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In this article, we study the fully non-linear third-order partial differential equation, namely

the Gilson-Pickering equation. The
(

1/G′)-expansion method, and the generalized

exponential rational function method are used to construct various exact solitary wave

solutions for a given equation. These methods are based on a homogeneous balance

technique that provides an order for the estimation of a polynomial-type solution. In

order to convert the governing equation into a nonlinear ordinary differential equation, a

traveling wave transformation has been implemented. As a result, we have constructed

a variety of solitary wave solutions, such as singular solutions, compound singular

solutions, complex solutions, and topological and non-topological solutions. Besides,

the 2D, 3D, and contour surfaces are plotted for all obtained solutions by choosing

appropriate parameter values.

Keywords: the Gilson-Pickering equation, the
(

1/G′
)

-expansion method, the generalized exponential rational

function method, analytic methods, exact solutions

1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) are used to represent a variety of nonlinear
physical phenomena in different areas of applied sciences like fluid dynamics, plasma physics,
optical fibers, and biology. Among the most profitable strategies for examining such nonlinear
physical phenomena is to seek for the exact solutions of NLPDEs [1–5]. In recent years, a variety
of effective methods have been implemented to investigate the exact solutions of nonlinear partial
differential equations, such as Hirota’s bilinear method [6], the Adomian decomposition method
[7], the exp(−8(ξ ))-expansion method [8], the sine-Gordon expansion method [9], the Bernoulli
sub-equation method [10, 11], the shooting method with the fourth-order Runge-Kutta scheme
[12, 13], the generalized exponential rational function method [14–18], the modified exponential
function method [19], the modified auxiliary expansion method [20], the homotopy perturbation
Sumudu transform method [21], the homotopy perturbation transform method [22, 23], and the
fractional homotopy analysis transform method [24].

The third-order nonlinear partial differential equation (NLPDE) was introduced in [25] by
Gilson and Pickering as

ut − ǫuxxt + 2kux − uuxxx − αuux − βuxuxx = 0, (1)

where ε,α, κ , and β are non-zero real numbers. Recently, the Gilson-Pickering equation has been
investigated using a variety of methods, such as the (G′/G)-expansion method [26], the anstaz
method [27], the (G′/G)-expansion method to tanh, the coth, cot, and the logical forms under
certain conditions [28], the Bernoulli sub-equation model [29], a not a knot meshless method [30],
and the symmetry method [31].
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The core of this paper is to investigate the Gilson-Pickering
equation using the (1/G′)-expansion method and the generalized
exponential rational function method (GERF).

2. APPLICATIONS OF THE GILSON
PICKERING EQUATION

This section presents specific instances of the Gilson Pickering
equation and their applications. When ε = 1,α = −3, and
β = 2, Equation (1) gives the Fuchssteiner-Fokas-Camassa-
Holm equation, which is a completely integrable nonlinear
partial differential equation that arises at different levels of
approximation in shallow water theory [32, 33]. When ε =
0,α = 1, κ = 0, and β = 3, Equation (1) reduces to the
Rosenau-Hyman equation (RH), which arises in the study of the
influence of nonlinear dispersion on the structure of patterns
in liquid drops [34]. When ε = 1,α = −1, κ = 0.5, and
β = 3, Equation (1) gives the Fronberg-Whitham (FW), which
was developed to analyze the qualitative characteristics of wave
breakage and admits a wave of the highest height [35–37].

3. THE BASIC CONCEPTS OF THE
(1/G′)-EXPANSION METHOD

In this section, the fundamental steps of the (1/G′)-expansion
method are presented [38, 39]:

Step 1. Let us consider the general form of a two-variable
nonlinear partial differential equation (NPDE) as follows:

Q(p, pt , px, pxx, ...) = 0, (2)

where p = p(x, t), and Q is a partial differential equation.
Step 2. To convert Equation (2) to a nonlinear ordinary
differential equation (NODE), we employ the following
wave transformation

p(x, t) = P (η) , η = (x− ht), (3)

where h is a scalar. After some procedures, Equation (2)
reduces to the following NODE:

W(P
′
, P

′′
, P

′′′
, ...) = 0, (4)

whereW is an ordinary differential equation.
Step 3. Assume that Equation (4) has a solution of the form

P (η) =
m

∑

i=0

ai

(

1

G′

)i

, (5)

where a0, a1, a2, ..., am are scalars to be determined, m is a
balance term, and G = G(η) satisfies the following second-
order linear ODE:

G′′ + λG′ + µ = 0, (6)

where λ and µ are scalars.

