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In the search for superheavy elements quasifission reactions represent one of the reaction

pathways that curtail the formation of an evaporation residue. In addition to its importance

in these searches quasifission is also an interesting dynamic process that could assist

our understanding of many-body dynamical shell effects and energy dissipation thus

forming a gateway between deep-inelastic reactions and fission. This manuscript gives

a summary of recent progress in microscopic calculations of quasifission employing

time-dependent Hartree-Fock (TDHF) theory and its extensions.
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1. INTRODUCTION

The ongoing search for discovering new elements in the superheavy regime is perhaps the most
exciting but at the same time challenging tasks in low-energy nuclear physics [1]. These searches
were historically motivated by theoretical predictions of an island of stability, somewhat detached
from the far end of the chart-of-nuclides [2–5], due to quantum mechanical shell closures. The
experimental search for the so called superheavy elements (SHE) was initially done by using target
projectile combinations that minimized the excitation energy of compound nuclei that was formed
in reactions studied in the vicinity of the Coulomb barrier. For this reason these reactions are
commonly referred to as cold fusion reactions and primarily involved closed shell nuclei, such as
208Pb target and projectiles in the chromium to zinc region. The cold fusion experiments were
able to produce elements Z = 107–113 [6–8], but showed no indication that extending them to
heavier elements were feasible. The identification of a SHE is done through the decay properties of
a formed evaporation residue. In such reactions involving heavy elements the dominant reaction
processes are quasifission (QF) and fusion-fission (FF), which are expected to strongly suppress
the formation of an evaporation residue at higher excitation energies. For this reason it was a
major surprise to observe that the so called hot fusion reactions, despite of their higher excitation
energy, were able to synthesize elements Z = 113–118 [9, 10]. The hot fusion reactions utilized
actinide targets with 48Ca projectiles. To further pursue the hot fusion reactions with heavier
projectiles to reach elements Z > 120 requires a deeper understanding of the reaction pathways
leading to an evaporation residue, particularly QF and FF components. In all of these reactions
the evaporation residue cross-section is dramatically reduced due to the quasifission (QF) and
fusion-fission (FF) processes. These processes occur during the reactions of heavy systems and
correspond to excited fission channels in the classically allowed regime above the barrier and
require a combination of statistical and truly dynamical approaches which are not necessarily
confined to a collective subspace. Fusion-fission occurs after the formation of a composite system
which then fissions due to its excitation, ultimately resulting in a fragment distribution that is
peaked at equal mass breakup of the composite system. Quasifission occurs at a considerably
shorter time-scale than fusion-fission [11–13] and is characterized by reaction fragments that differ
significantly in mass from the original target/projectile nuclei. Quasifission for being one of the
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primary reaction mechanism that limits the formation of
superheavy nuclei [14–16] has been the subject of intense
experimental studies of [11–13, 17–24, 24–34]. Studies have also
shown a strong impact of the entrance channel characteristics,
including deformation [18, 19, 22, 23, 35–37] and shell
structure [28] of the reactants. The final phase of the dynamics is
also impacted by the fissility of the composite system [26, 29], its
neutron richness [32], and by shell effects in the exit channel [12,
13, 20, 23, 24, 31, 38–40]. A number of theoretical approaches
have been developed that describe the quasifission in terms
of multi-nucleon transfer (MNT) processes [41–47]. Recently,
time-dependent Hartree-Fock (TDHF) theory have proven to be
an excellent tool for studying QF dynamics, and in particular
mass-angle distributions and final fragment total kinetic energies
(TKE) [31, 32, 34, 37, 45, 48–56]. While the fragments produced
in TDHF studies are the excited primary fragments [57] a number
of extensions based on the use of Langevin dynamics have been
successfully applied to de-excite these fragments [55, 56, 58–
60]. Theoretical studies of quasifission dynamics have taught us
that dynamics themselves may be dominated by shell effects [47,
61]. Despite the apparent strong differences between fission and
quasifission, it is interesting to note that similar shell effects are
found in bothmechanisms [54]. Quasifission can then potentially
be used as an alternative mechanisms to probe fission mode
properties. For instance, this could provide a much cheaper way
than fusion-fission to test the influence of 208Pb shell effects in
super-asymmetric SHE fission.

