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During the past few decades a large effort has been made toward describing the NN

interaction in the framework of chiral Effective Field Theory (EFT). The main idea is to

exploit the symmetries of QCD to obtain an effective theory for low energy nuclear

systems. In 2003, the first accurate charge-dependent NN potential in this scheme was

developed and it has been applied to many ab-initio calculations, opening the possibility

to study nuclear systems in a systematic and accurate way. It was shown that the fourth

order (N3LO) was necessary and sufficient to describe the NN scattering data with a

χ2/d.o.f on the order of so-called high precision potentials. However the systematics

of chiral EFT also allow to relate two- and many-body interactions in a well-defined

way. Since many-body forces make their first appearance at higher order, they are

substantially smaller than their two-body counterparts, but may never-the-less be crucial

for some processes. Thus, there are observables where they can have a big impact and,

for example, there are indications that they solve the long standing Ay puzzle of N-d

scattering. The last few years, have also seen substantial progress toward higher orders

of chiral EFT which was motivated by the fact that only three-body forces of rather high

order may solve some outstanding issues in microscopic nuclear structure and reactions.

In this chapter we will review the latest contributions of the authors to development of

chiral EFT based potentials up to N4LO as well as first calculations conducted for NN

scattering at N5LO.

Keywords: nucleon-nucleon scattering, chiral effective field theory, EFT, nucleon-nucleon interaction, nucleon-

nucleon potential

1. INTRODUCTION

The modern view of the NN interaction is given in the framework of Chiral Effective Field Theory
(χEFT). The concept of an Effective Field Theory (EFT) is not a new one. The main idea is to
identify the relevant degrees of freedom and symmetries for a certain system at a certain scale, and
use this to find a Quantum Field Theory that is able to describe the system. However the traditional
renormalization condition used to build theories like QCD is not required and a renormalization
order by order is used instead. Nowadays, this approach is widely applied in different areas
of physics.

In the case of strong interactions, we know that the fundamental theory is given by Quantum
Chromodynamics (QCD). However for nuclear systems, the relevant degrees of freedom are not
quarks and gluons, but nucleons and pions. Applying the EFT concept to nuclear systems allows
to build theories for nucleons and pions that are consistent with the symmetries of the underlying
theory. In the case of QCD, a very important property for low energy dynamics is that the original
approximate chiral symmetry is broken spontaneously. This effect makes the pion come into play
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as the pseudo-Goldstone boson of the theory, which naturally
explains the low mass of the pion as compared to other scales
in nuclear systems.

Chiral Perturbation Theory (ChPT) uses these ideas to
determine observables making a perturbative expansion in
the pion mass or some low energy external momenta.
The Goldstone-boson character of the pion allows for this
perturbative expansion, having always derivative couplings.
ChPT was first applied to ππ systems [1] and πN systems [2]
with quite some success. Chiral EFT is essentially based on ChPT,
however in the case of the NN interaction this perturbative
expansion is inadequate and non-perturbative resummations are
needed. The complicate structure of the amplitudes makes it
difficult to resum these contributions using the techniques of
Unitarized ChPT that are applied in two-meson systems [3].
However first attempts to use similar techniques using the so
called N/D method have been made [4].

The use of χEFT for the two-nucleon system was introduced
byWeinberg in two seminal papers [5, 6]. Weinberg realized that
reducible diagrams violate the chiral expansion and, therefore,
proposed to determine the potential using the rules of ChPT and
then insert it into a Schrödinger-like equation to conduct the
non-perturbative resummation.

Soon after, the first nuclear potentials were obtained by
Ordoñez and van Kolck [7–9]. These position-space potentials
were developed up to next-to-next-to-leading order (N2LO) and
regularized by a cutoff function. Momentum-space potentials up
to N2LO using dimensional regularization were derived by the
Bochum group [10, 11]. The simple and transparent momentum-
space expressions obtained in this type of derivation [12] made
chiral potentials more popular. However it was not until 2003
that χEFT reached high precision when the first chiral potential
at N3LOwas developed by Entem andMachleidt [13, 14] that was
able to describe the NN scattering data with a χ2/d.o.f similar
to what the high-precision potentials of the 90’s had achieved
[15–18].

Since then, many applications of N3LO NN potentials
together with chiral three-nucleon forces (3NFs) have been
reported. These investigations include few-nucleon reactions
[19–22], structure of light- and medium-mass nuclei [23–27]
and infinite matter [28–33]. Although satisfactory predictions
have been obtained in many cases, persistent problems continue
to pose serious challenges, as the overbinding in medium mass
nuclei [25] or the descriptions of charge and matter radii [34].
There is also the well-known Ay puzzle of nucleon-deuteron
scattering [35]. In this case recent calculations including contact
3NFs at N4LO have been shown to be able to solve the puzzle [36].
This suggests that one may have to proceed to the next higher
order, namely, N4LO, for the two-nucleon force.

Thus, during the past few years, chiral potentials up to N4LO
have been developed by the Idaho-Salamanca group [37] as well
as the Bochum group [38].

In the whole chapter we will be referring to the so called
1-less EFT, where 1 degrees of freedom have been integrated
out. There are recent advances in the 1-full theory [39, 40]. We
refer the interested reader to contributions on this topic in the
present monograph.

The chapter is organized as follows. In section 2 we review the
most important aspects of χEFT for the two-nucleon system. In
section 3 we apply the perturbative amplitude obtained to study
peripheral NN scattering up to N5LO. In section 4 we review NN
potentials up to N4LO.We conclude with a summary in section 5.

2. CHIRAL EFT FOR THE NN SYSTEM

2.1. Power Counting
In order to build an EFT for the two nucleon system, the
Lagrangians for the involved degrees of freedom have to be
constructed. However, there is an infinite number of terms in
the Lagrangian compatible with the allowed symmetries. For this
reason, it is necessary to order all terms by what we call power
counting. Following power counting, the terms in the Lagrangian
are arranged by order. Moreover, the diagrams representing an
amplitude calculated from the Lagrangian are also of a well
defined order. Since higher orders include loop diagrams that
diverge, the power counting also needs to be such that all the
infinities generated at a certain order can be reabsorbed into
redefinitions of the coupling constants of the Lagrangian at the
same order. With these ideas in mind Weinberg, proposed the
so called Weinberg power counting which is based on naive
dimensional analysis.

Following naive dimensional analysis, a nucleon propagator
counts as Q−1, where Q stands for a low momentum or pion
mass, a pion propagator as Q−2, each derivative or pion mass
insertion counts as Q and each four momentum integration as
Q4. The power of a diagram is then given by the simple formula
[5, 6, 14]

ν = −2+ 2A− 2C + 2L+
∑

i

1i , (1)

where A is the number of nucleons involved, C the number of
connected pieces, L the number of loops, and the sum runs over
all vertexes i with 1i the index of the vertex given by

1i ≡ di +
ni

2
− 2 (2)

with di the number of derivatives or pion mass insertions (chiral
dimension) and ni the number of nucleon legs. In this way
the contribution of a diagram goes as (Q/3b)

ν with 3b the
breakdown scale.

In the heavy-baryon formalism, an expansion in terms of
Q/MN is performed, with MN denoting the nucleon mass. It is
used for low energy nucleon systems and we will count these
contributions as Q/MN ∼ (Q/3b)

2 for reasons explained in
Weinberg [5, 6].

An important property of chiral symmetry is that the index
of the vertexes is always zero or positive 1i ≥ 0. This fact
implies that for a fixed number of nucleons with A ≥ 2 and
considering diagrams with one connected piece, the power of a
diagram is always bounded from below. This fact is crucial for
the convergence of the chiral expansion.

A very important aspect of the EFT is that it relates two-body
forces with many-body forces. We know that two-body forces
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are the main contribution to nuclear forces, however, many-body
forces should exist. If we consider lowest order diagrams with
L = 0 and 1i = 0, for an m-body force in an A-nucleon system,
the number of separately connected pieces is C = A−m+1, and
so the power of the diagram is given by ν = 2m− 4. This means
that two-body forces (m = 2) appear at ν = 0, three-body forces
(m = 3) at ν = 2, four-body (m = 4) at ν = 4 and so on. So the
power counting explains in a simple way the hierarchy of nuclear
forces. In Figure 1 we summarize this hierarchy up to N5LO or
sixth order of the chiral expansion.

2.2. The Lagrangian
We will limit ourselves to the 1-less version of χEFT, and so the
relevant degrees of freedom are pions and nucleons. The effective
Lagrangian, subdivided in terms of the number of nucleon legs,
is given by

Leff = Lππ + LπN + LNN + . . . , (3)

where Lππ stands for the Lagrangian that deals with pion
dynamics, LπN the interaction between pions and a nucleon, and
LNN contains four nucleon legs and no pion fields. The ellipsis
stands for terms that involve two nucleons plus pions and three
or more nucleons with or without pions, not relevant for the two
nucleon sector.

All the pieces in the Lagrangian are then organized in
terms of the chiral dimension (number of derivatives/pion mass
insertions) of increasing order

Lππ = L
(2)
ππ + L

(4)
ππ + . . . , (4)

LπN = L
(1)
πN + L

(2)
πN + L

(3)
πN + L

(4)
πN + L

(5)
πN + . . . , (5)

LNN = L
(0)
NN + L

(2)
NN + L

(4)
NN + . . . , (6)

where the superscript refers to the chiral dimension and the
ellipsis refers to terms of higher dimensions. We use the heavy-
baryon formulation of the Lagrangians, the explicit expressions
of which can be found in Machleidt and Entem [14] and Krebs
et al. [41]. Notice that only in theNN case the chiral dimension is
the same as the index 1i.

2.3. The Scattering Amplitude
Having the Lagrangian, we can now calculate the NN scattering
amplitude. TheNN amplitude has contributions from irreducible
as well as reducible diagrams. The reducible diagrams are those
that we can separate into two diagrams by cutting only nucleon
lines. In covariant perturbation theory the separation is well
defined, however when we apply a three-dimensional reduction
of the Bethe-Salpeter equation it depends on the way this
reduction is performed. See Machleidt and Entem [14] for a
discussion on this point. We will come back to this when we
define the potential.

The amplitude for diagrams involving pions is organized in
terms of the number of pions exchanged by the two nucleons

Vπ = V1π + V2π + V3π + . . . (7)

Then each piece is divided in terms of the power counting
described previously as

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + V

(5)
1π + V

(6)
1π + . . . , (8)

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + V

(5)
2π + V

(6)
2π + . . . , (9)

V3π = V
(4)
3π + V

(5)
3π + V

(6)
3π + . . . , (10)

where the superscript denotes the order ν.
Besides these diagrams, contributions coming from

Lagrangian LNN are also present. These contributions are
contact-like contributions and take into account the unknown
short-distance dynamics. They are again organized using the
power counting

Vct = V
(0)
ct + V

(2)
ct + V

(4)
ct + V

(6)
ct + . . . , (11)

where the superscript is the order ν. Due to symmetry
requirements these contributions come only in even powers.

