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Public good games are a metaphor for modeling cooperative behavior in groups in the

presence of incentives to free ride. In the model presented here agents play a public good

game with their neighbors in a social network structure. Agents’ decision rules in our

model are inspired by elementary learning observed in laboratory and online behavioral

experiments involving human participants with the same amount of information, i.e.,

when individuals only know their own current contribution and their own cumulated

payoff. In addition, agents in the model are allowed to severe links with groups in which

their payoff is lower and create links to a new randomly chosen group. Reinforcing the

results obtained in network scenarios where agents play Prisoner’s Dilemma games,

we show that thanks to this relinking possibility, the whole system reaches higher levels

of average contribution with respect to the case in which the network cannot change.

Our setup opens new frameworks to be investigated, and potentially confirmed, through

controlled human experiments.

Keywords: cooperation, PGG, dynamic networks, social networks, simulation model

1. INTRODUCTION

Public Good Games (PGG) are a well-knownmodel for describing situations that require people or
institutions to cooperate to achieve a goal that is considered beneficial to all. For instance, threats,
such as global climate change, overfishing, deforestation, and natural resources depletion in general
are fundamental social issues in which cooperation and self-restrain are required to achieve the
best collective results [1]. However, cooperation is vulnerable to free-riding and, perhaps more
commonly, fear to be exploited which in turn leads to selfish behavior. In fact, the best theoretical
course of action from an individual point of view is to not cooperate [2, 3]. More precisely, linear
PGG are multi-player games in which N ≥ 2 agents have the choice of voluntarily contribute
to a common pool that will have an added value for each agent through a multiplication, also
called enhancement, factor 1 < r < N and it will be enjoyed by all. Rationally, the best course
of action and the dominant strategy for an agent is to avoid any contribution and to free-ride on
the contribution of others. But if the number of non-contributing agents is large enough there will
be no benefit from contributing and hence no public good provision. Indeed, the unique Nash
equilibrium corresponds to zero contribution all around. Evolutionary game theory approaches [4]
also have full defection as the stable state of the dynamics. However, game theory notwithstanding,
it has been found in many controlled experiments conducted in the laboratory, or online, that
subjects do contribute about half of their endowment in a one-shot game. If the game is iterated
contributions decrease but, instead of vanishing, there is always a residual contribution of about
10–20% on the average. Literally hundreds of experiments have been performed to date on various
aspects of PGG and it is almost impossible to cite them all. The following are some works from
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which further references can be found [5–10]. The general
observed pattern is the steady decrease in contributions in
iterated games as people learn the consequences of their actions.
Variations of the basic game in which free-riders can be punished
at a cost or rewards are provided to those who contribute show
that contributions may again reach higher values [6, 7]. The role
of punishment in social dilemma experiments has been recently
reexamined in Li et al. [11]. Cognitive biases, when a decoy
option is available in the social dilemmamay also help to promote
cooperation [12]. Such behaviors have been attributed to various
causes by different authors and, indeed, what people do strongly
depends on the information they are given about the other
players’ actions [13–19]. If people know who does what in the
group, then they may condition their contribution on the action
of others. If subjects start to free-ride this implies a progressive
reduction of the contributions and people act as if they had
pro-social preferences. In particular, the willingness to punish
free-riders at a cost for the punisher shows that agents take into
account the welfare of others to some extent when making their
decisions [6]. But when there is no feedback for a participant,
except her own payoff the steady reduction in contributions can
be interpreted in a different way. Along these lines, Burton-
Chellew et al. [8–10] run some experiments and suggested that
payoff-based learning is sufficient to explain the results.

