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A new fractional derivative with a non-singular kernel involving exponential and

trigonometric functions is proposed in this paper. The suggested fractional operator

includes as a special case Caputo-Fabrizio fractional derivative. Theoretical and

numerical studies of fractional differential equations involving this new concept are

presented. Next, some applications to RC-electrical circuits are provided.
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1. INTRODUCTION

In the recent decades, the theory of fractional calculus has brought the attention of a great number
of researchers in various disciplines. Indeed, it was observed that the use of fractional derivatives
is very useful for modeling many problems in engineering sciences (see e.g., [1–10]). Various
notions of fractional derivatives exist in the literature. The basic notions are those introduced by

Riemann-Liouville and Caputo (see e.g., [11]), which involve the singular kernel k(t, s) = (t−s)−α

Ŵ(1−α) ,

0 < α < 1. These fractional derivatives play an important role for modeling many phenomena
in physics. However, as it was mentioned in Caputo and Fabrizio [12], certain phenomena related
to material heterogeneities cannot be well-modeled using Riemann-Liouville or Caputo fractional
derivatives. Due to this fact, Caputo and Fabrizio [12] suggested a new fractional derivative

involving the non-singular kernel k(t, s) = e
−α(t−s)
1−α , 0 < α < 1. Later, Caputo-Fabrizio fractional

derivative was used by many authors for modeling various problems in engineering sciences (see
e.g., [13–24]). Furthermore, other fractional derivatives with non-singular kernels were introduced
by some authors (see e.g., [10, 25–29]).

In this paper, a new fractional derivative with a non-singular kernel involving exponential and
trigonometric functions is proposed. The introduced fractional derivative includes as a special
case Caputo-Fabrizio fractional derivative. Theoretical and numerical investigations of fractional
differential equations involving this new fractional operator are presented. Next, some applications
to electrical circuits are provided.

In section 2, some preliminaries on harmonic analysis are presented. In section 3, we develop
a general theory of fractional calculus using an arbitrary non-singular kernel. In section 4, we
introduce a generalized Caputo-Fabrizio fractional derivative and study its properties. Some
applications to fractional differential equations are given in section 5. A numerical method based
on Picard iterations is presented in section 6 with some numerical examples. In section 7, some
applications to RC-electrical circuits are provided.
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2. SOME PRELIMINARIES ON HARMONIC
ANALYSIS

We recall briefly some results on harmonic analysis that will be
used later.

Lemma 2.1. Folland [30]. Let ψ ∈ L1(R) be such that

∫

R

ψ(t) dt = 1.

Consider the sequence of functions {ψε}ε>0 defined by

ψε(t) =
1

ε
ψ

(
t

ε

)
, t ∈ R.

If µ ∈ L1(R), then

ψε ∗ µ ∈ L1(R), ε > 0

and

lim
ε→0+

‖ψε ∗ µ− µ‖L1(R) = 0,

where ∗ denotes the convolution product.

Lemma 2.2. Let ψ ∈ L1(0,∞) be such that

∫ ∞

0
ψ(t) dt = 1. (2.1)

Consider the sequence of functions {ψε}ε>0 defined by

ψε(t) =
1

ε
ψ

(
t

ε

)
, t > 0.

If µ ∈ L1(0,∞), then the sequence of functions {Iµε }ε>0 defined by

Iµε (t) =
∫ t

0
ψε(t − s)µ(s) ds, t > 0

satisfies the following properties:

Iµε ∈ L1(0,∞), ε > 0

and

lim
ε→0+

‖Iµε − µ‖L1(0,∞) = 0.

Proof: For any function f defined almost every where in (0,∞),
let

f̃ (t) =
{
f (t) a.e. t > 0,
0 if t ≤ 0.

From (2.1), one has ψ̃ ∈ L1(R) and

∫

R

ψ̃(t) dt = 1.

Hence, by Lemma 2.1, for all f ∈ L1(R), we have

ψ̃ε ∗ f ∈ L1(R), ε > 0

and

lim
ε→0+

‖ψ̃ε ∗ f − f ‖L1(R) = 0,

where

ψ̃ε(t) =
1

ε
ψ̃

(
t

ε

)
, t ∈ R.

In particular, for µ ∈ L1(0,∞), we have

ψ̃ε ∗ µ̃ ∈ L1(R), ε > 0 (2.2)

and

lim
ε→0+

‖ψ̃ε ∗ µ̃− µ̃‖L1(R) = 0. (2.3)

For all t > 0, we have

ψ̃ε ∗ µ̃(t) =
∫

R

ψ̃ε(t − s)µ̃(s) ds

=
∫ t

0
ψε(t − s)µ(s) ds

= Iµε (t).