Then the order by order contributions are given by

VLO ≡ V(0)
π + V

(0)
ct = V

(0)
ct + V

(0)
1π , (12)

VNLO ≡ VLO + V(2)
π + V

(2)
ct = VLO + V

(2)
ct + V

(2)
1π + V

(2)
2π ,(13)

VNNLO ≡ VNLO + V(3)
π = VNLO + V

(3)
1π + V

(3)
2π , (14)

VN3LO ≡ VNNLO + V(4)
π + V

(4)
ct = VNNLO + V

(4)
ct + V

(4)
1π

+ V
(4)
2π + V

(4)
3π , (15)

VN4LO ≡ VN3LO + V(5)
π = VN3LO + V

(5)
1π + V

(5)
2π

+ V
(5)
3π , (16)

VN5LO ≡ VN4LO + V(6)
π + V

(6)
ct = VN4LO + V

(6)
ct + V

(6)
1π

+ V
(6)
2π + V

(6)
3π , (17)

where LO stands for leading order, NLO next-to-leading
order, etc.

For the presentation of amplitudes we will use the following
decomposition

V(Ep ′, Ep) = VC + Eτ1 · Eτ2WC

+
[

VS + Eτ1 · Eτ2WS

]

Eσ1 · Eσ2
+

[

VLS + Eτ1 · Eτ2WLS

]

(

−iES · (Eq× Ek)
)

+
[

VT + Eτ1 · Eτ2WT

]

Eσ1 · Eq Eσ2 · Eq
+

[

VσL + Eτ1 · Eτ2WσL

]

Eσ1 · (Eq× Ek ) Eσ2 · (Eq× Ek ) , (18)

where Ep ′ and Ep denote the final and initial nucleon momenta in
the center-of-mass system (CMS), respectively. Moreover, Eq =
Ep ′ − Ep is the momentum transfer, Ek = (Ep ′ + Ep)/2 the average
momentum, and ES = (Eσ1+ Eσ2)/2 the total spin, with Eσ1,2 and Eτ1,2
the spin and isospin operators, of nucleon 1 and 2, respectively.
For on-shell scattering, Vα and Wα (α = C, S, LS,T, σL) can be
expressed as functions of q = |Eq | and p = |Ep ′| = |Ep |, only.
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FIGURE 1 | Hierarchy of nuclear forces up to N5LO or sixth order of the chiral expansion. Only some representative diagrams are included. Small dots, large solid

dots, solid squares, triangles, diamonds, and stars denote vertexes of index 1i = 0, 1, 2, 3, 4, and 6, respectively. Reprinted figure with permission from Entem et al.

[37], copyright (2017) by the American Physical Society.

2.4. Pion-Exchange Contributions
We now specify the contributions coming from pion exchanges
which provide the long-range interactions. Contributions at LO,
NLO, and NNLO are diagrammatically given by the graphs
in Figure 2.

2.4.1. Leading Order
The leading order (LO) is just the charge-independent one-pion-
exchange (OPE). The expression is given by

V
(0)
1π = − g2A

4f 2π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
q2 +m2

π

, (19)

where gA, fπ , andmπ denoted the axial-vector coupling constant,
pion-decay constant, and the pion mass, respectively. There
are corrections at higher orders that renormalize the coupling

constant. They are taken into account by using gA/fπ =
gπN/MN , with gπN the πNN coupling constant. Numerical
values are given in Table 1. Note that, on-shell, there are no
relativistic corrections.

Charge dependence is taken into account using

V
(np)
1π (Ep′, Ep) = −V1π (mπ0)+ (−1)I+12V1π (mπ± ) , (20)

V
(pp/nn)
1π (Ep′, Ep) = V1π (mπ0 ) , (21)

with I the isospin of the two-nucleon system and

V1π (mπ ) = − g2A
4f 2π

Eσ1 · Eq Eσ2 · Eq
q2 +m2

π

; (22)

mπ0 denotes the mass of the neutral pion andmπ± the one of the
charged pion. The charge dependence is an NLO effect [14], but
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FIGURE 2 | LO, NLO, and NNLO contributions to the NN interaction. Solid lines represent nucleons and dashed lines pions. Small dots and large solid dots represent

vertices with index 1i = 0 and 1, respectively. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

we include it already at leading order to make comparison with
phase-shifts more meaningful.

2.4.2. Next-to-Leading Order
The NLO contributions appear at order ν = 2. Symmetry
requirements make the contributions at ν = 1 vanish. In
the past, the expressions for these diagrams as obtained in
dimensional regularization were used [14]. Here, we apply the so-
called spectral-function regularization (SFR) [42]. The potentials
are obtained using dispersion relations from the imaginary part
of the amplitude in the left-hand cut. However a cut-off 3̃ is
used in the dispersion relation to constrain the potentials to the
low-energy region where χEFT is applicable.

The contribution is given by

WC = L(3̃; q)
384π2f 4π

[

4m2
π (1+ 4g2A − 5g4A)+ q2(1+ 10g2A − 23g4A)

−48g4Am
4
π

w2

]

, (23)

VT = − 1

q2
VS = − 3g4A

64π2f 4π
L(3̃; q), (24)

with

w =
√

4m2
π + q2 , (25)

L(3̃; q) = w

2q
ln

3̃2(2m2
π + q2)− 2m2

πq
2 + 3̃

√

3̃2 − 4m2
π qw

2m2
π (3̃

2 + q2)
,

(26)

which agrees with the dimensional regularization expressions
[14] when replacing L(3̃; q) by L(q). In fact,

lim
3̃→∞

L(3̃; q) = L(q). (27)

2.4.3. Next-to-Next-to-Leading Order
Here the diagrams that contribute include a vertex with 1i = 1
which is represented by a large solid dot in Figure 2. The NNLO
contribution is

VC = 3g2A
16π f 4π

[

2m2
π (c3 − 2c1)+ c3q

2] (2m2
π + q2)A(3̃; q),(28)

WT = − 1

q2
WS = − g2A

32π f 4π
c4w

2A(3̃; q) , (29)

with

A(3̃; q) = 1

2q
arctan

q(3̃ − 2mπ )

q2 + 23̃mπ

. (30)

As in the case of the NLO contribution, dimensional
regularization is recovered when using

lim
3̃→∞

A(3̃; q) = 1

2q
arctan

q

2mπ

. (31)

Notice that, here, we demote the relativistic corrections of the
NLO diagrams to N3LO, while in Machleidt and Entem [14] they
were counted NNLO.

2.4.4. N3LO Contributions
At this order the first 3π exchange contributions appear.
However it was shown in Kaiser [43, 44] that they give negligible
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TABLE 1 | Basic constants used throughout this review article.

Quantity Value

Axial-vector coupling constant gA 1.29

Pion-decay constant fπ 92.4 MeV

Charged-pion mass mπ± 139.5702 MeV

Neutral-pion mass mπ0 134.9766 MeV

Average pion-mass mπ 138.0390 MeV

Proton mass Mp 938.2720 MeV

Neutron mass Mn 939.5654 MeV

Average nucleon-mass MN 938.9183 MeV

contributions for peripheral waves and, therefore, we leave
them out.

There are three types of contributions given by the three
classes represented in Figure 3. The first one is the football
diagram (a). The contribution is [45],

VC = 3

16π2f 4π

[

( c2

6
w2 + c3(2m

2
π + q2)− 4c1m

2
π

)2

+ c22
45

w4
]

L(3̃; q) , (32)

WT = − 1

q2
WS =

c24
96π2f 4π

w2L(3̃; q) . (33)

The second class (b) corresponds to the 2π-exchange
two-loop diagrams.

Here as well as for the N4LO expressions (see below), we state
contributions in terms of their spectral functions, from which the
momentum-space amplitudes Vα(q) andWα(q) are obtained via
the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ 3̃

nmπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT(q) = 2q4

π

∫ 3̃

nmπ

dµ
ImVT(iµ)

µ3(µ2 + q2)
, (34)

and similarly for WC,S,T . The thresholds are given by n = 2
for two-pion exchange and n = 3 for three-pion exchange.
For 3̃ → ∞ the above dispersion integrals yield the finite
parts of loop-functions as in dimensional regularization, while
for finite 3̃ >> nmπ we employ the method known as spectral-
function regularization (SFR). The purpose of the finite scale 3̃

is to constrain the imaginary parts to the low-momentum region
where chiral effective field theory is applicable.

The spectral functions for class (b) are given by [45, 46]

ImVC = 3g4A(2m
2
π − µ2)

πµ(4fπ )6
[

(m2
π − 2µ2)

(

2mπ + 2m2
π − µ2

2µ
ln

µ + 2mπ

µ − 2mπ

)

+4g2Amπ (2m
2
π − µ2)

]

, (35)

ImVS = µ2 ImVT = g2Aµκ3

8π f 4π

(

d̄15 − d̄14

)

+2g6Aµκ3

(8π f 2π )
3

∫ 1

0
dx(1− x2)

[

1

6
− m2

π

κ2x2
(36)

+
(

1+ m2
π

κ2x2

)3/2

ln
κx+

√

m2
π + κ2x2

mπ

]

,

ImWC = 2κ

3µ(8π f 2π )
3

∫ 1

0
dx

[

g2A(µ
2 − 2m2

π )+ 2(1− g2A)κ
2x2

]

×
{

96π2f 2π

[

(2m2
π − µ2)(d̄1 + d̄2)− 2κ2x2d̄3

+4m2
π d̄5

]

+
[

4m2
π (1+ 2g2A)− µ2(1+ 5g2A)

] κ

µ

ln
µ + 2κ

2mπ

+ µ2

12
(5+ 13g2A)− 2m2

π (1+ 2g2A)

+g4A
(

µ2 − 2κ2x2 − 2m2
π

)

[

5

6
+ m2

π

κ2x2

−
(

1+ m2
π

κ2x2

)3/2

ln
κx+

√

m2
π + κ2x2

mπ

]

(37)

− 3κ2x2 + 6κx
√

m2
π + κ2x2 ln

κx+
√

m2
π + κ2x2

mπ

}

,

ImWS = µ2 ImWT(iµ)

= g4A(4m
2
π − µ2)

π(4fπ )6

[(

m2
π − µ2

4

)

ln
µ + 2mπ

µ − 2mπ

+(1+ 2g2A)µmπ

]

, (38)

where κ =
√

µ2/4−m2
π . Here and below all imaginary parts

are evaluated at iµ, because that is where they are needed for the
calculation of the SFR integrals.