In the last two decades games in populations in which
individuals are structured according to a network of contacts
have attracted a lot of attention. This is natural as in everyday
life each one of us belongs to several social networks, ranging
from face-to-face interactions to pure web-based ones. A number
of numerical simulation studies of the PGG game dynamics
on network-structured populations have been published (e.g.,
see [20–25]) for two recent reviews. In most of the previous
cases the numerical simulationmodels used were of the replicator
dynamics type [24]. The results of these works do confirm
that contributions go to zero in the long term in the average,
until a critical value of the enhancement factor is reached. For
larger values of the enhancement factor full cooperation is the
stable state and it is reached at a rate that depends on the
network structure and on the particular strategy update rule.
It is difficult to underestimate the importance of theoretical
and numerical models for our understanding of PGG dynamics.
However, they contain a few unrealistic assumptions that prevent
them from being equally useful in interpreting the results of
laboratory experiments with human subjects. First of all, decision
rules are homogeneous across the population and quite different
from the behavioral rules that agents employ in laboratory and
online experiments. In addition, for simplicity and mathematical
convenience, individuals either contribute their full endowment
or do not contribute at all. However, in experiments, participants
usually receive a number of tokens and can choose how many
to contribute to the common pool, i.e., contributions are a real,
or more commonly, an integer variable, not a Boolean one.
In a recent work [26], we made a first step to depart from
standard replicator dynamics formulations toward individual
decision and learning rules that are supposed to be closer to the
way people make their decisions in the laboratory when playing
a standard linear PGG game. Using a social network model for

the population structure, we showed that a couple of simple
models are able to qualitatively reproduce the average players’
behavior observed in some laboratory experiments [8, 19]. As
said above, the strategies effectively seen in experiments strongly
depend on the kind and amount of the information available
to the subjects. To keep the models as simple as possible, we
targeted for inspiration experiments in which little information
is provided. In Tomassini and Antonioni [26] the network was
kept fixed, i.e., it was not possible to severe links or form new
links. However, it has been previously shown both in simulation
models [18, 27–30] as well as in experiments[13, 14, 17, 31–33]
that the possibility of cutting contacts with unsuitable partners
and forming new links with more promising ones is a simple
mechanism that can lead to the emergence of cooperation in the
two-person Prisoner’s Dilemma game.

In the present study we extend the models presented in
Tomassini and Antonioni [26] in such a way that unsatisfied
agents have, in addition, the option of cutting a link with
an unfavorable group and of joining another group and we
investigate whether this possibility can lead to a higher average
contribution. This extension is coherent with what we observe
in society, where associations can usually be changed, and also
serve as a simple form of punishment, or retaliation, that does
not require complicated strategic considerations. With these
elements in hand, we then proceed to a detailed numerical study
of how contributions and the network itself evolve in time, and
what are the main parameters governing the dynamical system.
We believe that the approach presented here, given its behavior-
oriented nature, can also suggest interesting and feasible settings
for experimental work by using cheap numerical simulations.

The manuscript is organized as follows. We first describe the
PGG model on coevolving social networks. This is followed by
numerical simulation results and their discussion. A final section
with further discussion and conclusions ends the paper.

2. SIMULATIONS MODELS

In this section we present the models for the population and
group structures and for the strategic decisions of the individuals
belonging to the population.

2.1. Population Structure
Social networks suggest a natural way of forming groups
of agents for playing PGG games. The social network is
generated according to the method described in Antonioni and
Tomassini [34]. The network construction starts with a small
kernel of nodes to which new nodes are added incrementally.
A certain average degree is set at the beginning and each
incoming node will form a number of links to existing nodes
that is compatible with the given average degree. A parameter
0 ≤ α ≤ 1 determines the proportion of links that are
made according to linear preferential attachment or according
to a distance-based criterion. For α = 0 a new link is made
to the closest existing node, i.e., the network is purely spatial.
For α = 1 the link is made proportional to the degree of
existing nodes by preferential attachment. For 0 < α <
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FIGURE 1 | Visual representation of public goods games played on a network structure of seven nodes. Each PGG is centered in a focal node i and it is represented

by a circle Gi . For example, the node a has four direct neighbors (b, c,d, f ) and it participates in five PGGs, i.e., the circle Ga centered in a including its four neighbors,

and other four PGGs represented by circles centered in its neighbors: Gb,Gc,Gd ,Gf . Note that a node may indirectly interact with other nodes that are not direct

neighbors. Colors represent the node contribution into the common pools in which it participates.

