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A critical procedure in diagnosing atrial fibrillation is the creation of electro-anatomic

activation maps. Current methods generate these mappings from interpolation using a

few sparse data points recorded inside the atria; they neither include prior knowledge

of the underlying physics nor uncertainty of these recordings. Here we propose a

physics-informed neural network for cardiac activation mapping that accounts for the

underlying wave propagation dynamics and we quantify the epistemic uncertainty

associated with these predictions. These uncertainty estimates not only allow us to

quantify the predictive error of the neural network, but also help to reduce it by judiciously

selecting new informative measurement locations via active learning. We illustrate the

potential of our approach using a synthetic benchmark problem and a personalized

electrophysiology model of the left atrium. We show that our new method outperforms

linear interpolation and Gaussian process regression for the benchmark problem and

linear interpolation at clinical densities for the left atrium. In both cases, the active

learning algorithm achieves lower error levels than random allocation. Our findings open

the door toward physics-based electro-anatomic mapping with the ultimate goals to

reduce procedural time and improve diagnostic predictability for patients affected by

atrial fibrillation. Open source code is available at https://github.com/fsahli/EikonalNet.

Keywords: machine learning, cardiac electrophysiology, Eikonal equation, electro-anatomic mapping, atrial

fibrillation, physics-informed neural networks, uncertainty quantification, active learning

1. INTRODUCTION

Atrial fibrillation is themost common arrhythmia in the heart, affecting between 2.7 and 6.1million
people in the United States alone [1]. A standard procedure to diagnose and treat atrial fibrillation
is the acquisition of electrical activation maps, where a catheter is inserted to the cardiac chamber
and the electrode at the tip records the activation time of the tissue at a given location. This process
is repeated at multiple sites to cover the entire atrium. Finally, these measurements are interpolated
to create a complete electro-anatomic map of the chamber [2]. The most common approach to
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interpolate the data is to use linear functions [2, 3] or radial
basis functions [4]. There is a recent focus into incorporating the
uncertainty associated with these maps [3, 5]. This is relevant
since there are multiple sources of noise that can pollute the
activation map, such as the position of the electrode and the
difficulty to determine the activation time from an electrical
signal. There is also uncertainty in the interpolation method that
is used, which can be relevant particularly in regions of low
data density. However, most current techniques [2, 3] ignore
the underlying physics of the electrical wave propagation [6].
This can result in unrealistic interpolations with artificially
high conduction velocities. The strategies that do include the
physics assume either a constant conduction velocity field
[7] or a fixed amount of activation sources [8]. Additionally,
there are no recommendations on the best strategy to acquire
new measurements toward reducing the procedure time and
improving its accuracy.

Deep learning has revolutionized many fields in engineering
and medical sciences. However, in the context of activation
mapping, we have to rely on a few sparse activation
measurements. To address the limitations of deep learning
associated with sparse data, recent techniques have emerged
to incorporate the underlying physics, as governed by partial
differential equations, into neural networks [9–13]. This powerful
framework allows to train a neural network that simultaneously
approximates the data and conforms to the partial differential
equations that represents the physical knowledge of the system
[14], a concept known as physics-informed neural networks.

Here, we propose to use a physics-informed neural network
to create activation maps of the atria [15], more accurately and
efficiently than with linear interpolation alone. We incorporate
the physical knowledge using the Eikonal equation, which
describes the behavior of the activation times for a conduction
velocity field. We estimate the uncertainty in our predictions
using randomized prior functions [16]. In addition, we take
advantage of these estimates to create an active learning
algorithm that, for a given set of initial measurements,
recommends the location of the next measurement to
systematically reduce the model error [17]. We highlight
the advantages of this method for both a two-dimensional
benchmark problem and a three-dimensional personalized
geometry of the left atrium.