2. MICROSCOPIC APPROACHES

The underlying approach to study quasifission on a microscopic
basis is the time-dependent Hartree-Fock (TDHF) theory [61–
64]. Alternative approaches employ Langevin dynamics [65–67].
Indeed, the TDHF calculations of the quasifission process have
yielded results that not only agree with the broad features of
the experimental measurements but also shed insight into the
relationship of the data to the properties of the participating
nuclei. Such features include static deformation that induces
dependence on the orientation of the nuclei with respect
to the beam axis, shell effects that can predict the primary
fragment charges, as well as the dependence of quasifission
on neutron-rich nuclei. TDHF calculations give us the most
probable reaction outcome for a given set of initial conditions
(e.g., energy, impact parameter, orientation). However, quantum
mechanically a collection of outcomes are possible for each of
these initial conditions. In order to compute such distributions,
one must go beyond TDHF and introduce methods to calculate
distribution widths or fluctuations for these reactions. Much
effort has been done to improve the standard mean-field
approximation by incorporating the fluctuation mechanism into
the description. At low energies, themean-field fluctuationsmake
the dominant contribution to the fluctuation mechanism of the
collective motion. Various extensions have been developed to
study the fluctuations of one-body observables. These include
the time-dependent random phase approximation (TDRPA)
approach of Balian and Vénéroni [68–72], the time-dependent

generator coordinate method [73], or the stochastic mean-field
(SMF) method [74, 75]. The effects of two-body dissipation on
reactions of heavy systems using the time-dependent density
matrix (TDDM) [76, 77] approach have also been recently
reported [78, 79]. It is also possible to compute the probability
to form a fragment with a given number of nucleons [80–83],
but the resulting fragment mass and charge distributions are
often underestimated in dissipative collisions [71, 84]. Recent
reviews [47, 61] succinctly summarize the current state of
TDHF (and its extensions) as it has been applied to various
MNT reactions.

3. INSIGHTS FROM TDHF AND BEYOND

Experiments to discover new elements are notoriously difficult,
with fusion evaporation residue (ER) cross-sections in pico-
barns (for a recent experimental review see [85]). This cross-
section is commonly expressed in the product form [86]

σER =

Jmax∑

L=0

σcap(Ec.m., L)PCN(E
∗, L)Wsur(E

∗, L), (1)

where σcap(Ec.m., L) is the capture cross-section at center of
mass energy Ec.m. and orbital angular momentum L. PCN is the
probability that the composite system fuses into a compound
nucleus (CN) rather than breaking up via quasifission, and
Wsur is the survival probability of the fused system against
fission. It is thus clear that to have a good handle on the
evaporation residue cross-section estimates it is important to
understand each of these terms as well as possible. In this
endeavor both theory and experiment can have a complementary
role. Among these reaction mechanisms quasifission and fusion-
fission can be on the order of millibarns, making it easier to study
experimentally. However, the extraction of the PCN requires the
proper disentangling of quasifission from fusion-fission [87–89]
as it may be given by

PCN =
σfusion

σcapture
=

σcapture − σquasifission

σcapture
. (2)

Of these cross-sections fusion-fission arises from an excited
and equilibrated composite system and therefore peaked around
equal mass breakup as calculated in a statistical approach [14, 16,
90–92]. On the other hand, quasifission, which is a faster process
and thus not fully equilibrated, could also contribute to the equal
breakup regime. Consequently, experimental analysis could use
assistance from theory to discern between the two processes.
The capture cross-section, being the sum of quasifission, fusion-
fission, and evaporation residue is relatively easy to measure or
calculate and TDHF predictions using the density-constrained
TDHF (DC-TDHF) approach have shown to give a relatively
good results [52, 93]. Below, we discuss various aspects of
the progress done in studying quasifission using TDHF and
its extensions.

