to infinity for σ ≪ σ0.

The Taylor bar impact problem is a classical benchmark for an
elasto-plastic aluminium projectile that hits a rigid solid wall, see
Sambasivan et al. [176], Maire et al. [177], Dobrev et al. [181], and
Boscheri et al. [71]. In this work the computational domain under
consideration is � = [0, 600] × [−150,+150]. The aluminium
bar is initially located in the region �b = [0, 500]× [−50,+50],
where we set α = 1 − ε, while in the rest of the computational
domain we set α = ε, with ε = 1 · 10−2.

The aluminium bar is described by the Mie-Grüneisen
equation of state with parameters ρ0 = 2.785, c0 = 0.533,
cs = 0.305, Ŵ = 2, and s = 1.338. The yield stress of aluminium
is set to σ0 = 0.003.

The projectile is initially moving with velocity v = (−0.015, 0)
toward a wall located at x = 0. This velocity field is imposed
within the subregion �b, while in the rest of the domain we set
v = 0. The remaining initial conditions are chosen as ρ = ρ0,
p = p0, A = I, J = 0 and with the parameters τ0 = 1 and
m = 20 for the computation of the relaxation time (73). Unlike
in Lagrangian schemes, we do not need to set any boundary
conditions on the free surface of the moving bar. We only apply
reflective slip wall boundary conditions on the wall in x = 0.
According to Maire et al. [177], Dobrev et al. [181], and Boscheri
et al. [71] the final time of the simulation is t = 5, 000. The
computational domain is discretized on a regular Cartesian grid
composed of 512 × 256 elements using a third order ADER-
WENO finite volume scheme. As in Boscheri et al. [71] we
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FIGURE 13 | Geometry of the Taylor bar at time t = 1, 000 (top) and at the final time t = 5, 000 (bottom) obtained with a third order ADER-WENO finite volume

scheme applied to the diffuse interface GPR model. We plot the contour colors of the volume fraction function α, where black regions denote α > 0.5 and white

regions α < 0.5.

employ a classical source splitting for the treatment of the stiff
sources that arise in the regions of plastic deformations, i.e., when
σ ≫ σ0. In Figure 13, we show the computational results at
t = 1000 and at the final time t = 5, 000. The obtained solution
is in agreement with the results presented in Maire et al. [177],
Boscheri et al. [71], and Peshkov et al. [72]. At time t = 5, 000,
we measure a final length of the projectile of Lf = 456, which fits
the results achieved in Maire et al. [177] and Boscheri et al. [71]
up to 2%.

4.6. Dambreak Problem
In this last section on numerical test problems, we solve a two-
dimensional dambreak problem with different relaxation times
in order to show the entire range of potential applications of the

GPR model. For this purpose, we also activate the gravity source
term, setting the gravity vector to g = (0,−g) with g = 9.81.
The computational domain is chosen as � = [0, 4] × [0, 2] and
is discretized with a fourth order ADER discontinuous Galerkin
finite element scheme with polynomial approximation degree
N = 3 and a posteriori subcell TVD finite volume limiter.
Computations are run on a uniform Cartesian mesh composed
of 128 × 64 elements until the final time t = 0.5. The initial
condition is chosen as follows: we set ρ = ρ0, v = 0, A = I

and J = 0 in the entire computational domain. We impose
the slip boundary condition on the bottom. In the subdomain
�d = [0, 2] × [0, 1], we set α = 1 − ε, and p = ρ0g(y − 1),
while in the rest of the domain we set α = ε and p = 0.
In this test problem we set ε = 10−2 and use a stiffened gas
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FIGURE 14 | Dambreak problem at t = 0.5, simulated with a fourth order ADER-DG scheme using different relaxation times. (Top) Low viscosity fluid (stiff relaxation

limit) with ν = 10−3. (Center) High viscosity fluid with ν = 10−1. (Bottom) Ideal elastic solid (τ1 → ∞) with low shear resistance.
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FIGURE 15 | Dambreak problem at t = 0.4, simulated with a fourth order ADER-DG scheme using a space-time adaptive Cartesian AMR mesh applied to the GPR

model with with ν = 10−3 (Top), and reference solution, computed with a third order ADER-WENO finite volume scheme on a very fine uniform Cartesian grid, solving

the inviscid and barotropic reduced Baer-Nunziato approach presented in [106, 107] (Bottom).