This manuscript is organized as follows: In section 2 we
introduce the physics-informed neural network, the method
to estimate uncertainties and the active learning algorithm.
In section 3, we show two numerical experiments to test
the accuracy of the method. We end this manuscript with a
discussion and future directions in section 4.

2. METHODS

In this section we introduce a physics-informed neural
network [9, 18] to interpolate activation times for cardiac
electrophysiology. We also present the methodology to estimate
uncertainties and an active learning algorithm to efficiently
sample the data acquisition space.

2.1. Physics Informed Neural Network for
Activation Times
The electrical activation map of the heart can be related to a
traveling wave, where the wavefront represents the location of
cells that are depolarizing [19]. The time at which cells depolarize
is referred to as the activation time and corresponds to an
increase in transmembrane potential above a certain threshold
and the initiation of the cell contraction. The activation times of
the traveling wave must satisfy the Eikonal equation:

‖∇T(x)‖ =
1

V(x)
(1)

where T(x) is the activation time at a point x and V(x) represents
the local speed of the wave at the same location, which is referred
to as the conduction velocity. We can rewrite (1) in residual
form as

R(x) := V(x)‖∇T‖ − 1 = 0. (2)

Further, we approximate both the activation time T(x) and
conduction velocity V(x) by

T(x) ≈ NNT(x, θT), (3)

V(x) ≈ NNV (x, θV ), (4)

where NNT and NNV are neural networks with parameters θT

and θV , respectively, that need to be trained in order to obtain
a good approximation. Since the conduction velocity is strictly
positive and is bounded in a physiological range, we pass the
output of the last layer through a sigmoid function σ so that the
conduction velocity neural network reads

V(x) = Vmax · σ (NNV (x)), (5)

where Vmax represents the maximum conduction velocity,
specified by the user. Finally, we define a loss function to train
our model:

L(θT , θV ) =
1

NT

NT
∑

i=1

(T(xi)− T̂i)
2 +

1

NR

NR
∑

i=1

R(xi)
2

+αTV
1

NR

NR
∑

i=1

‖∇V(xi)‖ + αL2

NθT
∑

i=1

θTi
2. (6)

Figure 1 illustrates the first two terms of the loss function: The
first term enforces that the output of neural network coincides
with the NT activation time measurements available T̂i, the
second term enforces that the output of networks satisfies the
Eikonal equation at NR collocation points. The third and fourth
terms serve as regularization for the inverse problem. The third
term, which we evaluate at the NR collocation points, is a total
variation regularization for the conduction velocity, which allows
discrete jumps in the solution. We select this term to model slow
regions of conduction, such as fibrotic patches. Finally, we use
L2 regularization on the weights of the activation time neural
network, for reasons we explain in the following section.We solve
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FIGURE 1 | Physics-informed neural networks for activation mapping. We use two neural networks to approximate the activation time T and the conduction velocity

V. We train the networks with a loss function that accounts for the similarity between the output of the network and the data, the physics of the problem using the

Eikonal equation, and the regularization terms.

the following minimization problem to train the neural networks
and find the optimal parameters:

argmin
(

θT ,θV
)

L(θT , θV ) (7)

2.2. Uncertainty Quantification
We will be interested in quantifying the uncertainty in our
predictions to both inform physicians about the quality of
the estimates as well as to use active learning techniques to
judiciously acquire new measurements. Given the large number
of parameters in neural networks, using gold-standard methods
for Bayesian inference, such as Markov Chain Monte Carlo,
is prohibitively expensive. Instead, we borrow ideas from deep
reinforcement learning and use randomized prior functions [16]
to quantify the epistemic/model uncertainty associated with our
neural network predictions. The key idea is to introduce an
additional neural network with the same architecture, such that:

T(x) ≈ NNT(x, θT)+ NNT(x, θ̃T) (8)

V(x) ≈ NNV (x, θV )+ NNV (x, θ̃V ) (9)