3.1. Mass Angle Distributions
Study of quasifission together with capture is intimately related
to understanding the process for forming a compound nucleus,
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the quantity named PCN in Equation (1) [87]. Figure 1 shows
the time-evolution of the 48Ca + 249Bk reaction at Ec.m. =

234 MeV and orbital angular momentum L/h̄ = 60 [54]
and the initial orientation of the 249Bk with respect to the
collision axis β = 135◦. For this orbital angular momentum
and energy TDHF theory predicts quasifission. As the nuclei
approach each other, a neck forms between the two fragments
which grows in size as the system begins to rotate. Due to
the Coulomb repulsion and centrifugal forces, the dinuclear
system elongates and forms a very long neck which eventually
ruptures leading to two separated fragments. In this case
the final fragments are 203Au and 94Sr. While the outcome
of such reactions in a single TDHF evolution vary greatly
depending on the initial conditions, analysis of the fragments’
properties can begin to suggest general behavior for systems
undergoing quasifission. For example, the composition of the
reaction products can be influenced by shell effects in the
outgoing fragments [54] which can be inferred by the slight pear
shape of the light outgoing fragment at the point of scission
in Figure 1.

However, the result from a single TDHF trajectory is
difficult to extrapolate to the system as a whole so systematic
investigations are often performed. As the reaction products
predicted by TDHF give only the most probable outcome
for any given collision geometry and energy, quantities like
mass angle distributions produced by direct TDHF calculations
result in collections of discrete points. By collecting data
from large numbers of TDHF evolutions one can reveal
deeper insights into the quasifission process. Recent studies
of the 48Ca+249Bk reaction at Ec.m. = 234 MeV with the
TDHF approach went beyond solely considering the extreme
orientations of the deformed 249Bk nucleus by undertaking
calculations spanning both a range of orientations and a range
of angular momenta. The orientation of the deformed 249Bk
was changed by 15◦ steps to cover the full range (0, π) with
orbital angular momentum L changing in units of 10h̄ from
0 to quasielastic collisions. A total of 150 TDHF collisions
were cataloged and analyzed. This allows for the study of

FIGURE 1 | Quasifission in the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV and

orbital angular momentum L/h̄ = 60 and the orientation of the 249Bk with

respect to the collision axis β = 135◦. The darkening of tones depict

increasing excitation.

correlations between, e.g., mass, angle, kinetic energy, as well as
to predict distributions of neutron and proton numbers at the
mean-field level.

In Figure 2A we plot the mass angle distribution (MAD)
for this reaction. Figure 2B shows the corresponding yield in
arbitrary units as a function of the mass ratio MR = M1/(M1 +

M2), whereM1 andM2 are the masses of the final fragments. We
note that the yields are strongly peaked at MR ∼ 0.33 and 0.67,
with a full width at half maximum FWHM ≃ 0.1 corresponding
to a standard deviation σMR ≃ 0.042. The purpose of this figure is
to compare quantitatively the relative contributions to the yields
when going from central to peripheral collisions. For instance, we
see that, because of the 2L + 1 weighting factor, the most central
collisions with L ≤ 20h̄, which are found at backward angles,
have the smallest contribution to the total yield. Despite the
discrete nature of the data, the tight grouping of points indicates
a peak in production probability in certain mass regions which
will be discussed further in the next section.

While nucleon transfer fluctuations can be calculated in
TDHF, the ability to compare with experiment is still limited
by the fact that TDHF vastly under predicts the widths of these
distributions. Ideally, calculations would account for fluctuations
in quantities, such as particle transfer, scattering angles, and
total kinetic energies in the exit channel to more closely
obtain what is observed experimentally. The simplest method
for calculating these widths is the particle-number projection
for the final fragments [81–83, 94]. However, these widths
are still seriously underestimated. This is where extensions,
such as TDRPA [68, 70–72] and SMF [74, 75] have proved
to be vital theoretical tools for studying deep inelastic and
quasifission reactions as both techniques provide methods to
calculate both fluctuations and correlations of neutron and
proton transfer based on a TDHF trajectory. Figure 3 shows
predicted mass angle and mass energy distributions for the
176Yb +176 Yb system from TDRPA. Production cross-sections
are obtained by integrating the probabilities calculated from
the predicted fluctuations over a range of impact parameters.
Such calculations further extend the insight offered by the base
TDHF theory and promise to be of great use for designing future
MNT experiments.