Finally the relativistic corrections of the NLO diagrams
corresponding to class (c) are given by [14]

VC = 3g4A
128π f 4πMN

[

m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π )A(3̃; q)

]

, (39)

WC = g2A
64π f 4πMN

{

3g2Am
5
π

2ω2
+

[

g2A(3m
2
π + 2q2)− 2m2

π − q2
]

(2m2
π − q2)A(3̃; q)

}

, (40)

VT = − 1

q2
VS =

3g4A
256π f 4πMN

(5m2
π + 2q2)A(3̃; q) , (41)

WT = − 1

q2
WS =

g2A
128π f 4πMN

[

g2A(3m
2
π + q2)− w2]A(3̃; q), (42)

VLS = 3g4A
32π f 4πMN

(2m2
π + q2)A(3̃; q) , (43)

WLS = g2A(1− g2A)

32π f 4πMN
w2A(3̃; q) . (44)

2.4.5. N4LO Contributions
The 2π-exchange contributions at N4LO have three different
classes of diagrams shown in Figure 4. The contributions of
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FIGURE 3 | N3LO 2π-exchange contributions to the NN interaction. The same notation as in Figure 2 is use. Solid squares represent vertices with index 1i = 2.

Open circles and open circles with a dot inside are relativistic 1/MN corrections to propagators and the vertex with one derivative, respectively. The leading one-loop

πN amplitude is represented by a shaded oval. Adapted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society. (A) Football

diagram, (B) two-loop diagrams, and (C) relativistic corrections to one loop diagrams.

FIGURE 4 | N4LO 2π-exchange contributions to the NN interaction. The same notation as in Figure 3 is used. Open circles with a large solid dot inside refers to the

1/MN corrections to vertexes with two derivatives. Solid triangles represent vertices with index 1i = 3. The subleading one-loop πN amplitude is represented by a

dark-shaded oval. Adapted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society. (A,B) Two-loop diagrams, and (C)

relativistic corrections to one loop diagrams.

class (a) and (b) are given in terms of spectral functions and
Equation (34).

The spectral functions for class (a) are obtained by integrating
the product of the leading one-loop πN amplitude and the
subleading chiral ππNN vertex proportional to ci over the
Lorentz-invariant 2π-phase space. The result for the non-
vanishing amplitudes is given by [46]

ImVC = − m5
π

(4fπ )6π2

{

g2A

√

u2 − 4

(

5− 2u2 − 2

u2

)

[

24c1 + c2(u
2 − 4)+ 6c3(u

2 − 2)
]

ln
u+ 2

u− 2

+ 8

u

[

3
(

4c1 + c3(u
2 − 2)

)

(4g4Au
2 − 10g4A + 1)

+c2(6g
4
Au

2 − 10g4A − 3)
]

B(u)

+
√

u2 − 4

[

3(2− u2)
(

4c1 + c3(u
2 − 2)

)

+c2(7u
2 − 6− u4)+ 4g2A

u
(2u2 − 1)

×
[

4(6c1 − c2 − 3c3)+ (c2 + 6c3)u
2
]

+4g4A

(

32

u+ 2
(2c1 + c3)+

64

3u
(6c1 + c2 − 3c3)
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+14c3 − 5c2 − 92c1 +
8u

3
(18c3 − 5c2)

+u2

6
(36c1 + 13c2 − 156c3)+

u4

6
(2c2 + 9c3)

)]

}

,(45)

ImWS = µ2 ImWT = c4 g
2
Am

5
π

(4fπ )6π2

{

8g2Au(5− u2)B(u)+

1

3
(u2 − 4)5/2 ln

u+ 2

u− 2

+u

3

√

u2 − 4
[

g2A(30u− u3 − 64)− 4u2 + 16
]

}

, (46)

with the dimensionless variable u = µ/mπ > 2 and the
logarithmic function

B(u) = ln
u+

√
u2 − 4

2
. (47)

Class (b) is obtained in the same way but multiplying the one-
loop πN amplitude proportional to ci (see [41] for details) and
the leading-order chiral πN amplitude. The result is [46]

ImVS = µ2 ImVT = g4Am
5
π (c3 − c4)u

(4fπ )6π2
{
√

u2 − 4 (u3 − 30u+ 64)+ 24(u2 − 5)B(u)
}

, (48)

ImWS = µ2 ImWT = g2Am
5
π

(4fπ )6π2
(4− u2)

{

c4

3

[

√

u2 − 4 (2u2 − 8)B(u)

+4u(2+ 9g2A)−
5u3

3

]

+ 2ē17(8π fπ )
2(u3 − 2u)

}

(49)

ImVC = g2Am
5
π

(4fπ )6π2
(u2 − 2)

(

1

u2
− 2

)

{

2
√

u2 − 4

[

24c1 + c2(u
2 − 4)+ 6c3(u

2 − 2)
]

B(u)

+u

[

c2

(

8− 5u2

3

)

+ 6c3(2− u2)− 24c1

]

}

+ 3g2Am
5
π

(2fπ )4u
(2− u2)3 ē14, (50)

ImWC = − c1m
5
π

(2fπ )6π2

{

3g2A + 1

8

√

u2 − 4 (2− u2)

+
(

3g2A + 1

u
− 2g2A u

)

B(u)

}

− c2m
5
π

(2fπ )6π2
{

1

96

√

u2 − 4
[

7u2 − 6− u4 + g2A(5u
2 − 6− 2u4)

]

+ 1

4u
(g2Au

2 − 1− g2A)B(u)

}

− c3m
5
π

(4fπ )6π2

{

2

9

√

u2 − 4

[

3(7u2 − 6− u4)

+4g2A

(

32

u
− 12− 20u+ 7u2 − u4

)

+g4A

(

114− 512

u
+ 368u− 169u2 + 7u4 + 192

u+ 2

)]

+ 16

3u

[

g4A(6u
4 − 30u2 + 35)+ g2A(6u

2 − 8)− 3
]

B(u)

}

− c4g
2
Am

5
π

(4fπ )6π2

{

2

9

√

u2 − 4

[

30− 128

u
+ 80u− 13u2

−2u4 + g2A

(

512

u
− 114− 368u+ 169u2 − 7u4

− 192

u+ 2

)]

+ 16

3u

[

5− 3u2

+g2A(30u
2 − 35− 6u4)

]

B(u)

}

. (51)

where the only two independent LEC’s ē14 and ē17 have been used
to give the final result.

Finally class (c) consists of the relativistic corrections of
the NNLO 2π-exchange. The contributions are proportional to
ci/MN . They read [45]

WC = − c4

192π2MN f 4π

[

g2A(8m
2
π + 5q2)+ w2] q2 L(3̃; q) , (52)

VC = g2A L(3̃; q)
32π2MN f 4π

[

(6c3 − c2)q
4 + 4(3c3 − c2 − 6c1)q

2m2
π

+6(2c3 − c2)m
4
π − 24(2c1 + c3)m

6
πw

−2] , (53)

WT = − 1

q2
WS =

c4

192π2MN f 4π
[

w2 − g2A(16m
2
π + 7q2)

]

L(3̃; q) , (54)

VLS = c2 g
2
A

8π2MN f 4π
w2L(3̃; q) , (55)

WLS = − c4

48π2MN f 4π

[

g2A(8m
2
π + 5q2)+ w2] L(3̃; q) , (56)

The 3π-exchange contributions at order N4LO are shown in
Figure 5. The spectral functions have been calculated first in
Kaiser [47] where the classification scheme applied in Figure 5

was introduced. Class XI vanishes while class X and part of
class XIV give negligible contributions. Thus, we include in our
calculations only class XII and XIII, and the VS contribution of
class XIV. In Kaiser [47], the spectral functions were presented in
terms of integrals over the invariant mass of a pion pair. These
integrals have been solved analytically in Entem et al. [46], and
the spectral functions are given by

ImV
(XII)
S = − g2Ac4m

5
π

(4fπ )6π2u3

[

y

12
(u− 1)

(100u3 − 27− 50u− 151u2 + 185u4 − 14u5 − 7u6)

+4D(u) (2+ 10u2 − 9u4)

]

, (57)

ImV
(XII)
T = 1

µ2
ImV

(XII)
S − g2Ac4m

3
π

(4fπ )6π2u5

[

y

6
(u− 1)
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(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27)

+8D(u) (3u4 − 10u2 + 2)

]

, (58)

ImW
(XII)
S = − g2Am

5
π

(4fπ )6π2u3

{

y (u− 1)

[

4c1u

3

(

u3 + 2u2 − u+ 4

)

+ c2

72

(

u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27

)

+ c3

12

(

u6 + 2u5 − 31u4 + 4u3 + 57u2 − 18u− 27

)

+ c4

72

(

7u6 + 14u5 − 185u4 − 100u3 + 151u2 + 50u+ 27

)]

+D(u)

[

16c1(4u
2 − 1− u4)+ 2c2

3

(

2− 10u2 + 3u4
)

+4c3u
2(u2 − 2)+ 2c4

3

(

9u4 − 10u2 − 2

)]}

, (59)

ImW
(XII)
T = 1

µ2
ImW

(XII)
S − g2Am

3
π

(4fπ )6π2u5

{

y (u− 1)

[

16c1u

3
(

2+ u− 2u2 − u3
)

+ c2

36

(

73u4 − 6u5 − 3u6 + 44u3

−43u2 − 50u− 27

)

+ c3

2

(

19u4 − 2u5 − u6

+4u3 − 9u2 − 6u− 9

)

+ c4

36

(

39u4 − 2u5 − u6

+12u3 − 65u2 + 50u+ 27

)]

+ 4D(u)

[

8c1(u
4 − 1)

+c2

(

2

3
− u4

)

− 2c3u
4 + c4

3

(

10u2 − 2− 3u4
)]}

, (60)

ImW
(XIII)
C = − g4Ac4m

5
π

(4fπ )6π2

[

8y

3
(u− 1)(u− 4− 2u2 − u3)

+32D(u)

(

u3 − 4u+ 1

u

)]

, (61)

ImV
(XIII)
S = − g4Ac4m

5
π

(4fπ )6π2u3

[

y

24
(u− 1)(37u6 + 74u5

−251u4 − 268u3 + 349u2 − 58u− 135)

+2D(u) (39u4 − 2− 52u2 − 6u6)

]

, (62)