We draw the parameters θ̃T , θ̃V from a prior distribution and
keep them fixed during the training process. In this approach,
a mean squared loss is equivalent to a normal likelihood for
the data and the L2 regularization is equivalent to a zero mean
normal prior for the neural network parameters. It can be shown
that training the parameters to minimize the loss is equivalent
to generating samples from a posterior distribution p(θ |D) when
using a linear regressor [16]. To account for uncertainty in our
predictions, we use an ensemble of neural networks initialized

with different prior functions defined by the parameters θ̃T , θ̃V ,
which we randomly sample with Glorot initialization [20].
Additionally, we perturb our data with Gaussian noise with
variance σ 2

N to train each network of the ensemble with a slightly
different dataset. Our final prediction is obtained as the mean
output of the ensemble of neural networks.

2.3. Active Learning
We take advantage of the uncertainty estimates described in the
previous section to create an adaptive sampling strategy. We
start with a small number of randomly located samples, fit our
model, and then acquire the next measurement at the point that
we estimate to reduce the predictive model error the most. We
iteratively fit themodel and acquire samples until we reach a user-
defined convergence or until we exceed our budget or time to
acquire new data. Since the exact predictive error is unknown,
there are several heuristics to determine where to place the next
sample. A common approach is to select the location where the
uncertainty is the highest, which we can quantify by evaluating
the entropy of the posterior distribution p(T|D) [21]. We can
view the entropy as negative information and, in the case of a
Gaussian posterior, it is proportional to the variance, which has
also been proposed for active learning [22]. In our computational
experiments, we observe that the predictive posterior distribution
p(T|D) is generally not Gaussian and we opt to use a non-
parametric estimator for the entropy [23, 24]. This is likely
induced by the discrete jumps in conduction velocity that are
a result of the total variation regularization term. Algorithm 1
summarizes the procedure. Since the initial predictions will be
inaccurate due to the lack of data, it is not necessary to train the
neural network completely to obtain the uncertainty estimates
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and start the active learning process. We can train the model
and acquire data in parallel, as the prediction step and the
entropy computation are of negligible computational cost. Here,
we iteratively refine the predictions and the uncertainty estimates
as more data become available and the model is trained.

Algorithm 1: Active learning algorithm to iteratively
identify the most efficient sampling points

Given: number of initial samples Ninit , number of active
learning samples NAL, set of candidate locations Xcand,
number of initial training iterationsMinit , number of active
learning training iterationsMAL, and empty sets X and T

that contain locations and activations times:
Randomly select Ninit samples from Xcand

Remove the Ninit samples from Xcand and add them to X
Acquire the values of the activation times at the Ninit

locations and add them to T
Initialize the model and train it using the ADAM optimizer
[25] forMinit iterations.
for i = {1,NAL} do

compute entropy H(Xcand)
find the new location of maximum entropy:
argmaxx∈Xcand

H(x)
remove x from Xcand and add it to X
acquire activation time at x and add it to T train the
model using ADAM [25] forMAL iterations.

end

2.4. Application to Surfaces From
Electro-Anatomic Mapping
During electro-anatomic mapping, data can only be acquired
on the cardiac surface, either of the ventricles or the atria. We
thus represent the resulting map as a surface in three dimensions
and neglect the thickness of the atrial wall. This is a reasonable
assumption since the thickness-to-diameter ratio of the atria is in
the order of 0.05. Our assumption implies that the electrical wave
can only travel along the surface and not perpendicular to it. To
account for this constraint, we include an additional loss term:

LN = αN
1

NR

NR
∑

i=1

(

∇T(xi) · N i

)2
(10)

This form favors solutions where the activation time gradients
are orthogonal to the surface normal N i. To implement this
constraint, we assume a triangular discretization of either
the left or right atrium, which we obtain from magnetic
resonance imaging or computed-tomography imaging. We can
then compute a surface normal N i for each triangle. We define
the NR collocation points as the centroids of each triangle in the
mesh xi. We enforce this constraint weakly by adding a factor αN .
If the gradient of the activation times were exactly orthogonal to
the triangle normals, it would force a linear interpolation between
mesh nodes in the neural network, which is not desirable and
unlikely attainable.