The solution of Equation (6) is given by

G(η) = a0 + a1

(

1

−µ/λ + be−λη

)

. (7)

If we convert the algebraic expression given by Equation (7) to
a trigonometric function, we can write it as the following:

G (η) = a0 +
a1

−µ
λ
+ b cosh (λη) − b sinh (λη)

. (8)

Inserting Equation (6) and its necessary derivatives along with

Equation (5) into Equation (4) returns the polynomial of
(

1
G′

)i
.

Summing the
(

1
G′

)i
coefficients with the same power and then

setting every summation to zero, we get a system of algebraic
equations for ai, i ≥ 0. Eventually, solving this system simply
gives the value of the variables. Putting these values of variables
with the value of the balance termm into Equation (4), we can
get solutions for Equation (2).

4. THE BASIC CONCEPTS OF THE GERF

In this section, the basic steps of the GERF are presented.

Step1. Let us consider that the general form of a nonlinear
partial differential equation is given by:

Q
(

p, px, pt , pxx, ...
)

= 0, (9)

where Q is a partial differential equation.
Suppose that the wave transformation takes the form:

p (x, t) = P(η), η = x− ht, (10)

where h is a scalar.
Using Equation (10) in Equation (9), we get the nonlinear

ordinary differential equation

W
(

P, P′, P′′, ...
)

= 0, (11)

whereW is an ordinary differential equation.
Step 2. Suppose that the solitary wave solutions of Equation
(11) are given by:

P(η) = A0 +
m

∑

K=1

AKϕ(η)K +
m

∑

K=1

BKϕ(η)−K , (12)

where

ϕ (η) =
r1es1η + r2es2η

r3es3η + r4es4η
, (13)

where rm, sm (1 ≤ n ≤ 4) are real/complex constants,
A0, AK , BK are constants to be determined, and m will be
determined by the balance principle.
Step 3. Substituting Equation (12) into Equation (11), we
get the polynomials that are dependent on Equation (12). By
equating the same order terms, we obtain an algebraic system
of equations. With the help of computational programs such
as Mathematica, Matlab, and Maple, we solve this system and
determine the values of A0, AK , BK . Finally one can easily
obtain the nontrivial exact solutions of Equation (11).
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5. MATHEMATICAL CALCULATION

In this section, the mathematical calculation of the Gilson-
Pickering equation is presented.

Consider the Gilson-Pickering equation (Equation 1) stated in
section 1. Inserting the wave transformation

u = P (η) , η = x− ht, (14)

into Equation (1), the following NODE can be obtained

(

2k− h
)

P′ + ǫhP′′′ − PP′ − βP′P′ − αPP′ = 0, (15)

where ǫ,β ,α, h, and k are non-zero real numbers.
Integrating Equation (15) once with respect to η and assuming
that the integration constant is zero, we have.

(

2k− h
)

P +
(

ǫh− P
)

P′′ +
1− β

2

(

P′
)2 −

α

2
P
2
= 0. (16)

6. IMPLEMENTATION OF THE
(1/G′)-EXPANSION METHOD

In this section, the application of the (1/G′)-expansion method
to the Gilson-Pickering equation is presented.

Applying the balance principle, by taking the nonlinear term
P2 and the highest derivative P′′ in Equation (16) gives m = 2.
Withm = 2, Equation (5) takes the form

P (η) = a0 + a1

(

1

G′

)

+ a2

(

1

G′

)2

. (17)

Inserting Equation (17) and its necessary derivatives into

Equation (16), returns the polynomial of
(

1
G′

)i
. Summing

the
(

1
G′

)i
coefficients with the likely power and then setting

every summation to zero, we get a system of algebraic
equations. Solving this system simply gives the following families
of solutions:

Family 1.When

a0 = −
2
(

h− 2k
)

α
,

a1 = −
12

√

−
(

h− 2k
)

α
(

−4k+ h (2+ αǫ)
)3/2

µ

α2
(

−6k+ h (3+ αǫ)
) ,

a2 =
12

(

−4k+ h (2+ αǫ)
)2

µ2

α2
(

−6k+ h (3+ αǫ)
) , λ = −

√

−
(

h− 2k
)

α
√
2h− 4k+ hαǫ

,

β = −2,

(18)

we get

u1(x, t) =
12

(

−4k+ h (2+ αǫ)
)2

µ2

α2
(

−6k+ h (3+ αǫ)
)

(

− Lµ
M + C1 cosh

(

Mξ
L

)

− C1 sinh
(

Mξ
L

))2

+
12M

(

−4k+ h (2+ αǫ)
)3/2

µ

α2
(

−6k+ h (3+ αǫ)
)

(

− Lµ
M + C1 cosh

(

Mξ
L

)

− C1 sinh
(

Mξ
L

))

−
2
(

h− 2k
)

α
,

(19)

whereM =
√

(

−h+ 2k
)

α, L =
√
2h− 4k+ hαǫ.