ImV
(XIII)
T = 1

µ2
ImV

(XIII)
S − g4Ac4m

3
π

(4fπ )6π2u5

[

y

12
(u− 1)(5u6

+10u5 − 3u4 − 252u3

−443u2 − 58u− 135)+ 4D(u) (3u4 + 22u2 − 2)

]

, (63)

ImW
(XIII)
S = − g4Am

5
π

(4fπ )6π2u3

{

y (u− 1)

[

2c1u(5u
3 + 10u2 − 5u− 4)

+ c2

48

(

135+ 58u− 277u2 − 36u3 + 147u4 − 10u5 − 5u6
)

+ c3

8

(

7u6 + 14u5 − 145u4 − 20u3 + 111u2 + 18u+ 27

)

+ c4

6

(

44u3 + 37u4 − 14u5 − 7u6 − 3u2 − 18u− 27

)]

+D(u)

[

24c1(1+ 4u2 − 3u4)+ c2(2+ 2u2 − 3u4)

+6c3u
2(3u2 − 2)+ 8c4u

2(u4 − 5u2 + 5)

]}

, (64)

ImW
(XIII)
T = 1

µ2
ImW

(XIII)
S − g4Am

3
π

(4fπ )6π2u5

{

y (u− 1)

[

4c1u(5u
3 + 10u2 + 7u− 4)+ c2

24

(

135+ 58u

+227u2 + 204u3 + 27u4 − 10u5 − 5u6
)

+ c3

4

(

27+ 18u− 9u2 − 68u3 − 121u4 + 14u5 + 7u6
)

+c4(4u
3 + 19u4 − 2u5 − u6 − 9u2 − 6u− 9)

]

+2D(u)

[

24c1(1− 3u4)+ c2(2− 10u2 − 3u4)

+6c3u
2(3u2 + 2)− 8c4u

4
]}

, (65)

ImV
(XIV)
S = − g4Ac4m

5
π

(4fπ )6π2u3

[

y

24
(u− 1)(637u2 − 58u− 135+ 116u3

−491u4 − 22u5 − 11u6)

+2D(u) (6u6 − 9u4 + 8u2 − 2)

]

, (66)

where y = √
(u− 3)(u+ 1) and D(u) = ln[(u − 1 + y)/2] with

u = µ/mπ > 3.

2.4.6. Going Beyond N4LO
The next order is N5LO or sixth order. At this order, no
complete calculation exists; however, the presumed dominant
contributions have been evaluated in Entem et al. [48].

As before, we will state contributions in terms of their spectral
functions, from which the momentum-space amplitudes Vα(q)
and Wα(q) are obtained via subtracted dispersion integrals
which, for N5LO read:

VC,S(q) = 2q8

π

∫ 3̃

nmπ

dµ
ImVC,S(iµ)

µ7(µ2 + q2)
,

VT(q) = −2q6

π

∫ 3̃

nmπ

dµ
ImVT(iµ)

µ5(µ2 + q2)
, (67)

and similarly for WC,S,T . The thresholds are given by n = 2 for
two-pion exchange and n = 3 for three-pion exchange.

The 2π-exchange at N5LO is given by the diagrams of
Figure 6. There are three different classes. Class (a) is obtained
from the subleading one loop πN amplitude folded with the
subleading ππNN vertex proportional to ci. The results for the
non-vanishing spectral functions are

ImVC=
m6

π

√
u2 − 4

(8π f 2π )
3

(

1

u2
− 2

)

[

(c2 + 6c3)u
2 + 4(6c1 − c2 − 3c3)

]

{

2c1u+ c2u

36
(5u2 − 24)+ c3u

2
(u2 − 2)+

[

c3(2− u2)

+ c2

6
(4− u2)− 4c1

]

√

u2 − 4B(u)

}

+m6
π

√
u2 − 4

8π f 4πu

{

[

4c1 + c3(u
2 − 2)

]

[

ē15(u
4 − 6u2 + 8)+ 6ē14(u

2 − 2)2 + 3ē16
10

(u2 − 4)2
]

Frontiers in Physics | www.frontiersin.org 9 March 2020 | Volume 8 | Article 57

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rodriguez Entem et al. NN Scattering Up to N5LO

FIGURE 5 | N4LO 3π-exchange contributions to the NN interaction. The classification scheme of Kaiser [47] is applied. The same notation as in Figure 2 is use.

Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

+c2(u
2 − 4)

[

3ē15
10

(u4 − 6u2 + 8)+ ē14(u
2 − 2)2

+3ē16
28

(u2 − 4)2
]

}

, (68)

ImWS=
c24m

6
π (u

2 − 4)

9(8π f 2π )
3

{

u
√

u2 − 4

[

5u2

6
− 4+ 2g2A

15
(2u2 − 23)

]

−(u2 − 4)2B(u)

+6g2Au

∫ 1

0
dx

(

x− 1

x

)

[

4+ (u2 − 4)x2
]3/2

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

}

+ c4m
6
πu(u

2 − 4)3/2

240π f 4π

[

10ē17(2− u2)+ ē18(4− u2)
]

= µ2 ImWT , (69)

with the dimensionless variable u = µ/mπ > 2 and the
logarithmic function B(u) defined in Equation (47). We give the
result in terms of the independent pion LEC’s ē14 and ē18.

Class (b) is obtained from the leading one-loop πN amplitude
folded by itself. The result is

ImVC=
m6

π

√
u2 − 4

(4fπ )8π3u

{

− 3

70
(5u2 + 8)(u2 − 4)2

+3g2A(1− 2u2)

[

1+ 2− u2

4u
ln

u+ 2

u− 2

]

×
[

u− u3

2
+ 4B(u)√

u2 − 4

]

+ g4A

[

32(3− 2u2)√
u2 − 4

B(u)

+3(2u2 − 1)2
(

u2 − 2

u
ln

u+ 2

u− 2
+ (u2 − 2)2

8u2
(

π2 − ln2
u+ 2

u− 2

))

− 2258

35
+ 24u

+5336u2

105
− 12u3 − 2216u4

105
+ 18u6

35

]

+g6A(2u
2 − 1)

(

1+ 2− u2

4u
ln

u+ 2

u− 2

)

[

46u− 3u3 − 96+ 64

u+ 2
+ 24(5− 2u2)√

u2 − 4
B(u)

]

+64g8A
9

[

3119u2

70
− 71u6

1120
− 197u4

70
− 85u3

8
+ 97u

4

−582

7
− 16

u+ 2
+ 8

(u+ 2)2
+ 6u4 − 60u2 + 105√

u2 − 4
B(u)

]

}

,(70)

ImWS=
g4Am

6
π

√
u2 − 4

(4fπ )8π3u

{

u2 − 4

48

[

4u+ (4− u2) ln
u+ 2

u− 2

]2

−π2

48
(u2 − 4)3 + g2Au

[

(u2 − 4) ln
u+ 2

u− 2
− 4u

]

[

5u

4
− u3

24
− 8

3
+ 5− u2√

u2 − 4
B(u)

]

+ 32g4Au
2

27

[

u4

40

+13u2

10
+ 11u

2
− 118

5
− 8

u+ 2
+ 3(10− u2)√

u2 − 4
B(u)

]

}

= µ2ImWT , (71)

ImVS=
g8Am

6
πu

√
u2 − 4

3(4fπ )8π5

∫ 1

0
dx (x2 − 1)

{

(u2 − 4)x

[

48π2f 2π
g4A

(d̄14 − d̄15)−
1

6

]

+ 4

x

−
[

4+ (u2 − 4)x2
]3/2

x2
√
u2 − 4

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

}2

= µ2ImVT , (72)

ImWC=−m6
π (u

2 − 4)5/2

(4fπ )8(3πu)3

[

2+ 4g2A − u2

2
(1+ 5g2A)

]2

+

m6
π (u

2 − 4)3/2

9(4fπ )8π5u

∫ 1

0
dx x2

{

3x2

2
(4− u2)

+3x
√

u2 − 4
√

4+ (u2 − 4)x2

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2
+ g4A

[

(4− u2)x2

+2u2 − 4
]

[

5

6
+ 4

(u2 − 4)x2
−

(

1+ 4

(u2 − 4)x2

)3/2
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ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

]

+
[

4(1+ 2g2A)− u2(1+ 5g2A)
]
√

u2 − 4
B(u)

u
+ u2

6

(5+ 13g2A)− 4(1+ 2g2A)+ 96π2f 2π

[

(4− 2u2)(d̄1 + d̄2)

+(4− u2)x2d̄3 + 8d̄5
]

}2

. (73)

Class (c) is obtained from the leading two-loop πN amplitude
with the tree-level πN amplitude. The two-loop πN amplitude
has not been evaluated and we omit this class of diagrams.

The next contribution is the 1/M2
N correction to the

leading one-loop chiral 2π-exchange diagrams. They were
given in Kaiser [49] and are shown in Figure 7. The explicit
expressions are

VC = g4A
32π2M2

N f
4
π

[

L(3̃; q)
(

2m4
π + q4 − 8m6

πw
−2

−2m8
πw

−4
)

− m6
π

2w2

]

, (74)

WC = 1

192π2M2
N f

4
π

{

L(3̃; q)
[

g2A

(

2k2(8m2
π + 5q2)

+12m6
πw

−2 − 3q4 − 6m2
πq

2 − 6m4
π

)

+g4A

(

k2(16m4
πw

−2 − 20m2
π − 7q2)− 16m8

πw
−4

−12m6
πw

−2 + 4m4
πq

2w−2 + 5q4 + 6m2
πq

2 + 6m4
π

)

+k2w2
]

− 4g4Am
6
π

w2

}

, (75)

VT = − 1

q2
VS = g4A L(3̃; q)

32π2M2
N f

4
π

(

k2 + 5

8
q2 +m4

πw
−2

)

, (76)

WT = − 1

q2
WS = L(3̃; q)

1536π2M2
N f

4
π

[

g4A

(

28m2
π + 17q2

+16m4
πw

−2
)

− 2g2A(16m
2
π + 7q2)+ w2

]

, (77)

VLS = g4A L(3̃; q)
128π2M2

N f
4
π

(

11q2 + 32m4
πw

−2
)

, (78)

WLS = L(3̃; q)
256π2M2

N f
4
π

[

2g2A(8m
2
π + 3q2)

+ g4A
3

(

16m4
πw

−2 − 11q2 − 36m2
π

)

− w2
]

, (79)

VσL = g4A L(3̃; q)
32π2M2

N f
4
π

, (80)

The next contribution is given by 3π-exchange contributions.
There are several classes of diagrams as shown in Figure 8.
The class (a) diagrams are proportional to c2i . We use the same
notation as in Kaiser [47] and Entem et al. [46].