2.5. Implementation and Training
We implement all models in Tensorflow [26] and use the
Tensorflow ADAM optimizer [25] with default parameters and
a learning rate of 0.001. For the NR collocation points, we use
a minibatch implementation, in which we use a subset of all
available collocation points to compute the loss function and
its gradient. For the two-dimensional benchmark problem, we
randomly sampleNmb points using a Latin hypercube design [27]
and use them as collocation points. For the three-dimensional
left atrium, we shuffle the order of the triangles in the mesh
and divide them into batches of size Nmb. For each iteration,
we use the centroid locations of the triangles of one of these
batches as collocation points and loop through them as the
optimization progresses.

3. NUMERICAL EXPERIMENTS

In this section, we explore our method using a two-dimensional
benchmark problem and a three-dimensional personalized
left atrium. We also quantify the effectiveness of the active
learning algorithm.

3.1. Benchmark Problem
To characterize the performance of the proposed model, we
design a synthetic benchmark problem that analytically satisfies
the Eikonal equation. We introduce a discontinuity in the
conduction velocity and collision of two wavefronts in the
following form:

T(x, y) = min

(

√

x2 + y2, 0.7

√

(x− 1)2 + (y− 1)2
)

(11)

V(x, y) =

{

1.0 if
√

x2 + y2 < 0.7
√

(x− 1)2 + (y− 1)2

1.0
0.7 otherwise

(12)

with x, y ∈ [0, 1]. Figure 2, left, illustrates the exact mapping
of the activation times and conduction velocity. We generate
N = 50 samples with a Latin hypercube design and train our
model. We only have data on the activation times and we predict
both the activation times and the conduction velocity. We use 5
hidden layers with 20 neurons each for the activation time neural
network and 5 hidden layers with 5 neurons each for conduction
velocity neural network. We perform a sensitivity study for αTV

and αL2 and then select them to αTV = 10−7 and αL2 = 10−9

while keeping all other parameters fixed. We train the network
for 50,000 ADAM iterations with a batch size Nmb = 100 and
then train with the L-BFGS method [28].

We compare our method against three other methodologies:
a neural network with the same architecture and parameters
except without including the physics, linear interpolation [2],
and Gaussian process regression [3, 29]. In the neural network
without physics, we compute the conduction velocity analytically
as V = 1/‖∇T‖. In the linear interpolation case, we use
the scatteredInterpolant function from MATLAB with
linear extrapolation [2]. We compute the conduction velocity
by approximating the gradient of the activation time with
finite differences on a regular grid across the domain. Then,
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FIGURE 2 | Benchmark problem activation times and conduction velocities. The top row shows the activation times, the bottom row the conduction velocity. The

columns display the exact solution and the results of the physics-informed neural network (PINN), a neural network without physics, the Gaussian process regression,

and the linear interpolation. The black circles indicate the sampling locations.

FIGURE 3 | Benchmark problem x = y line. The dashed lines show the exact analytical solution, the solid lines the different interpolation methods. The

physics-informed neural network (PINN) captures the gradient of the activation times produced by the collision of two wavefronts and closely predicts the conduction

velocity. The neural network and Gaussian process regression produce a smooth interpolation that generates oscillating conduction velocities, especially near the

collision of the two wavefronts. The linear interpolation produces an approximation that is highly sensitive to the position of the data points.

we calculate the conduction velocity as V = 1/‖∇T‖.
For the Gaussian process regression, we use our open-source
implementation [30] with a squared exponential kernel and
automatic relevance determination. We compute the gradient
of the resulting Gaussian process analytically and we use this
value to compute the conduction velocity. We use the root mean
squared error (RMSE) for the activation times and the mean
absolute error (MAE) for the conduction velocity. We make
this distinction to avoid the artificially high errors that will be
reported in the root mean squared error near the discontinuity of
conduction velocity.