equation of state with parameters ρ0 = 1, 000, p0 = 5 × 104,
γ = 2, ch = 0 and a shear sound speed cs = 6. Simulations are
run in three different regimes, only characterized by a different
choice of the strain relaxation time τ1. In the first simulation,
we set τ1 so that a kinematic viscosity ν = µ/ρ0 = 10−3 is
reached in the stiff relaxation limit, i.e., the GPR model in this
case describes an almost inviscid fluid. In the second simulation
we choose τ1 so that ν = 0.1, i.e., a high viscosity Newtonian fluid
behavior is reached. In the last simulation we set τ1 → ∞, i.e.,
the strain relaxation term is switched off so that an ideal elastic
solid with low shear resistance is described, similar to a jelly-type
medium. In all cases, we apply solid slip wall boundary conditions
on the left and on the right of the computational domain,
while on the right and upper boundary, transmissive boundary
conditions are set. The temporal evolution of the volume fraction
function α, together with the coarse mesh used in this simulation,

are depicted in Figure 14. The results for the almost inviscid
fluid agree qualitatively well with those shown in Ferrari et al.
[182], Dumbser et al. [106], and Gaburro et al. [107] for non-
hydrostatic dambreak problems. In order to corroborate this
statement quantitatively, we now repeat the simulation with ν =
10−3 using a fourth order ADER-DG scheme on a coarse AMR
grid composed of only 32 × 16 elements on the level zero grid.
We then apply two levels of AMR refinement with refinement
factor r = 3, i.e., we employ a general space-tree, rather than a
simple quad-tree. We note that the simulations on the AMR grid
are run in combination with time-accurate local time stepping
(LTS), which is trivial to implement in high order ADER-DG and
ADER-FV schemes, due to their fully-discrete one-step nature.
For details on LTS, see Dumbser et al. [37, 54],Dumbser [64]
and Gaburro et al. [65]. As a reference solution of this almost
inviscid flow problem, we solve the reduced barotropic and
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inviscid Baer-Nunziato model introduced in Dumbser [106] and
Gaburro et al. [107], using a third order ADER-WENO finite
volume scheme on a very fine uniform Cartesian grid composed
of 1024 × 512 elements. The direct comparison of the two
simulations at time t = 0.4 is shown in Figure 15. Overall we can
indeed note an excellent agreement between the behavior of the
diffuse interface GPR model in the stiff relaxation limit and the
weakly compressible inviscid non-hydrostatic free surface flow
model of Dumbser [106] and Gaburro et al. [107].

5. CONCLUSIONS AND OUTLOOK

In the first part of this paper we have provided a review of the
ADER approach, whose development started about 20 years ago
with the seminal works of Toro et al. [20] Millington et al. [19],
Titarev and Toro [29], and Toro and Titarev [28] in the context
of approximate solvers for the generalized Riemann problem
(GPR). The ADER method provides fully discrete explicit one-
step schemes that are in principle arbitrary high order accurate
in both space and time. The most recent developments include
ADER schemes for stiff source terms, as well as ADER finite
volume and discontinuous Galerkin finite element schemes on
fixed and moving meshes, which are all based on a space-
time predictor-corrector approach. The fact that ADER schemes
are fully discrete makes the implementation of time accurate
local time stepping (LTS) particularly simple, both on adaptive
Cartesian AMR meshes [54], as well as in the context of
Lagrangian schemes on moving grids [64, 65]. The fully discrete
space-time formulation also allows the treatment of topology
changes during one time step in a very natural way [77]. In the
second part of the paper we have then shown several applications
of high order ADER finite volume and discontinuous Galerkin
finite element schemes to the novel unified hyperbolic model
of continuum mechanics (GPR model) proposed by Godunov,
Peshkov and Romenski [56, 57, 59]. The presented test problems
cover the entire range of continuummechanics, from ideal elastic
solids over plastic solids to viscous fluids. The use of a diffuse
interface approach allows also to simulate moving boundary
problems on fixed Cartesian meshes. Future developments will
concern the extension of the mathematical model to non-
Newtonian fluids [183] and to free surface flows with surface
tension, see Schmidmayer et al. [184] and Chiocchetti et al. [185],

as well as to the conservative multi-phase model of Romenski
et al. [186, 187]. In future work we will also consider the use
of novel all speed schemes [188] and semi-implicit space-time
discontinuous Galerkin finite element schemes [189–191] for the
diffuse interface version of the GPR model used in this paper.
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