Class XIa:

ImWC = g2Ac
2
4m

6
π

6(4π f 2π )
3

u−1
∫

2

dw (w2 − 4)3/2
√

λ(w) , (81)

ImVS = g2Ac
2
4m

6
π

6(8π f 2π )
3

u−1
∫

2

dw
(w2 − 4)3/2

u4
√

λ(w)
[

w8 − 4(1+ u2)w6 + 2w4(3+ 5u2)

+4w2(2u6 − 5u4 − 2u2 − 1)− (u2 − 1)3

(5u2 + 1)
]

, (82)

Im(µ2VT − VS) = g2Ac
2
4m

6
π

6(8π f 2π )
3

u−1
∫

2

dw (w2 − 4)3/2
√

λ(w)

[

(w2 − 1)2

u4
+ 1− 2

u2
(7w2 + 1)

]

, (83)

with the kinematical function λ(w) = w4 + u4 + 1 − 2(w2u2 +
w2+u2). The dimensionless integration variablew is the invariant
mass of a pion-pair divided bymπ .

Class XIIa:

ImVC = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)3

[

u3 + 9u2 + 12u− 3− 3

u

]

, (84)

ImWC = 2g2Ac
2
4m

6
πu

2

(4π f 2π )
3

∫∫

z2<1

dω1dω2 k1k2
√

1− z2 arcsin(z), (85)

ImVS = g2Ac
2
4m

6
π

(4π f 2π )
3

∫∫

z2<1

dω1dω2

{

2ω2
1(ω

2
2 − 9ω2u+ 9u2 + 1)

+3ω1
[

ω2(1+ 8u2)− 6u− 6u3
]

+1

4
(9u4 + 18u2 + 5)+ 2zk2

k1

[

ω3
1(4u− ω2)

+ω2
1(7ω2u− 2− 2u2)− 2ω1(2u+ ω2)

+2+ 2u2 − 4ω2u
]

+ 3 arcsin(z)

k1k2
√
1− z2

[

2ω3
1u(u

2 + 1− 2ω2u)+ ω2
1

(

ω2u(7+ 11u2)

−5ω2
2u

2 − 1− 4u2 − 3u4
)

+ ω1

4
(

6u5 + 12u3 − 2u− ω2(5+ 16u2 + 15u4)
)

+ (1− u4)(u2 + 3)

8

]}

, (86)

Im(µ2VT − VS) = g2Ac
2
4m

6
π

(4π f 2π )
3

∫∫

z2<1

dω1dω2

{

4ω2
1(ω

2
2 + 6u2 + 2− 10ω2u)+ 6u2(1+ u2)

+2ω1
[

3ω2(1+ 7u2)− 18u3 − 10u
]

+2zk2
k1

[

ω3
1(7u− 2ω2)+ u2 − ω2u

+ω2
1(13ω2u− 3− 10u2)+ ω1(2+ 3u2)(u− 2ω2)

]
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FIGURE 6 | N5LO 2π-exchange contributions to the NN interaction. There are three classes of diagrams. Class (A) is obtained from the subleading one loop πN

amplitude folded with the subleading ππNN vertex proportional to ci . Class (B) is obtained from the leading one-loop πN amplitude folded by itself. Class (C) is

obtained from the leading two-loop πN amplitude (represented by a black oval) with the tree-level πN amplitude. Other notation as in Figure 6. Adapted figure with

permission from Entem et al. [48], copyright (2015) by the American Physical Society.

FIGURE 7 | N5LO 2π exchange contributions to the NN interaction coming from 1/M2
N corrections to the NLO chiral 2π-exchange diagrams. Notation as in Figure 3.

Two open circles refers to 1/M2
N corrections to propagators and vertices as in the case of one open circle. Reprinted figure with permission from Entem et al. [48],

copyright (2015) by the American Physical Society.

+ 3 arcsin(z)

k1k2
√
1− z2

× (u2 − 2ω1u+ 1)(u2 − 2ω2u+ 1)

[

ω1

2
(6u− 5ω2)−

u2

2
− 2ω2

1

]}

, (87)

with the magnitudes of pion-momenta divided bymπ , and their
scalar-product given by:

k1 =
√

ω2
1 − 1 , k2 =

√

ω2
2 − 1 ,

z k1k2 = ω1ω2 − u(ω1 + ω2)+
u2 + 1

2
. (88)

The upper/lower limits of the ω2-integration are ω±
2 = 1

2 (u −
ω1 ± k1

√

u2 − 2ω1u− 3/
√

u2 − 2ω1u+ 1 ) with ω1 in the range
1 < ω1 < (u2 − 3)/2u.

The contributions to ImWS and Im(µ2WT − WS) are
split into three pieces according to their dependence on the
isoscalar/isovector low-energy constants c1,3 and c4:
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FIGURE 8 | N5LO 3π-exchange contributions to the NN interaction. (A) Diagrams proportional to c2i . (B) Diagrams involving the one-loop πN amplitude. Notation as

in Figure 3. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American Physical Society.

ImWS = g2Am
6
π (u− 3)2

2240π f 6π

{

7c21

(

4

3
+ 3

u
− 2

3u2
− 1

u3

)

+c1c3

(

2u2

3
+ 4u− 2

3
− 5

u
− 2

3u2
− 1

u3

)

+c23

(

3u2

4
+ u

8
− 5

2
− 3

u
+ 19

12u2
+ 19

8u3

)

}

, (89)

Im(µ2WT −WS) = g2Am
6
π (u− 3)

1120π f 6π

{

7c21

(

1

3u
+ 1

u2
+ 3

u3
− 2u− 1

)

+c1c3

(

13u+ 4− 5u2 − 5u3

3
+ 1

3u
+ 1

u2
+ 3

u3

)

+ c23
8

(

23u2 − u5

3
− u4 − 4u3 − 8u− 3+

8

3u
− 19

u2
− 57

u3

)

}

, (90)

ImWS = g2Ac4m
6
π

1120π f 6π
(u− 3)2

{

c1

(

u2 + 6u

−1− 15

2u
− 1

u2
− 3

2u3

)

+ c3

4

(

2u4

9
+ 4u3

3
+

u2

3
− 25u

6
+ 6

u
+ 1

u2
+ 3

2u3

)

}

, (91)

Im(µ2WT −WS) = g2Ac4m
6
π

1120π f 6π
(u− 3)3

{

c1

(

1

u2
+ 1

u3
− u

3
− 3− 4

u

)

+ c3

4

(

u3

9
+ u2 + 5u

3
+ 8

3
+ 11

3u
− 1

u2
− 1

u3

)

}

,(92)

ImWS = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)2

(

25u

12
− u4

9
− 2u3

3

−u2

6
− 3

u
− 1

2u2
− 3

4u3

)

, (93)

Im(µ2WT −WS) = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)3

(

1

2u2
+ 1

2u3
− u3

18

−u2

2
− 5u

6
− 4

3
− 11

6u

)

. (94)

The next contribution is given by class (b). Each diagram
includes the one-loop πN amplitude. Not all the contributions
could be treated; only those contributions that are independent
of the pion-nucleon CMS energy in the loop or linearly
dependent could be included. The contributions are in general
small. The omitted contributions are typically an order of
magnitude smaller.

Class Xb:

ImWS =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

27w2u4

[

(w2 − 4)λ(w)
]3/2

, (95)

Im(µ2WT −WS) =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

9w2u4
(w2 − 4)3/2

√

λ(w)
3u2 + 1

u2 − 1

[

u4 − (w2 − 1)2
]

. (96)

Class XIb:

ImWS =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

27w2u4
(w2 − 4)3/2
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√

λ(w)
[

2u2(1+ 7w2)− u4 − (w2 − 1)2
]

, (97)

Im(µ2WT −WS) =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

9w2u4
(w2 − 4)3/2√

λ(w)

(u2 + 1− w2)2
[

2w2(1+ 3u2)− w4 − (u2 − 1)2
]

. (98)

Class XIIb:

ImWS =
g2Am

6
π

9f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)
[

(ω2
1 + ω2

2 − 2)

(1− 3z2)− 5k1k2z
]

, (99)

Im(µ2WT −WS) = − g2Am
6
π

3f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)ω1ω2

[

5+ 2z

(

k1

k2
+ k2

k1

)]

, (100)

setting w =
√

1+ u2 − 2uω1.
Class XIIIb:

ImVS = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw 2G(w)λ(w)(2− w2), (101)

Im(µ2VT − VS) = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw 4G(w)(2− w2)

(1+ u2 − w2)2 , (102)

ImWS = g4Am
6
π

3f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)

{

u(ω1 + 4ω2)−

2− ω2
1 + 8ω2

2

3
+ z2(ω2

1 + 4ω2
2 − 5) (103)

+ zk2

k1
(4uω1 + ω2

1 − 5)+ zk1

k2
(uω2 + ω2

2 − 2)

+ arcsin(z)√
1− z2

[

k1

k2
(1− uω2)+ z(1− uω1)

]}

,

Im(µ2WT −WS) = g4Am
6
π

f 8π (4π)
5

∫∫

z2<1

dω1dω2
2ω1

3
G(w)

{

2ω2

k21

[

ω1(u− ω2)− 1
]

+ u+ 2ω2

+ zk1ω2

k2
+ zk2

k1
(4u+ ω1)+ ω1

(2zk2
k1

)2
(104)

+ arcsin(z)

k1k2
√
1− z2

[

(1+ u2)
(

ω1 + ω2 −
u

2

)

−2uω1ω2

]}

,

setting again w =
√

1+ u2 − 2uω1.
Class XIVb:

ImVS = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw

G(w)

2
λ(w)

[

u2 + w2 + 4(u2 − 1)w−2 − 5
]

, (105)

Im(µ2VT − VS) = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dwG(w)(w2 − 1− u2)

[

w4 − 2w2(3+ u2)+ (u2 − 1)2(1+ 4w−2)
]

.

(106)

where the auxiliary function G(w) is defined as

G(w) =
[

1+ 2g2A − w2

4
(1+ 5g2A)

]

√
w2 − 4

w
ln

w+
√
w2 − 4

2

+w2

24
(5+ 13g2A)− 1− 2g2A + 48π2f 2π

[

(2− w2)(d̄1 + d̄2)+ 4d̄5
]

. (107)

Finally 4π-exchange diagrams occur for the first time at N5LO.
These diagrams are three loop diagrams with only leading
vertices. As mentioned before, three-pion exchanges with just
leading order vertices turned out to be negligible. For that reason,
we expect the leading four-pion exchanges to be even smaller, and
we leave them out.