Figures 2, 3 and Table 1 compare the results of the
different methods against the exact solution. Qualitatively and
quantitatively, the physics-informed neural network presents
the best results for activation times and conduction velocity.
It captures the wavefront collision and detects the two distinct

regions of conduction velocity. The discontinuity in the
conduction velocity is smoother in this method than in the data.
Nonetheless, the neural networks outperform other methods,
which show problematic representations of the conduction
velocity. Since the neural network without physics and the
Gaussian process regression are smooth, they are not capable of
reproducing the discontinuity in the gradient that occurs when
two wavefronts collide. This inevitably results in a region of zero
activation time gradient, which results in an infinite conduction
velocity. The linear interpolation suffers from a similar problem,
although it will depend heavily in the location of the data.
Figure 3 illustrates the numerical artifacts of these two methods
compared to the Gaussian process regression by means of the
solution along the x = y line.

To conclude, we evaluate the performance of all four methods
to noise. We introduce Gaussian noise with a standard deviation
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TABLE 1 | Normalized errors for benchmark problem.

Noise Quantity PINN Neural network Gaussian process Linear

0% T 0.49 0.48 1.56 2.05

V 3.56 9.07 57.78 17.98

1% T 1.91 (1.09–3.09) 4.19 (2.74–7.93) 1.92 (1.48–2.57) 2.23 (1.97–2.56)

V 10.24 (6.09–17.86) 63.93 (42.74–91.12) 54.08 (47.82–67.72) 27.37 (21.49–40.13)

5% T 3.42 (2.22–5.34) 11.00 (6.90–18.42) 3.34 (2.63–4.13) 4.44 (3.58–5.76)

V 15.84 (10.40–23.20) 87.33 (68.19–128.83) 78.87 (53.77–102.81) 66.30 (42.97–171.79)

10% T 6.70 (3.75–10.60) 18.25 (12.84–33.39) 6.73 (3.54–11.65) 8.55 (6.02–11.55)

V 23.16 (10.81–40.78) 90.09 (78.46–119.42) 96.78 (50.49–177.69) 81.06 (59.86–241.80)

Performance of physics-informed neural network (PINN), neural network without physics, Gaussian process regression, and linear interpolation in the presence of noise. The root mean
squared error (RMSE) for the activation times is normalized by 1 ms and the mean absolute error (MAE) is normalized by 1 m/s. Errors are presented as mean and range.

FIGURE 4 | Uncertainty quantification and effect of number of neural networks. Entropy predicted by 10, 30, and 100 neural networks, and the tradeoff between

entropy reduction and normalized training time for increasing number of neural networks. The black circles indicate the sampling locations.

of 1, 5, and 10% of the maximum value of activation time and
run all methods 30 times with the same datasets. In this case, we
train the physics-informed neural network and the regular neural
network for 100,000 ADAM iterations. Table 1 summarizes the
results. We can see that the physics-informed neural network
outperforms other methods except for the 5% noise case in
the activation times. For the conduction velocity, the physics
informed neural network performs better in all cases by a large
margin. Gaussian process regression is as robust to noise as our
approach, with similar levels of error for the activation times.
Remarkably, the adding physics to the neural network reduces
the error in both activation time and conduction velocity.

3.2. Uncertainty Quantification
To study the accuracy of our uncertainty estimates, we vary the
number of neural networks trained in our randomized priors
ensemble. We set the noise parameter to σN = 0.01, based on
reported uncertainties [3]. We compute the entropy of a case
with 30 samples from a Latin hypercube design and 5, 10, 30,
50, and 100 neural networks. We train the networks for 50,000
ADAM iterations with a mini-batch size of Nmb = 96. We define
the entropy estimated by 100 neural networks as our ground
truth and compute the root mean square error for the remaining
cases. We also compute the time it takes to train the networks.