Hence, using (2.2) and (2.3), one obtains
∫ ∞

0
|Iµε (t)| dt =

∫ ∞

0
|ψ̃ε ∗ µ̃(t)| dt ≤ ‖ψ̃ε ∗ µ̃‖L1(R) <∞

and

‖Iµε − µ‖L1(0,∞) =
∫ ∞

0
|ψ̃ε ∗ µ̃(t)− µ̃(t)| dt

≤ ‖ψ̃ε ∗ µ̃− µ̃‖L1(R) −→ 0 as ε −→ 0+.

This completes the proof of Lemma 2.2.

Definition 2.1. We say that f is of exponential order θ , if for t
large enough, one has

|f (t)| ≤ Ceθ t ,

where C > 0 and θ are constants.

We denote by L{f (t)} the Laplace transform of the function f ,
i.e.,

L{f (t)}(s) =
∫ ∞

0
e−stf (t) dt.

Recall that, if f ∈ C[0,∞) and f is of exponential order θ , then
L{f (t)}(s) exists for s > θ .

We denote by N the set of positive integers.

Lemma 2.3. Schiff [31]. Let n ∈ N. If f ∈ Cn[0,∞) and
for all i = 0, 1, · · · , n − 1, the function f (i) is of exponential
order, then

L{f (n)(t)}(s) = snL{f (t)}(s)−
n∑

i=1

si−1f (n−i)(0).
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3. FRACTIONAL DERIVATIVE WITH AN
ARBITRARY NON-SINGULAR KERNEL

We consider the set of non-singular kernel functions

K =
{
k ∈ C[0,∞) ∩ L1(0,∞) :

∫ ∞

0
k(σ ) dσ = 1

}
. (3.1)

Definition 3.1. Given k ∈ K, 0 < α < 1 and f ∈ C1[0,∞), the
fractional derivative of order α of f with respect to the non-singular
kernel function k is defined by

(
Dα0,kf

)
(t) =

1

1− α

∫ t

0
k

(
α(t − s)

1− α

)
f ′(s) ds, t > 0.

Remark 3.1. We can also define Dα
0,k
f for functions f ∈ AC[0,∞)

(f is an absolutely continuous function in [0,∞)). In this case, f ′(t)
exists for almost every where t > 0 and f ′ ∈ L1(0,∞).

The following properties hold.

Theorem 3.1. Let k ∈ K and f ∈ C1[0,∞). Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα0,kf

)
(t) = 0.

(ii) If f ′ ∈ L1(0,∞), one has

Dα0,kf ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα0,kf − f ′
∥∥∥
L1(0,∞)

= 0.

Proof: (i) Let 0 < α < 1. For 0 < t < T <∞, one has

∣∣∣
(
Dα0,kf

)
(t)
∣∣∣ ≤

‖k‖L∞(0,Tα)‖f ′‖L∞(0,T)

1− α
t,

where Tα = α
1−αT. Passing to the limit as t → 0+ in the above

inequality, (i) follows.
(ii) Suppose that f ′ ∈ L1(0,∞). For 0 < α < 1, let ε = 1−α

α
. One

has

(
Dα0,kf

)
(t) =

ε + 1

ε

∫ t

0
k

(
1

ε
(t − s)

)
f ′(s) ds

= (ε + 1)

∫ t

0

1

ε
k

(
1

ε
(t − s)

)
f ′(s) ds

= (ε + 1)

∫ t

0
kε(t − s)f ′(s) ds, t > 0,

where

kε(x) =
1

ε
k
(x
ε

)
, x > 0.

Hence, using Lemma 2.2, (ii) follows.

Definition 3.2. Given k ∈ K, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞), the fractional derivative of order α + n of f with
respect to the non-singular kernel k is defined by

(
Dα+n
0,k

f
)
(t) =

1

1− α

∫ t

0
k

(
α(t − s)

1− α

)
f (n+1)(s) ds, t > 0.

Remark 3.2. We can also define Dα+n
0,k

f for functions f ∈
ACn+1[0,∞). In this case, f n+1(t) exists for almost every where
t > 0 and f (n+1) ∈ L1(0,∞).

Similarly to the case n = 0, one has

Theorem 3.2. Let k ∈ K, n ∈ N ∪ {0} and f ∈ Cn+1[0,∞).
Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα+n
0,k

f
)
(t) = 0.

(ii) If f (n+1) ∈ L1(0,∞), then

Dα+n
0,k

f ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα+n
0,k

f − f (n+1)
∥∥∥
L1(0,∞)

= 0.

Remark 3.3. From the assertion (ii) of Theorem 3.2, if f (n+1) ∈
L1(0,∞), one has

lim
α→1−

(
Dα+n
0,k

f
)
(t) = f (n+1)(t), a.e. t > 0.