1 links are space-dependent with probability α and degree-
dependent with probability 1 − α. For α = 0 the clustering
coefficient is high and the degree distribution function of the
network is peaked around the mean value. For α = 1 on
the other hand, the degree distribution is fat-tailed and tends
to a scale-free one with increasing network size [34, 35]. In
our simulations we chose α = 0.3 which is an average value
that was found in Antonioni and Tomassini [34] to lead to
social network models with statistical features similar to those of
some real-world social networks when the role of geographical
space is taken into account. In any case, since the network
will evolve in time, the particular initial state is not a critical
factor. In Tomassini and Antonioni [26] we studied games
on networks of mean degree four, six, and 12 in order to
investigate the role of the average group size but we found that
the group size distribution had little influence on the results;
thus we performed our simulations for degree six only here. A
recent experimental work [36] explicitly targets the influence of
the group size, up to 1,000 interacting individuals, and gives
further references.

Each agent in the network interacts with its first neighbors
and it is the focal element in this group. The agent also
participates in all the groups that have each neighbor as the
focal element (see Figure 1 for a visual explanation of the group
structure). If the degree of agent i in the graph is k, then the
number of groups to which it participates is g = k + 1. A
perhaps clearer way of dealing with multigroup membership
is by using bipartite networks in which there are two disjoint
sets of nodes: one set represents the agents and the other
set represents the groups. An agent may have links to several
groups but there cannot be links between groups or between
agents (see e.g., [21, 37, 38]). In spite of the interest of this
representation, in the present work we keep the standard agent
network notation.

2.2. Public Goods Game and Behavioral
Rules
We consider a standard linear PGG in which the sum of
the contributions is equally shared between the members of
the group independent of their respective contributions, after
multiplication by the enhancement factor r > 1. The utility, or
payoff, payoff πi of individual i after playing a round in all groups
of which it is a member is:

πi = g(1− ci)+

g∑

j=1

|Nj|∑

k=1

rck

|Nj|
, (1)

in which we assume that i’s endowment is 1 at the beginning of a
round of play in each group and i’s contribution ci is the same in
all g groups in which i participates. The first term is what remains
after contributing the amount 0 ≤ ci ≤ 1 in each of the g groups
and the second term is the sum of i’s gains over all g groups
after multiplying by r and sharing the total amount among the
members of the group whose size is |Nj|.

All agents decide their contribution and compute their payoff
after having played in all their groups. Initial contribution
are chosen randomly among the following set of values
{0.0, 0.25, 0.50, 0.75, 1.0}, where 1.0 represents the total
endowment contribution. In each round, a player has the
same endowment of 1.0 in each group in which it is a member.
We remark that this corresponds to the case in which each
member contributes a fixed amount per game [20]. There is
another possibility in which an individual contributes a fixed
amount per member of the group to which it participates
but we will not explore it here. The above framework is
qualitatively similar to many experimental settings for the
PGG. The quantitative difference is that participants usually
receive a capital of 20–40 tokens that they can spend in integer
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Algorithm 1: Play rounds

procedure PLAY ROUNDS

Build network of contacts of size number_of _players

Initialize individual contributions randomly

t← 0

while t < max_number_of _rounds do

for i = 1→ number_of _players do

i plays with its neighbors

i accumulates its payoff πi

end for

for i = 1→ number_of _players do

Decide Next Action(i)

end for

t← t + 1

end while

end procedure

Algorithm 2: Decide next action
Require:

ci(t): i’s contribution at time step t

g: number of groups in which i participates

πi: total gain of i from all groups in which it participates

p: probability of redirecting a link

procedure DECIDE NEXT ACTION

if πi ≥ ci(t) ∗ g then {i is satisfied}

r← random number

if r < 0.5 then

ci(t + 1)← ci(t)

else

ci(t + 1)← ci(t)+ 0.25

end if

else {i is unsatisfied}

if ci(t) > 0 then

w← random number

if w ≥ p then

ci(t + 1)← ci(t)− 0.25

else

Rewire Link(i)

end if

else

ci(t + 1)← ci(t)

end if

end if

end procedure

Algorithm 3: Rewire link

procedure REWIRE LINK(i)

x← focal player of the group in which i has the least payoff

if x 6= i then

find a random individual j

if j 6= i and edge {ij} not already in the graph then

cut edge {ix} and form new edge {ij}

end if

else

do nothing

end if

end procedure

amounts. Our simulated setting is an abstraction of those more
detailed processes. This high-level process is schematized in
Algorithm 1 (Play rounds).

After having played in all their groups and having got their
utilities, agents must decide what to do next. To make the
decision they use a number of very simple behavioral rules.
Specifically, if an agent is satisfied, getting a payoff at least equal
to the total contribution it made to the groups in which it is a
member then, with probability 0.5 it will increase its contribution
by 0.25 or, with probability 0.5, it will keep its contribution
unchanged in the next step. The noisy decision helps introduce
some heterogeneity in the agent’s behavior and avoids mass
population behavior, in agreement with what one observes in
laboratory results where individual behaviors are rather variable.
On the other hand, if the agent is unsatisfied because it got less
than what it put in the common pool, then it will have two
possible choices: either it decreases its contribution by 0.25 at
the next time step, or it cuts a link to the group in which it
gets the worst payoff. This is a form of escaping an unfavorable
environment and it can be done freely, without paying a cost.
Although the assumption of zero cost for relinking is probably
not completely correct in a real world situation, it is an acceptable
working hypothesis. The probabilities 1 − p of changing the
contribution or p for joining another group are usually 0.5 but
p can obviously be set to a different value in the simulations as
a way of investigating the effect of the fluidity of connections on
the system’s behavior.

Once an agent a cuts a link, there are two ways to join another
group: a can create a link to a random group, or to a group
with probability proportional to the group’s average payoff. The
latter simulates uncertainty in the choice with a bias toward better
groups. Clearly, the possibility of redirecting links requires more
information than in the static model: besides the agent’s own
payoff and contribution, it is also given the identity of the player
group in which it gets the worst payoff and, except in the random
redirection, it also knows the average payoff of all groups but
not in ranking order. The redirection is not done if the worst
group is the one in which i is the focal element because in this
case to change group i should cut all the links to its neighbors.
It is also not done when the selected group j that i should join
is already i’s neighbor or it is i itself. For the sake of clarity,
the above processes are summarized in pseudo-code form in
Algorithms 2 (Decide next action) and 3 (Rewire link) for the
random redirection case.

In our opinion, random redirection is much easier to set up
in a laboratory experiment and should be the preferred choice in
this case. It is also clear that the probability p should be a free
parameter in an experiment in order to estimate it empirically
from the observed relinking frequencies. On the whole, these
rules constitute a simple reinforcement learning process in the
sense that decisions that lead to better payoffs are maintained or
reinforced while those that lead to negative results are weakened.
Moreover, an agent can also act on its connections to try to
improve its gains and, possibly, collective results.

Although the behavioral adaptation rules are extremely simple
and certainly do not correspond in detail to the decisionsmade by
human participants in an experiment, they were successful in the
static network case to induce an average population behavior that
was qualitatively similar to what was observed in experiments in
which people had the same amount of information [26]. In the
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present study we extend the investigation to dynamic networks
for which experimental results are lacking.

3. RESULTS

In this section we discuss the results obtained by numerically
simulating the behavioral model presented in the previous
section. We first comment on the equilibrium contribution
results and then we explore the nature of the topological
transformations of the initial graphs in the dynamical model.