Family 2.When

a0 = 0, a1 =
12h3/2

√
h− 2kǫ3/2µ

2k+ h (−1+ αǫ)
, a2 =

12h2ǫ2µ2

2k+ h (−1+ αǫ)
,

λ =
√
h− 2k
√
h
√

ǫ
,β = −2,

(20)

we get

u2 (x, t) =
12h2ǫ2µ2

(

2k+ h (−1+ αǫ)
)

(

−
√
h
√

ǫµ√
h−2k

+ C1 cosh (S) − C1 sinh (S)

)2

+
12h3/2

√
h− 2kǫ3/2µ

(

2k+ h (−1+ αǫ)
)

(

−
√
h
√

ǫµ√
h−2k

+ C1 cosh (S) − C1 sinh (S)

) ,

(21)

where S =
√
h−2kξ√
h
√

ǫ
.

Family 3.When

FIGURE 1 | The 3D, 2D, and contour surfaces of Equation (19) when

h = 2, k = 2.5, α = 2.6, µ = 0.2, ǫ = 3.5, and C1 = 0.6.
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a0 =
4kǫλ2

α + (2+ αǫ) λ2
, a2 =

(

α − λ2
) (

α + (2+ αǫ) λ2
)

a21
24kαǫλ2

,

µ =
(

α − λ2
) (

α + (2+ αǫ) λ2
)

a1

24kαǫλ
,β = −2,

h =
2k

(

α + 2λ2
)

α + (2+ αǫ) λ2
,

(22)

gives

u3 (x, t) =
a1

C1 cosh (λξ) − C1 sinh (λξ) − (α−λ2)(α+(2+αǫ)λ2)a1
24kαǫλ2

+
(

α − λ2
) (

α + (2+ αǫ) λ2
)

a21

24kαǫλ2
(

C1 cosh (λξ) − C1 sinh (λξ) − (α−λ2)(α+(2+αǫ)λ2)a1
24kαǫλ2

)2

+
4kǫλ2

α + (2+ αǫ) λ2
.

(23)

Family 4.When

a0 =
4kǫ

1+ αǫ
, a2 = 0, β = −3, µ =

i
√

α (1+ αǫ) a1
4kǫ

,

h =
2k

1+ αǫ
, λ = i

√
α,

(24)

we get

u4 (x, t) =
4kǫ

1+ αǫ
+

a1

C1 cos
(√

αξ
)

− iC1 sin
(√

αξ
)

− (1+αǫ)a1
4kǫ

.

(25)

Family 5.When

FIGURE 2 | The 3D, 2D, and contour surfaces of Equation (21) using

h = 4, k = 0.5, α = 2.6, µ = 0.2, ǫ = 4, and C1 = 3.

a0 =
i
√

αa1
µ

, a2 = 0, β = −3, h =
i
√

αa1
2ǫµ

,

k =
i
√

α (1+ αǫ) a1
4ǫµ

, λ = i
√

α,

(26)

we get

u5 (x, t) =
i
√

αa1
µ

+
a1

iµ√
α
+ C1 cos

(√
αξ

)

− iC1 sin
(√

αξ
)
.

(27)

Family 6.When

a0 =
12hǫµ + 3λa1 −

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

24µ
, a2 =

µa1
λ

,

α =
λ

(

12hǫµ − λa1 +
√
3
√

48h2ǫ2µ2 + λa1
(

−8hǫµ + 3λa1
)

)

2a1
,

k =
24hµ + 12hǫλ2µ − 3λ3a1 + λ2

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

48µ
,

β = −2,

(28)

we have

u6 (x, t) =
µa1

λ
(

−µ
λ
+ C1 cosh (λξ) − C1 sinh (λξ)

)2

+
a1

−µ
λ
+ C1 cosh (λξ) − C1 sinh (λξ)

+
12hǫµ + 3λa1 −

√

−96hǫλµa1 + 9
(

4hǫµ + λa1
)2

24µ
.

(29)

FIGURE 3 | The 3D, 2D, and contour surfaces of Equation (23) using

k = 2, α = 5, λ = 1.2, ǫ = 6.6, C1 = 2, and a1 = 2.8.
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7. IMPLEMENTATION OF THE GERF
METHOD

In this section, the application of the GERF method to the
Gilson-Pickering equation is presented.