Theorem 3.3. Given k ∈ K, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞) with f (i), i = 0, 1, · · · , n, are of exponential order,
one has

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
1

1− α

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)
L
{
kα(t)

}
(s),

where

kα(t) = k

(
αt

1− α

)
, t > 0.

Proof: One has

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
∫ ∞

0
e−ts

(
Dα+n
0,k

f
)
(t) dt

=
∫ ∞

0
e−ts

(
1

1− α

∫ t

0
k

(
α(t − σ )
1− α

)
f (n+1)(σ ) dσ

)
dt.
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Using Fubini’s theorem, one obtains

L

{(
Dα+n
0,k

f
)
(t)
}
(s) (3.2)

=
1

1− α

∫ ∞

0
f (n+1)(σ )

(∫ ∞

σ

e−tsk

(
α(t − σ )
1− α

)
dt

)
dσ .

Using the change of variable τ = t − σ , it holds
∫ ∞

σ

e−tsk

(
α(t − σ )
1− α

)
dt

= e−σ s
∫ ∞

0
e−τ sk

(
ατ

1− α

)
dτ

= e−σ sL
{
kα(t)

}
(s).

Hence, by (3.2), one deduces that

L

{(
Dα+n
0,k

f
)
(t)
}
(s) =

1

1− α
L

{
f (n+1)(t)

}
(s)L

{
kα(t)

}
(s).

Next, using Lemma 2.3, we obtain

L

{(
Dα+n
0,k

f
)
(t)
}
(s)

=
1

1− α

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)
L
{
kα(t)

}
(s),

which yields the desired result.

4. A GENERALIZED CAPUTO-FABRIZIO
FRACTIONAL DERIVATIVE

Consider the kernel function

ka,b(t) =
(
a2 + b2

a

)
e−at cos(bt), t ≥ 0,

where a > 0 and b ≥ 0 are constants. It can be easily seen that

ka,b ∈ K, (4.1)

where K is the set of kernel functions defined by (3.1). Hence,
using Definition 3.2, we define the fractional derivative with
respect to the kernel function ka,b as follows.

Definition 4.1. Given a > 0, b ≥ 0, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞), the fractional derivative of order α + n of f with
respect to the kernel function ka,b is defined by

(
Dα+n
0,a,b

f
)
(t) =

(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f (n+1)(s) ds, t > 0.

Remark 4.1. Taking a = 1 and b = 0 in the above definition, one
obtains

(
Dα+n
0,1,0f

)
(t) =

(
CFDα+n

0 f
)
(t), t > 0,

where CFDα+n
0 is the Caputo–Fabrizio fractional derivative

operator of order α + n (see [12]).

Remark 4.2. Definition 4.1 can be extended to the case of
functions f ∈ Cn+1[0,T], where 0 < T <∞.

From (4.1) and Theorem 3.2, one deduces that

Corollary 4.1. Let a > 0, b ≥ 0, n ∈ N∪{0} and f ∈ Cn+1[0,∞).
Then

(i) For all 0 < α < 1,

lim
t→0+

(
Dα+n
0,a,b

f
)
(t) = 0.

(ii) If f (n+1) ∈ L1(0,∞), then

Dα+n
0,a,b

f ∈ L1(0,∞), 0 < α < 1

and

lim
α→1−

∥∥∥Dα+n
0,a,b

f − f (n+1)
∥∥∥
L1(0,∞)

= 0.

Let

ka,b,α(t) = ka,b

(
αt

1− α

)
, t > 0,

that is,

ka,b,α(t) =
(
a2 + b2

a

)
e−

aαt
1−α cos

(
bαt

1− α

)
, t > 0.

Lemma 4.1. Abramowitz and Stegun [32]. Let a > 0, b ≥ 0 and
0 < α < 1. Then

L
{
ka,b,α(t)

}
(s)=

(1− α)(a2 + b2)

a

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
,

s > 0.

Using Theorem 3.3 and Lemma 4.1, one deduces that

Corollary 4.2. Let a > 0, b ≥ 0, 0 < α < 1, n ∈ N ∪ {0} and
f ∈ Cn+1[0,∞) with f (i), i = 0, 1, · · · , n, are of exponential order.
Then

L

{(
Dα+n
0,a,b

f
)
(t)
}
(s)

=
(a2 + b2)

a

(
sn+1

L{f (t)}(s)−
n+1∑

i=1

si−1f (n+1−i)(0)

)

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
, s > 0.