3.1. Evolution of the PGG Average
Contribution
Figure 2 shows the average contribution during 40 interaction
rounds for an enhancement factor r between 1.2 and 4.0 in steps
of 0.2. The population size is 500 individuals connected in a
social network of mean degree six built according to the model
described in section 2.1 and Antonioni and Tomassini [34],
giving a mean group size equal to seven and with an α value
of 0.3. Some r values are redundant and are not shown for
clarity. In each step of the 40 playing rounds individuals interact
according to the schemas described in Algorithms 2 and 3.
Results are averaged over 40 replicates by generating a new graph
structure with the same simulation parameters and reinitializing
randomly the individuals contributions before each repetition
(see Algorithm 1). Figure 2A refers to the static case studied in
Tomassini and Antonioni [26] while Figure 2B belongs to the
dynamic case in which an unsatisfied agent can, with probability
p = 0.5, cut a link to the group in which it gets the worst payoff
and establish a new one to another randomly chosen group.

Initially, contributions are chosen randomly in the range
[0, 1]. Therefore, in all cases the average value is about 0.5 at
time step zero. This is the result of a stochastic process but it is
also in line with results in experiments where subjects contribute
about one-half of their endowment given that they still have no
clue, or information, on the consequences of their choices. In the
static case shown in Figure 2A contributions decline smoothly
up to an r value of about 1.8, with a faster decay the lower
r is. Again, this qualitatively also follows the trend found in
experiments. And, as observed in most experiments, the pseudo-
equilibrium value stabilizes around 0.1 and does not go to 0
as theory would tell us, in line with the experimental results of
Burton-Chellew and West [8]. Above r = 2 there is an increase
in average contribution, and for all r > 2.2 the stable state tends
to full contribution after a short transient. Although the goal of
the model is not to reproduce any particular set of results, we
can say that, qualitatively, it correctly predicts the experimental
behavior in Burton-Chellew andWest [8] given the same amount
of information.

When freedom of redirecting links is introduced the situation
changes notably (see Figure 2B). The general behavior is the
same as in the static case but the transition from low contribution
(<0.5) to high contribution sets in between r = 1.8 and
r = 2.0 instead of r = 2.2 and r = 2.4 in the static case.
Interestingly, at r = 1.8, the asymptotic average contribution
remains at about 0.4 while, at r = 2.2, the final state is already

one of full contribution. It is already well-known that models of
the two-person PD in coevolving networks may attain states of
full or almost full cooperation (see e.g., [27–30]) as a function
of the strategy update rules and the game parameters. The
emergence of cooperation through positive assortment between
cooperators when redirecting links is allowed has been also
confirmed experimentally (see e.g., [13, 14, 17, 31, 32]), and is
admitted as being a reasonable explanation for the evolution
of cooperation.

In Figure 3 we show how the rewiring frequency p affects the
simulation results. When the rewiring probability is p = 0.2
(Figure 3A) the results are logically closer to the static case (see
also Figure 2A) although the average contribution levels are still
slightly better. On the other hand, in Figure 3B the probability of
redirecting a link is p = 0.8. Increasing the rewiring probability
is clearly beneficial for cooperation comparing the curves with
those for p = 0.5 and especially with respect to the static case.
Contributions reach and go beyond the 0.5 level already for
r = 1.8 and full contribution is reached for r = 2.2 after only
10 − 15 steps in the average. The results shown in Figures 2B,
3 have been obtained with random redirection of a severed link.
Payoff-proportional relinking gives very similar results and it is
not shown here to save space.