An alternate approach to TDRPA calculations for beyond the
mean-field approximation can be formulated by incorporating
the fluctuations in a manner that is consistent with the quantal
fluctuation-dissipation relation, namely the SMF method [75].
In a number of studies it has been demonstrated that the
SMF approach improves the description of nuclear collision
dynamics by including fluctuation mechanisms of the collective
motion. Most applications have been carried out in collisions
where a di-nuclear structure is maintained. In this case it
is possible to define macroscopic variables by a geometric
projection procedure with the help of the window dynamics.
The SMF approach gives rise to a Langevin description for the
evolution of macroscopic variables. A limited study for central
collisions was published in [95]. A general approach for non-
central collisions has been developed [96] and used to calculate
multi-nucleon transfer and heavy-isotope production in 136Xe+
208Pb collisions [97, 98].
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FIGURE 2 | (A) TDHF MADs for quasifission in the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV. (B) The yield (arb. units) as a function of mass ratio MR for the

same reaction.

FIGURE 3 | Mass angle (a) and mass energy (b) distributions predicted by TDRPA for the 176Yb+176 Yb collision in the side-side orientation at Ec.m. = 880 MeV. Units

are in millibarns per degree (a) and millibarns per MeV (b).

3.2. Deformed Shell Effects in Quasifission
Returning to the inference of shell effects influencing fragment
production, this phenomenon can also be seen through thorough
TDHF studies of a particular system and systematically analyzing
the fragments produced for different impact parameters
and deformation orientations. TDHF studies of quasifission
dynamics have taught us that the dynamics of a system may
be dominated by shell effects [47, 61]. An interesting finding
of these TDHF studies is the prediction of the role of shell
effects which favor the formation of magic fragments, in
particular in the Z = 82 region in reactions involving an
actinide collision partner [31]. This prediction has been later
confirmed experimentally by Morjean et al. [99]. In addition,
the calculations show that these shell effects strongly depend
on the orientation of deformed actinide. Deformed shell effects
in the region of 100Zr have also been invoked to interpret

the outcome of TDHF simulations of 40,48Ca+238U, 249Bk
collisions [37, 52].

Such results are shown in Figure 4 for the reaction 48Ca +
249Bk at Ec.m. = 234 MeV. Previous studies of the quasifission
dynamics have taught us that dynamics may be dominated by
shell effects [47, 54, 61]. These distributions are used to identify
potential shell gaps driving quasifission. In Figure 4A we plot
the charge yield obtained for this reaction. The right frame in
Figure 4B shows the expected neutron yield distributions. One
of the main driving features of this work was to show that shell
effects similar to those observed in fission affect the formation
of quasifission fragments. For this system the Z = 82 shell
effect does not seem to play a major role contrary to previous
TDHF observations for the Ca+U target projectile combinations.
We also point out that mass-angle correlations could be used
to experimentally isolate the fragments influenced by N = 56
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octupole shell gaps [54, 100, 101]. We also find that more
peripheral collisions are centered about the proton number Z =

40 confirming similar observations from past calculations [37]
that the 100Zr region plays an important role in determining the
lighter fragments due to the existence of strongly bound highly
deformed Zr isotopes in this region [102].

3.3. Mass Equilibration
Due to long reaction times, the quasifission process is also
suitable to study the time-scale of mass equilibration. Figure 5A
shows the mass ratio, MR, of fragment masses as a function of
contact time τ (1 zs = 10−21 s) at Ec.m. = 234 MeV for the
48Ca+249Bk reaction. We define the contact time as the time
interval between the time t1 when the two nuclear surfaces
(defined as isodensities with half the saturation density ρ0/2 =

0.07 fm−3) first merge into a single surface and the time t2
when the surface densities detach again. The dashed line shows
a characteristic fit of a function in the form of c0+ c1exp(−τ/τ0).
Based on the quality of the fit and whether we exclude some
extreme points from the fit or not, we obtain equilibration times

between 8 and 10 zs. In Figure 5B we plot the ratio of final and
initial mass difference between projectile-like fragment, APLF ,
and target-like fragment, ATLF , defined by,