2.5. NN Contact Terms
Contact terms are given by the NN piece of the Lagrangian
Equation (6). They start at order ν = 0 with non-derivatives
terms given by [5]

V
(0)
ct ( Ep′, Ep) = CS + CT Eσ1 · Eσ2 . (108)

They contribute to S waves, only.
The next order is ν = 2 (NNLO), which introduces seven new

contact terms, given by [11]

V
(2)
ct ( Ep′, Ep) = C1 q

2 + C2 k
2

+
(

C3 q
2 + C4 k

2) Eσ1 · Eσ2
+ C5

(

−iES · (Eq× Ek)
)

+ C6 (Eσ1 · Eq) (Eσ2 · Eq)
+ C7 (Eσ1 · Ek) (Eσ2 · Ek) . (109)

The next order is ν = 4 (N3LO) which has 15 contributions given
by

V
(4)
ct ( Ep′, Ep) = D1 q

4 + D2 k
4 + D3 q

2k2 + D4 (Eq× Ek)2

+
(

D5 q
4 + D6 k

4 + D7 q
2k2 + D8 (Eq× Ek)2

)

Eσ1 · Eσ2

+
(

D9 q
2 + D10 k

2)
(

−iES · (Eq× Ek)
)

+
(

D11 q
2 + D12 k

2) (Eσ1 · Eq) (Eσ2 · Eq)
+

(

D13 q
2 + D14 k

2) (Eσ1 · Ek) (Eσ2 · Ek)
+ D15

(

Eσ1 · (Eq× Ek) Eσ2 · (Eq× Ek)
)

, (110)

We note that, on shell, there are only 12 independent operators.
The redundancy on-shell has been shown to generate large
correlations. Reinert et al. [38] and Wesolowski et al. [50]
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claim that removal of the three (on-shell) redundant operators
improves the fit.

The partial wave decomposition of all these terms can be
found in Machleidt and Entem [14]. Contact contributions
are polynomials in external momenta and they only give
contributions to partial waves with L ≤ ν/2.

3. PERIPHERAL NN SCATTERING

Peripheral NN scattering is of special interest since it is less
sensitive to the short distance dynamics. A way to study it is to
consider partial waves with high angular momentum, since the
centrifugal barrier prevents sensitivity to short distance forces.

In the framework of EFT, the short distance physics is
mimicked by the contact terms. In momentum space, they are
given by polynomial terms in external momenta. This has the
property that they don’t give contributions to all partial waves,
but only to angular momenta L ≤ ν

2 . This means that, for
example at N5LO, there are only contributions up to F-waves.

Peripheral NN scattering was already considered at NNLO
[12], N3LO [51], N4LO [46], and N5LO [48]. Here, we will review
the most important results.

One important aspect of peripheral waves is that the
interaction is weaker and perturbative calculations can be
performed, so avoiding all the problems posed by singular
interactions in the Lippmann-Schwinger equation. For these
reasons, it can be viewed as a clean probe of chiral dynamics in
the NN sector.

The calculation is conducted by using the K matrix
perturbatively as

K(Ep ′, Ep) = Vπ (Ep ′, Ep)+ V2π ,it(Ep ′, Ep) (111)

with Vπ (Ep ′, Ep) the χEFT amplitude where the iteration of OPE
has been subtracted, and V2π ,it(Ep ′, Ep) representing the once
iterated OPE given by

V2π ,it(Ep′, Ep) = P

∫

d3p′′
M2

N

Ep′′

V1π (Ep′, Ep′′)V1π (Ep′′, Ep)
p2 − p′′2

, (112)

where P denotes the principal value integral and Ep′′ =
√

M2
N + p′′2.
There is no unique way to subtract the iterative part of OPE.

The prescription given by Equation (112) is slightly different
from the one used in Kaiser et al. [12]. The difference between
them is reabsorbed in a redefinition of the irreducible part. See
Appendix C of Machleidt and Entem [14] for more details.

Now the order by order calculation is conducted as follows. At
LO only OPE is included in Vπ and no iteration is included. At
NLO Vπ up to order ν = 2 is included and V2π ,it is included.
Higher orders (NNLO, N3LO, etc) include Vπ up to this order
and the once iterated OPE. N3LO and higher orders should
also include the twice iterated OPE contribution. However the
difference between the once iterated OPE and the infinitely
iterated OPE is very small and can not be identified on the scale
of the figures. For this reason, we omit iterations of OPE beyond
what is contained in V2π ,it.

3.1. Fifth-Order (N4LO) Results
The contributions at NNLO [12] and N3LO [51] are in general
too attractive, especially when the ci LEC’s obtained from πN
scattering are used.

We analyze now the contributions at N4LO. In Figure 9 we
show results for selected F and G waves. Curve (1) gives the
results for the N3LO calculation. Curve (2) adds the relativistic
corrections (proportional to ci/MN) of the NNLO terms. In
curve (3), the 2π-exchange two-loop contributions of class (a)
(Figure 4 and section 2.4.5) are added. Curve (4) adds the two-
loop contribution of class (b). Finally curve (5) adds 3π-exchange
contributions giving the final result at N4LO. In all calculations a
SFR cutoff 3̃ = 1.5 GeV is used.

One can see that 3π-exchange contributions are significantly
smaller than 2π-exchanges which can be interpreted as a
convergence in regard to the number of pions exchanged. The
3π contribution is the sum of individual contributions that can
be sizable but they add up to a small final result.

The ci/MN and two-loop contributions are mainly repulsive
which helps to overcome the excess of attraction at N3LO. An
exception is the 1F3 partial wave where the two-loop contribution
of class (b) gives attraction, resulting in too much attraction for
the whole N4LO contribution at higher energies.

For F andGwaves (except 1F3) the final N4LO result is in very
good agreement with the empirical phase-shifts. An interesting
case is the 3G5 that is a problem at N3LO [51]; however, the
final result at N4LO is in almost perfect agreement with the
phase-shift analysis.

Here we have used 3̃ = 1.5 GeV. It is interesting to note that
other potentials constructed from dispersion relations like the
Stony Brook [52] and the Paris [53] potentials cut the dispersion
integral at µ2 = 50m2

π which is equivalent to a SFR cut-off of
3̃ ∼ 1 GeV. In Figures 10, 11 we show the impact of the SFR
cutoff on the results at different orders. In general the variations
for N3LO are large and always too attractive while at N4LO
variations are smaller and close to the data. We also include
lower orders to compare the relative size of the order-by-order
contributions. One would expect a convergence pattern going
from NNLO to N3LO and further to N4LO; however, this is not
the case as seen in Figures 10, 11.

Concerning the LECs used, note that in the calculations of this
subsection, the “KH” set of LECs shown in Table 2 was applied,
while in the calculations of the next subsection the “GW” set
is employed.

3.2. Going Beyond Fifth Order
As mentioned before there is no complete calculation at sixth
order (N5LO). However a study of peripheral NN scattering with
the expected dominant contributions was performed in Entem
et al. [48]. We present here the results at this order.

For N5LO we consider G and higher waves, since they are not
affected by contact terms at this order. In Figure 12, we show
how individual groups of diagrams contribute to two G waves.
Curve (1) represents the N4LO result. Curve (2) adds the N5LO
2π-exchange contributions of class (a) and curve (3) adds also
class (b) (Figure 6 and Section 2.4.6). 3π-exchange (Figure 8) of
class (a) are included in curve (4) and class (b) is contained in
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FIGURE 9 | Effect of individual fifth-order contributions to the neutron-proton phase shifts of some selected peripheral partial waves. The individual contributions are

added up successively in the order given in parentheses next to each curve. In all cases an SFR cut-off 3̃ = 1.5 GeV is used. Curve (1) is N3LO and curve (5) the

complete N4LO. The filled and open circles represent the results from the Nijmegen multi-energy np phase-shift analysis [93] and the VPI-GWU single-energy np

analysis SM99 [91], respectively. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

curve (5). The final result at N5LO is given by curve (6) which
includes the 1/M2

N corrections. In all cases a SFR cutoff 3̃ = 800
MeV is used.

The two-loop 2π-exchange class (a) (Figure 6) generates a
strong repulsive central force, while the spin-spin and tensor

forces provided by this class are negligible. The fact that this
class produces a relatively large contribution is not unexpected,
since it is proportional to c2i . The 2π-exchange contribution
class (b) creates a moderately repulsive central force and a
noticeable tensor force, as the impact on 3G5 demonstrates.
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FIGURE 10 | Phase-shifts of neutron-proton scattering at various orders as denoted. The shaded bands show the sensitivity of the contributions to the SFR cut-off 3̃

which is varied over the range 0.7–1.5 GeV. Filled and open circles as in Figure 9. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the

American Physical Society.
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FIGURE 11 | Same as Figure 10, but for G waves. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.
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TABLE 2 | Low-energy constants as determined in Krebs et al. [41].

GW KH

c1 –1.13 –0.75

c2 3.69 3.49

c3 –5.51 –4.77

c4 3.71 3.34

d̄1 + d̄2 5.57 6.21

d̄3 –5.35 –6.83

d̄5 0.02 0.78

d̄14 − d̄15 –10.26 –12.02

ē14 1.75 1.52

ē15 –5.80 –10.41

ē16 1.76 6.08

ē17 –0.58 –0.37

ē18 0.96 3.26

The ci , d̄i , and ēi are the LECs of the second, third, and fourth order πN Lagrangian given

in Krebs et al. [41] and are in units of GeV−1, GeV−2, and GeV−3, respectively. GW refers

to the LECs obtained fitting to the George Washington University partial wave analysis

from Arndt et al. [54], while KH refers to the Karlsruhe-Helsinki analysis from Koch [55].

The 3π-exchange class (a) (Figure 8) is negligible in 1G4, but
noticeable in 3G5 and, therefore, it should not be neglected.
This contribution is proportional to c2i , which suggests a non-
negligible size but it is typically smaller than the corresponding
2π-exchange contribution class (a). The 3π-exchange class (b)
contribution turns out to be negligible [see the difference between
curve (4) and (5) in Figure 12]. This may not be unexpected
since it is a three-loop contribution with only leading-order
vertexes. Finally the relativistic 1/M2

N corrections to the leading
2π-exchange have a small but non-negligible impact, particularly
in 3G5.

The predictions for G and H waves are shown in Figure 13,
with shaded bands corresponding to a variation of the SFR cut-off
3̃ over the range 700–900 MeV. The N5LO contribution shows a
moderately repulsive effect, reducing further the excess attraction
at N3LO. The N5LO result is, in general, substantially smaller
than the N4LO one, indicating a signature of convergence. At
N5LO, there is excellent agreement with the data.

Concerning the values for the LECs, let us note again that, in
this subsection, the “GW” set of LECs shown in Table 2was used,
while in the calculations of the previous subsection the “KH” set
was applied.