We are not aware of previous PGG coevolutionary models
that use pseudo-behavioral adaptive rules similar to ours together
with discrete amounts of contribution. However, there have been
several studies on coevolutionary models of PGGs (e.g., [39–43])
based on replicator dynamics considerations under the form of
payoff-monotone micro update rules and two-state agents. In
general, these works show that switching links in unfavorable
situations is a satisfactory strategy to use in PGG games for the
evolution of cooperation in networks. Of course, coevolutionary
rules involving factors other than the network structure are also
possible and have been investigated in some cases (for a summary
see Perc et al. [24]) but are not considered here.

3.2. Evolution of the Interaction Network
During a run of n playing rounds the original graph G1 evolves
as a sequence of networks {G1,G2, . . . ,Gn} in such a way that, in
general, Gi 6= Gj for any i, j ∈ {1, . . . , n} and i 6= j, if the rewiring
probability p > 0. In our model only the topology of the network
may change. The average degree remains the same since a new
connection is created only when an old one is deleted. It is useful
to watch the topological changes in the evolving population of
players by using standard network measures; here we use the
average clustering coefficient 〈C〉, the average path length 〈L〉, and
the degree distribution function (DDF), all of which are explained
in Newman [35].

Let us begin with the degree distribution functions of initial
and final network structures, shown in Figure 4. Figure 4A

shows the DDF of one particular initial network which, as
explained in section 2.1, is a social network model of 500 nodes,
α = 0.3 and mean degree 〈k〉 ≈ 6. With a probability of
rewiring p = 0.5, an agent represented by a network node may
ask to rewire a link when unsatisfied. When cutting a link, the
new connection is made at random and this means that, after
a while, the graph evolves toward something that gets more
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FIGURE 2 | Average individual contribution as a function of round number for several values of the enhancement factor r as shown in the inset. The average is taken

over 40 independent repetitions of 40 rounds on a network of size 500 and α = 0.3. (A) Static case, i.e., the network topology doesn’t change during the simulation.

(B) Coevolving network case, i.e., unsatisfied players may redirect a link to a random group with probability p = 0.5.

FIGURE 3 | Average individual contribution as a function of round number for several values of the enhancement factor r as shown in the inset. The average is taken

over 40 independent repetitions of 40 rounds on an initial network of size 500 and α = 0.3. (A) The probability of rewiring when an agent is unsatisfied is p = 0.2; (B)

p = 0.8.

similar to a random graph. One run comprises 40 rounds in
our simulations. This is not enough to transform the original
graph into a fully random graph but Figure 4B, which shows the
DDF of the final network of a simulation for enhancement factor
r = 1.2, indicates that the DDF has become narrower and more
centered around the mean than the original one, as expected.
Now, the amount of rewiring depends on the satisfaction of the
agent, which in turn is a function of the enhancement factor r. As
r increases, agents will be less prone to rewire their connections

since they will be more satisfied in the average and, in this case,
they will prefer to keep or increase their current contribution, as
sketched in Algorithm 2. As a result, the DDF of the final network
will be closer to the initial one. An example is shown in Figure 4C
for a run with r = 2.4, starting from a DDF analogous to the one
shown in Figure 4A.

These trends are confirmed by the evolution of the other
network metrics shown in Table 1. The values in the table refer to
single treatments in which agents play the PGG for 40 rounds. It
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FIGURE 4 | Degree distribution functions (DDFs) and graphical representation of the corresponding network structures. Node colors represent the node contribution

to the common pools in which it participates: full contribution (blue), intermediate contribution (yellow), no contribution (red). Node size corresponds to the node

degree. (A) DDF of an initial network of 500 nodes built according to the procedure described in Antonioni and Tomassini [34]. (B) DDF of the evolved network after 40

rounds of play with a link redirection probability p = 0.5 and an enhancement factor r = 1.2. (C) DDF of the final evolved network after 40 rounds of play having

rewiring probability p = 0.5 and enhancement factor r = 2.4. Note the different scales in DDFs and figure zooms.

TABLE 1 | Evolution of network statistics during a run of 40 rounds as a function

of the enhancement factor r.