Applying the balance principle, by taking the nonlinear term
P2 and the highest derivative P′′ in Equation (16) gives m = 2.
Withm = 2, Equation (12) takes the form

P (η) = A0 + A1ϕ (η) +
B1

ϕ (η)
+ A2ϕ(η)2 +

B2

ϕ(η)2
, (30)

where ϕ (η) is given by Equation (13). Following the
methodology described above in section 4, we obtain the
following nontrivial solutions of Equation (1):

Family 1.When ri = {−2,−1, 1, 1} , si = {0, 1, 0, 1} , we get

ϕ (η) =
−2− eη

1+ eη
, (31)

FIGURE 4 | The 3D, 2D, and contour surfaces of Equation (25), using

k = 4.5, α = 0.4, ǫ = 0.3, C1 = 0.2, and a1 = 0.8.

Case 1.

A0 =
A1 (−1+ 13α)

18α
, B1 = 0, A2 =

A1

3
, B2 = 0, β = −2,

h =
A1

(

−2+ α + α2
)

36αǫ
, k =

A1 (−1+ α) (2+ α + αǫ)

72αǫ
,

(32)

we get

u7 (x, t) =
A1

(

−2− ex−
A1t(−2+α+α2)

36αǫ

)2

3

(

1+ ex−
A1t(−2+α+α2)

36αǫ

)2

+
A1

(

−2− ex−
A1t(−2+α+α2)

36αǫ

)

1+ ex−
A1t(−2+α+α2)

36αǫ

+
A1 (−1+ 13α)

18α
,

(33)

FIGURE 5 | The 3D, 2D, and contour surfaces of Equation (27), using

µ = 0.4, α = 0.1, ǫ = 0.5, C1 = 2, and a1 = 1.5.
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Case 2.When

A0 = −
2
(

h− 2k
)

(−1+ 13α)

(−1+ α) α
, A1 = 0, B1 = −

72
(

h− 2k
)

−1+ α
,

A2 = 0, B2 = −
48

(

h− 2k
)

−1+ α
, ǫ −

(

h− 2k
)

(2+ α)

hα
, β = −2,

(34)

we get

u8 (x, t) = −
72

(

1+ e−ht+x
)

(

h− 2k
)

(

−2− e−ht+x
)

(−1+ α)

−
48

(

1+ e−ht+x
)2

(

h− 2k
)

(

−2− e−ht+x
)2

(−1+ α)
−
2
(

h− 2k
)

(−1+ 13α)

(−1+ α) α
.

(35)

FIGURE 6 | The 3D, 2D, and contour surfaces of Equation (29) using

µ = 1.5, α = 0.4, ǫ = 0.1, C1 = 2, a1 = 0.4, h = −1, and λ = 0.5.

FIGURE 7 | The 3D, 2D, and contour surfaces of Equation (33) using

A1 = 0.2, α = 0.9, and ǫ = 0.6.

Family 2. When ri = {−2− i, 2− i,−1, 1} , si = {i,−i, i,−i}
we get

ϕ (η) =
cos (η) + 2 sin (η)

sin (η)
, (36)

Case 1.When

A0 =
B1 (8− 13α)

60α
, A1 = 0, A2 = 0, B2 = −

5B1
4

, β = −2,

h = −
B1 (−8+ α) (4+ α)

240αǫ
, k =

B1 (4+ α) (8+ α (−1+ 4ǫ))

480αǫ
,

(37)

we get

u9 (x, t) =
B1 (8− 13α)

60α
−

5B1 sin (D)2

4(cos (D) + 2 sin (D))2

+
B1 sin (D)

cos (D) + 2 sin (D)
, (38)

where D = x+ B1t(−8+α)(4+α)
240αǫ

.

Case 2.

A0 =
A1 (8− 13α)

12α
, B1 = 0, A2 = −

A1

4
, B2 = 0, β = −2,

ǫ −
A1 (−8+ α) (4+ α)

48hα
, k =

1

24

(

12h+ A1 (4+ α)
)

,

(39)

we get

u10 (x, t) =
A1 (8− 13α)

12α
− A1 csc

(

ht − x
) (

cos
(

ht − x
)

− 2 sin
(

ht − x
))

−
1

4
A1 csc

(

ht − x
)2(

cos
(

ht − x
)

− 2 sin
(

ht − x
))2

. (40)

FIGURE 8 | The 3D, 2D, and contour surfaces of Equation (35) using

k = 0.5, α = 25, and h = 2.
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Family 3.When ri = {2, 0, 1, 1} , si = {−1, 0, 1,−1}

ϕ (η) =
(

cosh (η) − sinh (η)
)

cosh (η)
, (41)

Case 1.When

A0 = −
A1 (−4+ α)

3α
, B1 = 0, A2 = −

A1

2
, B2 = 0, β = −2,

h = −
A1 (−4+ α) (8+ α)

24αǫ
, k = −

A1 (−4+ α) (8+ α + 4αǫ)

48αǫ
,

(42)

we have

u11 (x, t) = A1Sech (D)
(

cosh (D) − sinh (D)
) 1

2
A1Sech(D)2

(

cosh (D)

FIGURE 9 | The 3D, 2D, and contour surfaces of Equation (38) using

B1 = 0.5, α = 4, and ǫ = 2.