Figure 4 summarizes the results of this study. We observe a
trade-off between accuracy and cost: The error reduction rate is
reduced when more than 30 neural networks are used; however,
we observe a linear trend in the time it takes to train multiple
networks. Yet, the time it takes to train 100 networks is only
four times of what it takes to train a single network. The baseline
wall clock time to train one work was 404 s using a laptop with
8 CPUs. Combining these observations, we set the number of
neural networks to estimate the uncertainty to 30.

We also test the hypothesis that the maximum entropy is co-
localized with the predictive error of the model. If this is true,
the active learning approach will be effective, since placing a new
sample at the point of maximum entropy will reduce the error.
We run the two-dimensional example with the same parameters
specified in the previous sections with 30 samples drawn from a
Latin hypercube design and train 30 neural networks in parallel.
Figure 5 reveals that regions of high entropy are co-located with
regions of high error and that the point of maximum entropy is
close to the point of maximum error.

3.3. Active Learning
To test the effectiveness of the proposed active learning method,
we train models with 30 different initial conditions. We start with
Ninit = 10 samples and follow algorithm 1, acquiring NAL = 40
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FIGURE 5 | Correlation of uncertainty and error. For the benchmark problem, trained with 30 samples, the computed entropy tends to be higher at regions where the

error is higher and the points of maximum entropy and maximum error (⋆) are co-located. The black circles indicate the sampling locations.

FIGURE 6 | Benchmark problem and active learning. We perform 30 simulations of active learning with different initial samples and compare them against a Latin

hypercube design. In the middle and right box plots, we observe a significant reduction in activation time normalized root mean squared error (p < 10−7) and in

conduction velocity normalized mean absolute error (p < 0.015) when using the active learning algorithm.

additional samples. We also train 30 models whereN samples are
placed using a Latin hypercube design for N = {20, 30, 40, 50}.
Figure 6 summarizes the performance of our active learning
algorithm. We observe that the active learning strategy quickly
reduces the error until a total of 20 samples are obtained. Then,
the error reduction is slower and reaches an asymptote. However,
when we compare it to the Latin hypercube design, we see that
the error is smaller in all cases. We test this hypothesis with the
Mann-Whithney test [31] and obtain a significant difference for
all cases, both in activation time (p < 10−7) and in conduction
velocity (p < 0.015). The error in the conduction velocity is
higher than for the activation time in all cases. This difference
may be explained by the difficulty in capturing the discontinuity
of the conduction velocity set in the example. A small difference
in where the different conduction velocity regions are identified
can cause a large error.

3.4. Left Atrium
To test our model in three dimensions, we studying the
electrophysiology of the left atrium. We obtain the mesh from

one of the examples of theMICCAI challenge dataset [32] created
from magnetic resonance imaging. We use the monodomain
model for the tissue and the Fenton Karma model for cells
under the MLR1 conditions [33]. We use the open-source
software cbcbeat [34] to perform the simulation. We consider
two cases, one where the conductivity is homogeneous at 0.1
mm2/ms in the entire domain and one where it is heterogeneous
such that half of the domain has a reduced conductivity of
0.05 mm2/ms. In both cases, we initiate the activation at the
center of the septum. We define the activation time as the
time at which the transmembrane potential reaches 0 mV. We
then compute the conduction velocity as V = 1/‖∇ T|, and
approximate the gradient of the activation time with a finite-
element approximation constructed based on the triangular
mesh. For the neural network, we use the same parameters as
before, except that we now use seven layers of 20 neurons for the
activation time network and a maximum conduction velocity of
Vmax = 1 m/s. We consider two experiments.