Enhancement factor r 1.2 1.8 2.0 2.2 2.4

〈C〉 0.23, 0.02 0.22, 0.01 0.22, 0.02 0.23, 0.04 0.22, 0.11

〈L〉 3.83, 3.66 3.78, 3.63 3.88, 3.77 3.85, 3.69 3.89, 3.76

Num. link redirections 4, 585 4, 471 4, 296 1, 387 415

The initial and final average clustering coefficient 〈C〉 and mean path length 〈L〉 are shown

in row two and three, respectively. The last row gives the number of link redirections in

each case.

would be more adequate to show averages over many treatments
although the trends are already recognizable and thus we limit
ourselves to single examples just to convey the general idea.

In Table 1 there are two entries for each line and each r value:
the first refers to the initial network and the second refers to the
evolved network after 40 rounds of play. The last row gives the
number of link redirections for the corresponding value of r. For
low values of r there is more rewiring and the average clustering
coefficient 〈C〉 is small, following the trend in random graphs
where it tends to zero when the graph size increases. When there
is less rewiring as for r = 2.2, and especially r = 2.4, the

final 〈C〉 is closer to the value of the original graph because the
latter undergoes less randomization. The average path length 〈L〉
becomes a little shorter with the evolution but it is less affected
and stays rather constant. The evolution of the average clustering
coefficient during rounds is shown in more detail in Figure 5

for the same values of r as given in Table 1. Note that each
curve corresponds to a single run of 40 game rounds in which
a new initial graph of size 500, α = 0.3, mean degree ≈ 6,
and probability of rewiring p = 0.5 is built for each value of r.
This is the reason why there are some small fluctuations in the
initial values of the average clustering coefficients. The shape of
the curves confirm that rewiring activity stops earlier for higher
values or r, as soon as players are satisfied. The curves for low r,
where most players are unsatisfied, indicate that some network
activity is present till the end of the run.

We conclude with some discussion of the differences in
the network evolution found here with respect to the much
more studied PD case, a good review of which is provided
in Perc and Szolnoki [30]. Most models of PD on evolving
networks start with a random network of agents and find at
the end that the evolved networks are no longer random and
that positive assortment of cooperators leads to cooperator
clusters in which network reciprocity is at work, allowing
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cooperation to be widespread and stable. In order to compare
with the static case, we started from a non-random network and
allowed random relinking which requires minimal information.
While contributions improve notably with respect to the fixed
network, the topology evolves toward randomization. As a
consequence, the initially existing communities tend to be
destroyed progressively. It would certainly be interesting in
future work to use more local rewiring rules, perhaps just
limited to second neighbors in order to mitigate structure loss.
Furthermore, from the point of view of the node properties, there
is no analog of the cooperator clusters found in the binary PD

FIGURE 5 | Evolution of the average clustering coefficient during a run of 40

rounds for the same r values as in Table 1. Color codes: r = 1.2, red; r = 1.8,

green; r = 2.0, yellow; r = 2.2, blue; r = 2.4, black.

case. The reason is 2-fold: first, we lack additivity in the multi-
person PGG. A given agent plays with several players and in
several groups at once and the groups are “intermingled,” as
schematically shown in Figure 1. In addition, a node (agent) can
no longer be characterized by a binary variable (C or D); rather,
we have now several possible discrete values and this makes the
concept of an assortative cluster more fuzzy.

3.3. PGG on a Real Social Network
In the previous sections we have discussed the results of playing
a linear PGG with agents represented by the vertices of social
network models. Those synthetic networks should be sufficiently
representative of actual social networks. However, for the sake of
completeness, it would be good to investigate how play evolves on
a real social network. As an example, we chose a social network
contained in the “Network Data Repository” [44]. The dataset
contains all the Wikipedia voting data from the inception of
Wikipedia till January 2008. Nodes represent Wikipedia users
and an edge from node i to node j represents that user i voted
on user j. The network has N = 889 nodes and 2, 914 edges,
for a mean degree of 6.556 and an average clustering coefficient
of 0.153. Its DDF has a rather long tail, probably representable
by a stretched exponential or a power-law with an exponential
cutoff, but given the size, we did not attempt to fit a function to
it. Given the computational burden involved in the simulations,
its relatively small size allowed us to run the PGG model with
the same number of repetitions as before, i.e., 40 repetitions each
one consisting of 40 rounds of play. In this way, the average
results should be statistically comparable with those of section 3.
Comparing results of Figures 6A,B shows that the coevolving
scenario generally supports more cooperation with respect to the
static one even for the real social network structure.