Figure 13 includes only the three highest orders. However,
a comparison between all orders is also of interest. Therefore,
we show in Figure 14 the contributions to phase shifts through
all six chiral orders from LO to N5LO. Note that the difference
between the LO prediction (one-pion-exchange) and the data
(filled and open circles) is to be provided by two- and three-pion
exchanges, i.e., the intermediate-range part of the nuclear force.
How well that is accomplished is a crucial test for any theory
of nuclear forces. NLO produces only a small contribution,
but NNLO (denoted by N2LO in the figure) creates substantial
intermediate-range attraction (most clearly seen in 1G4, 3G5, and
3H6). In fact, NNLO is the largest contribution among all orders.

This is due to the one-loop 2π-exchange (2PE) triangle diagram
which involves one ππNN-contact vertex proportional to ci. This
vertex represents correlated 2PE as well as intermediate1(1232)-
isobar excitation. It is well-known from the traditional meson
theory of nuclear forces that these two features are crucial for
a realistic and quantitative 2PE model. Consequently, the one-
loop 2π-exchange at NNLO is attractive and assumes a realistic
size describing the intermediate-range attraction of the nuclear
force about right. At N3LO, more one-loop 2PE is added by
the bubble diagram with two ci-vertices, a contribution that
seemingly is overestimating the attraction. This attractive surplus
is then compensated by the prevailingly repulsive two-loop 2π-
and 3π-exchanges that occur at N4LO and N5LO.

In this context, it is worth to note that also in conventional
meson theory the one-loop models for the 2PE contribution
always show some excess of attraction. In conventional meson
theory, the surplus attraction is reduced by heavy-meson
exchange (ρ- and ω-exchange) which, however, has no place
in chiral effective field theory (as a finite-range contribution).
Instead, in the latter approach, two-loop 2π- and 3π-exchanges
provide the corrective action.

4. NN POTENTIALS UP TO N4LO

The starting point of all ab-initio calculations of nuclear systems
is the NN potential. For that reason, it is necessary to define
a potential.

We define the NN potential as the sum of the irreducible
NN diagrams discussed in previous sections, which are
calculated perturbatively. However, in reality, the NN system
is characterized by the presence of a shallow bound state (the
deuteron) and large (S-wave) scattering lengths that cannot be
obtained perturbatively. Therefore, the potential has to be applied
in a scattering equation to obtain the NN amplitude. Since
our approach is in principal covariant (with relativity taken
into account perturbatively), a proper equation would be the
Bethe-Salpeter equation. However, it is more convenient, to use
one of the three-dimensional reductions of that equation. We
use the Blankenbeclar-Sugar (BbS) version of the equation [56]
which reads

T(Ep′, Ep) = V(Ep′, Ep)+
∫

d3p′′

(2π)3
V(Ep′, Ep′′)M

2
N

Ep′′

1

p2 − p′′2 + iǫ
T(Ep′′, Ep) ,

(113)

where V is the potential and Ep′′ =
√

M2
N + p′′2. Since this

is a relativistic equation, it includes relativistic kinematical
corrections to all orders.

If we now define

V̂(Ep′, Ep) = 1

(2π)3

√

MN

Ep′
V(Ep′, Ep)

√

MN

Ep
(114)

T̂(Ep′, Ep) = 1

(2π)3

√

MN

Ep′
T(Ep′, Ep)

√

MN

Ep
, (115)
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TABLE 3 | The πN LECs as determined in the Roy-Steiner-equation analysis of

πN scattering conducted in Hoferichter et al. [86].

NNLO N3LO N4LO

c1 −0.74 (2) −1.07 (2) −1.10 (3)

c2 – 3.20 (3) 3.57 (4)

c3 −3.61 (5) −5.32 (5) −5.54 (6)

c4 2.44 (3) 3.56 (3) 4.17 (4)

d̄1 + d̄2 – 1.04 (6) 6.18 (8)

d̄3 – −0.48 (2) −8.91 (9)

d̄5 – 0.14 (5) 0.86 (5)

d̄14 − d̄15 – −1.90 (6) −12.18 (12)

ē14 – – 1.18 (4)

ē17 – – −0.18 (6)

The ci , d̄i , and ēi are the LECs of the second, third, and fourth order πN Lagrangian Krebs

et al. [41] and are in units of GeV−1, GeV−2, and GeV−3, respectively. The uncertainties

in the last digits are given in parentheses after the values.

the BbS equation becomes

T̂(Ep′, Ep) = V̂(Ep′, Ep)+
∫

d3p′′V̂(Ep′, Ep′′) 1

p2 − p′′2 + iǫ
T̂(Ep′′, Ep) ,

(116)
which is the Lippmann-Schwinger equation and V̂ can be used
like a non-relativistic potential. All the technical details to solve
the Lippmann-Schwinger equation, including the case where the
Coulomb interaction is included, can be found in Machleidt [18].

The amplitude V and the potential V̂ are built order-by-
order following the Equations (12–16) with two exceptions. We
add to VN3LO the 1/MN corrections of the NNLO 2π-exchange
proportional to ci. This ci/MN correction is formally an N4LO
contribution, however, in Entem et al. [46] it was shown that the
football diagram proportional to c2i at N3LO was unrealistically
attractive, while the ci/MN correction is large and repulsive.
Therefore, it makes sense to group these diagrams together to
arrive at a more realistic intermediate-range attraction at N3LO.

The other exception is to include, at N4LO, the four F-wave
contacts that formally appear at N5LO, cf. Equation (17). This
ensures an optimal fit of the NN data for the potential of the
highest order to be constructed.

4.1. Regularization
The potential V̂ obtained previously is in most cases singular.
Singular potentials are those that diverges in momentum space
when the momentum goes to infinity, being more singular
than 1/r2 in coordinate space. For this reason they cannot be
included in a Lippmann-Schwinger equation without further
manipulation. The practical way to solve this problem is to cut
the potential at a certain scale 3 by multiplying with a regulator
function f (p′, p)

V̂(Ep′, Ep) → f (p′, p)V̂(Ep′, Ep) (117)

where the function f (p′, p) can be taken to be

f (p′, p) = exp[−(p′/3)2n − (p/3)2n]. (118)

This regularization allows to obtain finite results, however
renormalization requires to have regularization independent
results. The implicit assumption in Weinberg’s proposal [5, 6]
was that the same contact interactions that renormalize loop
diagrams would also renormalize the iterative loops of the
(infinite) resummation in the Lippmann-Schwinger equation.
This is not necessarily true and has given rise to a comprehensive
discussion about non-perturbative renormalization. This is one
of the key issues where the EFT community is divided, mainly, in
two different points of view, one with the cut-off scale below the
hard-scale of the EFT, and the other with a value above (let’s say,
infinity). This topic has been discussed by many authors [4, 57–
76], and we refer the interested reader to contributions about
this topic in the monograph. However, using cutoffs in the order
of 450 − 550 MeV (first point of view) has been shown to give
mild regularization dependence and to be phenomenologically
successful at N3LO [77], although renormalization is not so clear.

The parameter n is usually chosen in such a way that the
corrections induced by the regulator are of an order that is higher
than the given order. We choose n = 2 for 3PE and 2PE and
n = 4 for OPE (except in LO and NLO, where we use n = 2 for
OPE). For contacts of order ν, we choose 2n > ν.

4.2. Charge Dependence
In order to fit the np and pp databases, charge dependence
has to be included. All orders include the charge dependence
due to pion mass splitting in the one-pion exchange as was
already discussed. Charge dependence is most important in the
1S0 partial wave at low energies, particularly in the scattering
lengths. The charge dependence from OPE cannot explain it all.
The remainder is accounted for by treating the 1S0 LO contact
term parameter C̃1S0 ≡ 4π(Cs−3CT) in a charge-dependent way.

So, we distinguish between C̃
(pp)
1S0

, C̃
(np)
1S0

and C̃
(nn)
1S0

. For pp at any

order, the relativistic Coulomb interaction is included [78, 79].
Finally at N3LO and N4LO, we take into account irreducible π-
γ exchange [80], which affects only the np potential. Also, the
charge-dependent effects from n-p mass splitting are taking into
account by using the correct values for the nucleon masses.

For a detailed discussion of possible sources for charge
dependence of theNN interaction, seeMachleidt and Entem [14].

4.3. Fitting Procedure
Potentials from LO to N4LO were constructed by Entem et al.
[37]. [For alternative chiral potential constructions (see [38, 81–
85]). Three cutoff values were considered, namely 3 = 450, 500,
and 550 MeV. Taking charge dependence into account, each
potential comes in three versions: pp, np, and nn.

The pion exchange contribution, Vπ , is fixed by the πN LECs
for which we use the values from the very accurate analysis by
Hoferichter et al. [86], Table 3. However, the short-range part
given by Vct has to be determined from NN scattering. This
was done by fitting the NN potentials to the NN database. The
database includes all NN data below 350 MeV laboratory energy
published in refereed physics journals between January 1955
and December 2016 that are not discarded when applying the
Nijmegen rejection criteria [79]. There are alternative criteria
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FIGURE 12 | Effect of individual N5LO contributions to the neutron-proton phase-shifts of two G waves. Contributions are added up successively starting from the

N4LO result (1) to the final N5LO result (6). A SFR cutoff 3̃ = 800 MeV is used. The filled and open circles represent the results from the Nijmegen multienergy np

phase-shift analysis [93] and the GWU np analysis SP07 [94], respectively. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American

Physical Society.

FIGURE 13 | Phase-shifts of np scattering in G and H waves at various orders as denoted. The shaded bands show the variations of the predictions when the SFR

cut-off 3̃ is changed over the range 700 to 900 MeV. Empirical phase-shifts as in Figure 12. Reprinted figure with permission from Entem et al. [48], copyright (2015)

by the American Physical Society.
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FIGURE 14 | Phase-shifts of np scattering in G and H waves at all orders from LO to N5LO. A SFR cut-off 3̃ = 800 MeV is used. Empirical phase-shifts as in

Figure 12. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American Physical Society.

[87] which have been applied, e.g., in the Granada database [88],
however we continue to use the Nijmegen criteria to be consistent
with the pre-2000 part of our database.

The database finally consists of 3072 pp scattering data and
3569 np data. The 2013 Granada NN database [88] consists of
2996 pp and 3717 np data. The larger number of pp data in our
base ismainly due to the inclusion of 140 pp data fromThe EDDA
Collaboration [89] which are left out in the Granada base. On
the other hand, the Granada base contains 148 more np data,
which is a consequence of the modified rejection criteria applied
by the Granada group, which allows for the survival of a fewmore
np data.