In the first experiment, we set the number of samples by the
optimal density [2], which corresponds to 1.05 samples/cm2. We
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FIGURE 7 | Left atrium accuracy in activation times and conduction velocities. Performance of the physics-neural network (PINN) vs. linear interpolation, top left. The

physics-neural network significantly reduces the root mean squared error (RMSE) in the homogeneous case with constant conductivity and in the heterogeneous case

where the conductivity was reduced in half of the domain (p < 10−5). Performance of the active learning algorithm for these two cases, top center and top right.

Active learning decreases the root mean squared error of the activation times and the mean absolute error of the conduction velocity. The dashed line represents the

median error achieved by linear interpolation at optimal sample density. Sample density required by the active learning approach to achieve the median error of the

linear interpolation method at optimal sample density, bottom left. Comparison of active learning against random selection in the case of constant conductivity (bottom

center) and reduced conductivity (bottom right). The active learning algorithm significantly reduces the error in all cases (p < 0.002).

randomly choose nodes in the mesh and use the activation times
as data points. We repeat this process 30 times and compare the
error to using a linear interpolation trained with the same data
as detailed in section 3.1 with a Wilcoxon test [35]. Figure 7, left,
shows that the error for the physics-informed neural network is
significantly lower than for the linear interpolation (p < 10−5)
for both the homogeneous constant conductivity case (median
1.53, range 1.34–1.85 ms vs. median 3.92, range 3.42–5.34 ms)
and the heterogeneous case with reduced conductivity in half of
the domain (median 2.23, range 1.84–2.84 ms vs. median 4.77,
range 3.90-6.02ms).

In the second experiment, we explore the performance of
the active learning algorithm by running 30 cases that start
with Ninit = 10 randomly selected samples, which corresponds
to a density of 0.081 samples/cm2. We acquire samples until
we reach 90 measurements, which corresponds to a density
of 0.734 samples/cm2. Figure 7 shows the accuracy of the
method and Figures 8, 9 illustrate the evolution of the active
learning algorithm. We observe that in both cases, homogeneous
conductivity and reduced conductivity in half of the domain,
the active learning algorithm reduces the error and converges
to the same value, irrespective of the initial conditions. This

is reflected in the small range of errors in activation times at
0.73 samples/cm2 for the homogeneous case (1.01–1.88 ms)
and the heterogeneous case (1.38–2.28 ms). The mean absolute
errors in conduction velocity are relatively high for both cases
(constant: median 0.086, range 0.083–0.101 m/s; half: median
0.085, range 0.081–0.095 ms). This can be explained, at least
in part, by the difficulty of computing conduction velocities
from the cardiac electrophysiology simulation. As Figures 8, 9
show, there are regions of artificially high conduction velocities,
especially when two wavefronts collide, which may bias the
reported error. Nonetheless, the method can delineate the two
regions of conduction velocity in the heterogeneous case, as
Figure 9 confirms. We also compute the density required by the
active learning algorithm to achieve the same median error in
activation time as the linear interpolation at the optimal density
of 1.05 samples/cm2. This results in 3.92 ms in the constant
conductivity case and 4.77 ms in the reduced conductivity case.
The results show that a density of median 0.20, range 0.18–
0.26 samples/cm2 is needed for the homogeneous case and a
density of median 0.24, range 0.16–0.30 samples/cm2 for the
heterogeneous case. Finally, we compare the performance of the
active learning algorithm against randomly choosing samples by
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FIGURE 8 | Evolution of active learning for the homogeneous case with constant conductivity. The top two rows show the activation times for different sample

densities and the ground truth for two different views. The bottom rows represent the conduction velocity.

running 30 cases at 0.25 and 0.74 samples/cm2. Figure 7, bottom
center and right panels, shows that the active learning algorithm
significantly reduces the error in activation times (p < 0.002).