FIGURE 6 | Wikipedia “who votes on whom” network (see text for details). Average individual contribution as a function of round number for several values of the

enhancement factor r as shown in the inset. The average is taken over 40 independent repetitions of 40 rounds on the Wikipedia network using (A) p = 0 (static case);

(B) p = 0.5 (coevolving).
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4. DISCUSSION AND CONCLUSIONS

Realistic models of PGG dynamics have been proposed, both
theoretical and based on numerical simulations. These models
are essentially based on replicator dynamics ideas and either
solve the corresponding differential equations, or numerically
compute the population evolution. These theoretically justified
approaches are a necessary first step toward an understanding of
the game dynamics. However, the large amount of experimental
data on PGGs that has been amassed in the last 20 years
cannot be fully explained by existing theory alone. In fact,
subjects in the laboratory make decisions in an individual
manner, based on the amount of information available to
them, and this leads in general to results that do not fully
agree with the theoretical prescriptions. For this reason, we
believe that a new class of models that incorporate decision
making under uncertainty and admit individual variability
and at least elementary learning capabilities is needed. In
Tomassini and Antonioni [26] we made a first attempt in
this direction and, under a very simple minimal information
assumption, i.e., just agents’ contribution and their own current
aggregated payoff, we obtained results that were in good
qualitative agreement with published experimental results. In
Tomassini and Antonioni [26] the population structure was
a static social model network. However, in everyday life
associations between agents may change for various reasons,
think for instance, of friendship, office colleagues, collaboration,
and so on. In our computational PGG environment this is
simulated by having unsatisfied agents cutting contacts with
groups in which they are exploited and form new links to
other groups.

In the present work we assumed a network structure that can
evolve in time as a function of the above considerations. Indeed, it
is well-known that contributions in PGG groups, which typically
tend to decrease rather quickly in standard conditions, may
increase again if a form of costly punishment of the free-riders
is introduced (e.g., see [7]). In the present model an unsatisfied
agent has the choice between decreasing the contribution to the
public good or simply cutting a link to the group which generates
the minimum payoff. The last option can be seen as a simple and
cost-free form of punishment. The possibility of link redirection
has been shown to be beneficial for cooperation in the Prisoner’s
Dilemma game, both in simulation as well as in experimental

work with human subjects (see references in section 1). It was
our hope that a similar mechanism could be equally useful
in our pseudo-behavioral PGG model. Indeed, the results we
obtained do confirm this. The average equilibrium contribution
when link redirection is allowed is always better with respect
to the one obtained with a fixed network for all values of the
enhancement factor r. Furthermore, the transition from a non-
cooperative to a cooperative system take place at lower values of
r; the improvement is more substantial the larger the probability
of redirecting links. We are not aware of laboratory or online
experiments with the same characteristics as our model, thus we
cannot compare our results with real data. However, because we
kept our model particularly simple, an experiment with a similar
setting would be easy to set up. In that context, having an easy
way to change simulation model would be useful to facilitate
parameter exploration before carrying out the actual experiment,
which is usually expensive and time-consuming. In future work
we plan to study other simple rule models for PGG based on
different and richer information sets, such as the distribution
of contributions in the group, reputational profiles and bipartite
graph representation for agents and groups. Local rewiring and
variants where cutting a link has a cost would also be interesting
to investigate.
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