In the fitting procedure, only data below 290 MeV were taken
into account. One starts with the pp potential, since the pp data
are more accurate than the np data. First, a fit to the pp phase-
shifts is made, and then a rough minimization of the χ2 is
performed by using the Nijmegen error matrix [90]. In the end,
the potential is fitted directly to the scattering data. For this
the SAID software package [91] that includes all electromagnetic
contributions necessary for the calculation of NN observables at
low energy is used.

Then the I = 1 np potential is fixed by starting from the pp
potential and applying charge dependence. For the 1S0 part of the

np potential, the C̃
(np)
1S0

LEC is adjusted to the np scattering length.

The I = 0 part is then fitted in a similar way as the I = 1 part.
After the I = 0 fit, some small variations of the I = 1 parameters
were allowed to obtain a minimal over-all χ2.

The nn potential is obtained from the pp one by
leaving out Coulomb, replacing the proton mass by the

neutron mass, and fitting the C̃
(nn)
1S0

LEC to the 1S0 nn

scattering length.
The above procedure is basically the same as used in the

construction of the so called high-precision potentials of the
1990s [15, 16, 18], which all have χ2/datum ≈ 1. This differs
from the procedure applied in the recent construction of the
NNLOsat potential [83] where NN data up to 35 MeV and the
ground-state energies and radii of nuclei up to 16O are taken
into account to fix simultaneously the two- and three-nucleon
forces. Our procedure also differs from the construction of some
recent chiral NN potentials by the Bochum group [81, 82],
where only phase-shifts are fitted. However, in their most recent
potential constructions, the Bochum group [38] does apply a
procedure where the fitted potentials are directly confronted with
the NN data.

4.4. Results for NN Scattering
The χ2/datum for the reproduction of the NN data is given in
Table 4. For the close to 5000 pp plus np data below 290 MeV
(pion-production threshold), the χ2/datum is 51.4 at NLO and
6.3 at NNLO, which is of special relevance since the number of
NN contact terms is the same for both orders. The improvement
comes entirely from a better description of the 2PE at NNLO. At
N3LO, the χ2/datum further improves to 1.63. It, finally, reaches
1.15 at N4LO, in acordance with high precision potentials,
showing a great convergence pattern.

np phase shifts are displayed in Figure 15, which reflect
the same features as the χ2, namely, an excellent convergence
when going from NNLO to N3LO and, finally, to N4LO.
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TABLE 4 | χ2/datum for the fit of the 2016 NN data base by NN potentials at various orders of chiral EFT (3 = 500 MeV in all cases).

Tlab bin (MeV) No. of data LO NLO NNLO N3LO N4LO

Proton-proton

0–100 795 520 18.9 2.28 1.18 1.09

0–190 1206 430 43.6 4.64 1.69 1.12

0–290 2132 360 70.8 7.60 2.09 1.21

Neutron-proton

0–100 1180 114 7.2 1.38 0.93 0.94

0–190 1697 96 23.1 2.29 1.10 1.06

0–290 2721 94 36.7 5.28 1.27 1.10

pp plus np

0–100 1975 283 11.9 1.74 1.03 1.00

0–190 2903 235 31.6 3.27 1.35 1.08

0–290 4853 206 51.5 6.30 1.63 1.15

From Entem et al. [37].

FIGURE 15 | Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P, and D waves and mixing parameters ǫ1 and ǫ2. Five orders

ranging from LO to N4LO are shown as denoted. A cutoff 3 = 500 MeV is applied in all cases. The filled and open circles represent the results from the Nijmegen

multi-energy np phase-shift analysis [93] and the GWU single-energy np analysis SP07 [95], respectively. Reprinted figure with permission from Entem et al. [37],

copyright (2017) by the American Physical Society.

However, at LO and NLO there are large discrepancies between
the predictions and the empirical phase shifts as to be
expected from the corresponding χ2 values. This fact renders
applications of the LO and NLO nuclear forces useless for any
realistic calculation (but they could be used to demonstrate
truncation errors).

It is important to be aware of the regulator dependence
of the NN phase shifts and scattering observables. For this
reason, potentials with cutoffs 3 = 450, 500, and 550
MeV were constructed. We show in Figure 16 the phase
shifts at NNLO (green curves, left panel) and N4LO (purple
curves, right panel) for potentials with varying cutoffs. As
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FIGURE 16 | Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N4LO (right side, purple lines). Dotted, dashed, and solid lines represent the

results obtained with cutoff parameter 3 = 450, 500, and 550 MeV, respectively, as also indicated by the curve labels. Note that, at N4LO, the cases 500 and 550

MeV cannot be distinguished on the scale of the figures for most partial waves. Filled and open circles as in Figure 15. Reprinted figure with permission from Entem

et al. [37], copyright (2017) by the American Physical Society.

Frontiers in Physics | www.frontiersin.org 24 March 2020 | Volume 8 | Article 57

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rodriguez Entem et al. NN Scattering Up to N5LO

TABLE 5 | Two- and three-nucleon bound-state properties as predicted by NN potentials at various orders of chiral EFT (3 = 500 MeV in all cases).

LO NLO NNLO N3LO N4LO Empiricala

Deuteron

Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575(9)

AS (fm−1/2) 0.8526 0.8828 0.8844 0.8853 0.8852 0.8846(9)

η 0.0302 0.0262 0.0257 0.0257 0.0258 0.0256(4)

rstr (fm) 1.911 1.971 1.968 1.970 1.973 1.97507(78)

Q (fm2) 0.310 0.273 0.273 0.271 0.273 0.2859(3)

PD (%) 7.29 3.40 4.49 4.15 4.10 –

Triton

Bt (MeV) 11.09 8.31 8.21 8.09 8.08 8.48

(Deuteron: Binding energy Bd , asymptotic S state AS, asymptotic D/S state η, structure radius rstr , quadrupole moment Q, D-state probability PD; the predicted rstr and Q are without

meson-exchange current contributions and relativistic corrections. Triton: Binding energy Bt.) Bd is fitted, all other quantities are predictions.
aSee Table XVIII of Machleidt [18] for references; the empirical value for rstr is from Jentschura et al. [92].

TABLE 6 | χ2/datum for the fit of the pp plus np data up to 190 MeV and two- and three-nucleon bound-state properties as produced by NN potentials at NNLO and

N4LO applying different values for the cutoff parameter 3.

NNLO N4LO

3(MeV) 450 500 550 450 500 550

χ
2/datum pp & np

0–190 MeV (2903 data) 4.12 3.27 3.32 1.17 1.08 1.25

Deuteron

Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575

AS (fm−1/2) 0.8847 0.8844 0.8843 0.8852 0.8852 0.8851

η 0.0255 0.0257 0.0258 0.0254 0.0258 0.0257

rstr (fm) 1.967 1.968 1.968 1.966 1.973 1.971

Q (fm2) 0.269 0.273 0.275 0.269 0.273 0.271

PD (%) 3.95 4.49 4.87 4.38 4.10 4.13

Triton

Bt (MeV) 8.35 8.21 8.10 8.04 8.08 8.12

For some of the notation, see Table 5, where also empirical information on the deuteron and triton can be found.

expected, the cutoff dependence diminishes with increasing
order, being very small at N4LO. The cutoff window we
selected is motivated by the fact that for values 3 ≤ 450
MeV cutoff artifacts start to appear above 200 MeV as seen
in the 1D2 and 3D2 partial waves. The upper limit is given
by the fact that the breakdown scale occurs around 3b ∼
600 MeV [82].

4.5. Deuteron and Triton
The deuteron binding energy is fitted at all orders to the empirical
value of 2.224575 MeV using the nonderivative contact term in
the 3S1 partial wave. Different observables of the deuteron and
triton are given at all orders in Table 5. Notice that only the
deuteron binding energy is fitted while all other observables are
predictions. It is interesting to notice that already at NNLO all
properties are close to the empirical values and vary little when
going to higher orders, as one would expect, since they are low
energy observables.

The triton binding energy is also given. A 34-channel charge
dependent Faddeev calculation using only two-nucleon forces is

used. The results show a smooth and steady convergence order
by order toward a value around 8.1 MeV, giving some space to
three-nucleon forces. The low deuteron D-state probabilities and
the high triton binding energy predictions are due to the softness
of the potentials.

In Table 6, we demonstrate, for order NNLO and N4LO, the
cutoff dependence of the χ2/datum, the deuteron properties,
and the triton binding energy. One observes a mild regulator
dependence for most quantities. The exception is the deuteron
D-state probability which, however, is not an observable. Linked
to this (via the strength of tensor force) is the triton binding
energy. This is due to the off-shell behavior of the two-nucleon
force. This can be compensated by corresponding changes in the
three-nucleon force.

5. SUMMARY

The past 25 years have seen great progress in our understanding
of nuclear forces in terms of low-energy QCD. Key to
this development was the realization that low-energy QCD
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is equivalent to an effective field theory which allows for
a perturbative expansion that has become known as chiral
perturbation theory. In this framework, two- and many-body
forces emerge together and the empirical fact that nuclear many-
body forces are substantially weaker than the two-nucleon force
is explained naturally.

The main focus of this review, was on the two-nucleon
force. We presented the order-by-order development from LO
(∼ Q0) to N5LO (∼ Q6). Using low-energy constants (LECs)
determined from πN scattering, our predictions for peripheral
partial waves are parameter-free, except for the spectral function
cutoff that regularizes the dispersion integrals which determine
theNN amplitudes. This spectral-function regularization ensures
that the calculated contributions are restricted to the long-
and intermediate range, where chiral effective field theory is
applicable. Specifically, we have calculated perturbative NN
scattering in peripheral partial-waves, which is dominated by
one-, two-, and three-pion exchanges ruled by chiral symmetry.
The order-by-order convergence is slow, but is ultimately

achieved at N5LO, where predictions are in perfect agreement
with empirical phase shifts.

Besides this, we have also discussed the construction of
complete (i.e., including the lower partial waves) chiral NN
potentials through all orders up to N4LO. The construction
may be perceived as consistent, because the same power
counting scheme as well as the same cutoff procedures are
applied in all orders. The potential of the highest order (N4LO)
reproduces the NN data below pion-production threshold with

a χ2/datum of 1.15. This is among the highest precisions ever
accomplished with any chiral NN potential to date. The NN
potentials presented may serve as a solid basis for systematic
ab initio calculations of nuclear structure and reactions that
allow for a comprehensive error analysis. In particular, the
order by order development of the potentials will make
possible a reliable determination of the truncation error at
each order.

In summary, this review presents the most comprehensive
investigation of the implications of chiral symmetry
for the NN system. The results provide the ultimate
confirmation that chiral EFT is an adequate theory for
nuclear forces.
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