4. DISCUSSION

In this work, we present a novel framework to create
activation maps in cardiac electrophysiology by incorporating
prior physical knowledge of the underlying wave propagation.
To this end, we employ neural networks to represent the
spatial distribution of activation times and conduction velocity,
subject to physics-informed regularization prescribed by the
Eikonal equation. In particular, we show that our method is
able to capture the collision of wavefronts, a situation that
is not captured by other state-of-the-art methods. This is a
critical step toward reliably estimating conduction velocities
and avoiding artificially high conduction velocity values. Our
methodology directly predicts conduction velocities, without the
need of creating ad-hoc techniques [36]. Further, it allows us

to quantify the uncertainty in our predictions via randomized
prior functions, which represents a useful tool in the clinical
setting [3]. Notably, this uncertainty quantification comes at
small computational cost, where we can train 30 networks
in parallel, increasing the training time by only 1.75× the
time needed to train one network. The uncertainty estimates
become the cornerstone of our active learning algorithm,
which reduces the predictive error in both two- and three-
dimensional cases. With this algorithm, we need fewer samples
to achieve the same accuracy than that required in random
allocation. This implies that the procedure of activation time
sampling can be significantly reduced. In other words, for the
same procedure time, the clinician can obtain more accurate
estimates of the activation times and conduction velocity. In
the way we designed the active learning algorithm, we can
simultaneously train the neural networks and predict points for
active learning, which makes the real time application of this
methodology feasible in a clinical setting. In our experiments,
we observed that 1 min of training per sample in a laptop
with 8 cores was more than enough to obtain accurate results.
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FIGURE 9 | Evolution of active learning for the heterogeneous case with partly reduced conductivity. The top two rows show the activation times for different sample

densities and the ground truth for two different views. The bottom rows represent the conduction velocity.

In the future, we could easily accelerate this process by using
graphic processing units or other dedicated hardware to train
neural networks. If this is still not sufficient and samples
can arrive faster than the training speed, we could extend
the algorithm to make multiple recommendations for sample
locations or simply gather more samples randomly in the vicinity
of the current recommendation. Even though our method is
computationally more expensive than other alternatives, the
gains in accuracy could lead to reduction in procedural times for
the patient, which outweighs the cost of training the model. Our
methodology displays remarkable consistency and robustness
and achieving similar error levels, irrespective of the initial set
of samples.

Even though our method shows promising results when
compared to existing solutions, it displays some limitations.
First, we have ignored the anisotropy in conduction of cardiac
tissue [19, 37]. However, we could easily use the anisotropic
Eikonal equation in our loss and estimate fiber and cross-fiber
conduction velocities. This would require information of the
fiber orientations in the atria and ventricles. There are several

methodologies to incorporate this information with ruled-based
approaches [38, 39] and mapping techniques [40, 41]. On the
estimation of uncertainties, we see two limitations: First, we
have not included the noise that is generated by the acquisition
of the activation times with the electrode. We can incorporate
this source of uncertainty by estimating some variance in the
activation times [3] and include it in the Gaussian perturbation
σN that we use in the randomized prior functions. Second, our
uncertainty estimates are only approximations, since the true
uncertainties depend on the geodesic distance between points
on the manifold and not on the Euclidean distance in R

3,
which we have used to parametrize this problem [3, 42]. We
can address this limitation by using more complex architectures,
such as convolutional neural networks on graphs [43], which
we plan to explore in the future. However, empirically, we
see that active learning works well with this approximation.
Finally, we have only tested our method with synthetic data and
additional challenges could arise when applying it to real clinical
data. We expect that the method will perform well for focal
activations and macro re-entry tachycardia [2]. For localized
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re-entry or fibrillation, however, we expect that the method
will not work, as the conduction velocity of the spiral wave
depends on both time and space and the Eikonal equation does
not hold. As a next step, we plan to test this methodology in
a cohort of patients with focal activations or macro re-entry
tachycardia [15].

In summary, we have presented a new and efficient
methodology to acquire and create activation maps in cardiac
electrophysiology.We believe that our approach will enable faster
and more accurate acquisitions that will benefit the diagnosis of
patients with cardiac arrhythmias.
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