1A(τ ) = ATLF(τ )− APLF(τ ), (3)

as a function of contact time τ for the 48Ca +249 Bk system
at Ec.m. = 234 MeV. The points correspond to the impact
parameters used, ranging from head-on collisions to more
peripheral collisions and the full range of orientations angles for
249Bk. The horizontal lines on the right side of the figure indicate
the net number of particles transferred between the target and
the projectile. We note that more mass transfer happens at
longer contact times as expected. From this figure we can also
observe similar time-scale for mass equilibration. From these
results (and others not shown here) we can conclude that mass
equilibration takes substantially longer in comparison to other
quantities, such as the equilibration of total kinetic energy (TKE)
or N/Z equilibration. It is also interesting to observe that there is
clustering of results around certain mass ratios. This is shown to

FIGURE 4 | (A) Fragment charge yield (histogram) and (B) Neutron yields for the reaction 48Ca+ 249Bk at Ec.m. = 234 MeV. The smooth representations of the

histograms are obtained by using a kernel density estimation with bandwidth 0.012.

FIGURE 5 | (A) Mass ratio of fragment masses as a function of contact time at Ec.m. = 234 MeV for the reaction 48Ca+ 249Bk. The solid lines show possible fits.

(B) The ratio of the final and initial fragment masses as a function of contact time for the same reaction. The dashed line shows one possible fit.
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FIGURE 6 | Plotted are the PESs calculated, using the DC-TDHF method, for central collisions of 40,48Ca+238U, with the equatorial orientation of 238U. The PES on

the left is for the 40Ca+238U system at Ec.m. = 211 MeV, while the PES on the right is for the 48Ca+238U system at Ec.m. = 203 MeV.

be related to shell effects influencing the dynamical quasifission
process in reference [54].

3.4. Collective Landscape
Quasifission and fusion-fission could be used to help map
out the non-adiabatic collective landscape between the fusion
entrance channel and the fission exit channel. It has been
demonstrated that the TDHF theory is able to provide a good
simulation of the quasifission process. Calculated time-scales
of quasifission indicate that while fast quasifission events are
dominant, much slower events resulting in a split with equal
mass fragments have also been observed. One of the open
experimental questions is how to distinguish quasifission from
fusion-fission. This is important for the calculation of the
evaporation residue formation probability in superheavy element
searches. In Figure 6 we show two such PESs calculated for the
central collisions of the 40,48Ca+238U systems, with the equatorial
orientation of the 238U. The PES on the left of Figure 6 is for
the 40Ca+238U system at Ec.m. = 211 MeV, while the PES on the
right is for the 48Ca+238U system at Ec.m. = 203 MeV. Surfaces
in Figure 6 are obtained by plotting the scattered β2, β3, and
E data obtained from the DC-TDHF calculations for the time-
evolution of the nuclear density. Since the scattered plot uses an
extrapolation algorithm points far from the valleys may not be
precise. A number of observations can be made from the PESs
shown in Figure 6. First, we clearly see the valley corresponding
to the incoming trajectory of the two nuclei. As the system forms
a composite the energy rises to maximum, but most likely never
makes it to the saddle point. The system spends a lot of time
around this area undergoing complex rearrangements and finally
starts to proceed down the quasifission valley.

4. SUMMARY

Quasifission reactions have emerged as an interesting and
vibrant area of research in recent years as they teach us
about dynamical many-body effects at much longer time-scales

compared to other heavy-ion reactions. The persistence of shell
effects for these time-scales has opened the possibility to view
quasifission as a doorway process to fusion-fission and perhaps
even fission. This wide applicability positions quasifission as
a vital process in understanding nuclear reactions across the
board. In advancing toward this goal, the TDHF theory and
its extensions have emerged as an excellent theoretical tool to
study these reactions. The success of TDHF results in replicating
experiment is particularly impressive as the calculations contain
no free parameters. Through the efforts of both theoretical and
experimental study of quasifission, we have been able to identify
a number of underlying physical phenomena affecting nuclear
reactions, such as the dependence on mass-angle distributions
on the orientation of deformed targets and the strong influence
of shell effects in determination of reaction products. These
predictions take steps toward a more complete understanding
of dynamical processes in nuclear reactions and may be crucial
in determining such quantities as the PCN by calibrating
experimental angular distributions to that of the theory. To this
end methods and techniques to discern between quasifission and
fusion-fission may emerge, paving the way for future studies of
neutron-rich nuclei and superheavy elements.
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