FIGURE 10 | The 3D, 2D, and contour surfaces of Equation (40) using

A1 = 5, α = 4, and ǫ = 2.

− sinh (D)
)2 −

A1 (−4+ α)

3α
, (43)

where D = x+ A1t(−4+α)(8+α)
24αǫ

.
Case 2.

A0 = −

(

h− 2k
)

(

−4+
√

(−4+ α)2 + α
)

(−4+ α) α
, B2 = 0, β = −2,

ǫ = −

(

h− 2k
)

(

4
(

−4+
√

(−4+ α)2
)

+ α2
)

4h
√

(−4+ α)2α
, B1 = 0,

A1 =
6
(

h− 2k
)

√

(−4+ α)2
,A2 = −

3
(

h− 2k
)

√

(−4+ α)2
,

(44)

we get

u12 (x, t) =
6
(

h− 2k
)

sech
(

ht − x
) (

cosh
(

ht − x
)

+ sinh
(

ht − x
))

√

(−4+ α)2

−
3
(

h− 2k
)

sech
(

ht − x
)2(

cosh
(

ht − x
)

+ sinh
(

ht − x
))2

√

(−4+ α)2

−

(

h− 2k
)

(

−4+
√

(−4+ α)2 + α
)

(−4+ α) α
.

(45)

8. RESULT AND DISCUSSION

The powerful methods, namely the (1/G′) expansion method
and the generalized exponential rational function method,
are used to construct various analytical solutions for the
Gilson-Pickering equation. Some results of the Gilson-Pickering
equation have already been reported in the literature. Fan et al.

FIGURE 11 | The 3D, 2D, and contour surfaces of Equation (43) using

A1 = 5, α = 4, and ǫ = 2.
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FIGURE 12 | The 3D, 2D, and contour surfaces of Equation (45) using

k = 3, α = 5, and h = 2.

[28] used (G
′
/G) and the ansatz method and found the solitary

wave solutions to Equation (1). Baskonus [29] investigated the
Gilson-Pickering equation by using the first integral method.

Zabihi and Saffarian [30] implemented the simplified (G
′
/G)

expansion method to reveal the hyperbolic, trigonometric
function, and rational function solutions. Singla and Gupta [31]
reported some new complex soliton solutions to Equation (1)
with the aid of the Bernoulli sub-equation function method.
Camsssa et al. [32] used a not a knot meshless method to obtain
numerical solutions to Equation (1). Fuchssteiner and Fokas
[33] performed Lie symmetry analysis and found conservation
laws for the space-time fractional Gilson-Pickering equation.
In this article, we obtained the singular, compound singular,
complex, topological, and non-topological wave solutions to the
studied equation. It is known that non-topological solutions
detect waves with an intensity lower than the background,
topological solutions with such a maximum intensity higher
than the background, and singular solutions that are waves with
discontinuous derivatives.

9. CONCLUSION

In this study, we have successfully applied the (1/G′) expansion
method and the generalized exponential rational function
method to find new exact solutions for the Gilson-Pickering
equation. In order to convert the governing equation into a
NODE, a traveling wave transformation has been implemented.
Various analytical solutions of the proposed model have
been constructed such as singular solutions, as shown in
Figures 1, 2, 3, compound singular solution, as seen in Figure 4,
complex solution, as seen in Figure 5, as well as a singular
solution, can be shown in Figure 6. The non-topological
solution, as shown in Figure 7, topological solutions, as shown
in Figure 8, and compound singular solutions, as seen in
Figures 9, 10. Also, topological solution and non-topological

solution as seen in Figures 11, 12, respectively. Compared
with the results reported in Fan et al. [28], Baskonus [29],
Zabihi and Saffarian [30], Singla and Gupta [31], Camsssa
et al. [32], and Fuchssteiner and Fokas [33], the solutions
obtained are novel. Both methods are efficient for solving
complex nonlinear partial differential equations, but, by using
the generalized exponential rational function method, we can
get more solutions than with the (1/G′) expansion method.
Furthermore, the 2D, 3D, and contour surfaces are plotted
for all obtained solutions by selecting suitable values for
the parameters.
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