For n = 0, one obtains

Corollary 4.3. Let a > 0, b ≥ 0, 0 < α < 1 and f ∈ C1[0,∞)
with f is of exponential order. Then

L

{(
Dα0,a,bf

)
(t)
}
(s) =

(a2 + b2)

a

(
sL{f (t)}(s)− f (0)

)

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
.
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5. APPLICATIONS TO FRACTIONAL
DIFFERENTIAL EQUATIONS

Let a > 0, b ≥ 0, 0 < T <∞ and 0 < α < 1.

Definition 5.1. Let g ∈ C[0,T]. The fractional integral of order α
of g is defined by

(
Iα0,a,bg

)
(t) =

a(1− α)
a2 + b2

g(t)

+ α

(∫ t

0
g(σ ) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α g(σ ) dσ

)
,

0 ≤ t ≤ T,

with
(
Iα
0,a,b

g
)
(0) = 0.

Given f0 ∈ R and g ∈ C1[0,T] with g(0) = 0, we consider the
initial value problem

{ (
Dα
0,a,b

f
)
(t) = g(t), 0 < t < T,

f (0) = f0.
(5.1)

Theorem 5.1. Problem (5.1) admits a unique solution f ∈
C1[0,T], which is given by

f (t) = f0 +
(
Iα0,a,bg

)
(t), 0 ≤ t ≤ T. (5.2)

Proof: Let f ∈ C1[0,T] be a solution of (5.1). One has

(
Dα0,a,bf

)′
(t) = g′(t), 0 < t < T. (5.3)

By Definition 4.1, one has

(
Dα0,a,bf

)′
(t) =

(
1

1− α

)(
a2 + b2

a

)

{
f ′(t)+

∫ t

0

d

dt

(
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

))
f ′(s) ds

}

=
(

1

1− α

)(
a2 + b2

a

)
f ′(t)

−
(

aα

1− α

)(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f ′(s) ds

−
(

bα

1− α

)(
1

1− α

)(
a2 + b2

a

)

∫ t

0
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

)
f ′(s) ds

=
(

1

1− α

)(
a2 + b2

a

)
f ′(t)−

(
aα

1− α

)
g(t)

−
(

bα

1− α

)(
1

1− α

)(
a2 + b2

a

)
γ (t),

(5.4)

where

γ (t) =
∫ t

0
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

)
f ′(s) ds.

On the other hand,

γ ′(t) =
∫ t

0

d

dt

(
e−

aα(t−s)
1−α sin

(
bα(t − s)

1− α

))
f ′(s) ds

= −
(

aα

1− α

)
γ (t)+

(
bα

1− α

)

∫ t

0
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
f ′(s) ds

= −
(

aα

1− α

)
γ (t)+

(
abα

a2 + b2

)
g(t).

Integrating the above equality and using that γ (0) = 0, one
obtains

γ (t) =
abα

a2 + b2

∫ t

0
e−

aα(t−s)
1−α g(s) ds.

Hence by (5.4), one deduces that

(
Dα0,a,bf

)′
(t) =

(
1

1− α

)(
a2 + b2

a

)
f ′(t)−

(
aα

1− α

)
g(t)

−
(

bα

1− α

)2 ∫ t

0
e−

aα(t−s)
1−α g(s) ds.

Next, using (5.3), one obtains

f ′(t) =
a2α

a2 + b2
g(t)+

(
ab2α2

(1− α)(a2 + b2)

)∫ t

0
e−

aα(t−s)
1−α g(s) ds

+
a(1− α)
a2 + b2

g′(t).

Integrating the above equality, using that f (0) = f0 and g(0) = 0,
it holds

f (t)− f0 =
(

a2α

a2 + b2

)∫ t

0
g(σ ) dσ +

a(1− α)
a2 + b2

g(t)

+
(

ab2α2

(1− α)(a2 + b2)

)∫ t

0

∫ σ

0
e−

aα(σ−s)
1−α g(s) ds dσ

(5.5)
On the other hand, using Fubini’s theorem, one gets

∫ t

0

∫ σ

0
e−

aα(σ−s)
1−α g(s) ds dσ

=
∫ t

0
g(s)e

aαs
1−α

(∫ t

s
e−

aασ
1−α dσ

)
ds

=
(
1− α
aα

)∫ t

0
g(s) ds−

(
1− α
aα

)∫ t

0
e−

aα(t−s)
1−α g(s) ds.

(5.6)

It follows from (5.5) and (5.6) that

f (t) = f0 +
(
Iα0,a,bg

)
(t),

Frontiers in Physics | www.frontiersin.org 5 March 2020 | Volume 8 | Article 64

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Alshabanat et al. Generalization of Caputo-Fabrizio Fractional Derivative

i.e., f is a solution of (5.2).
Suppose now that f satisfies (5.2). Clearly, one has f ∈

C1[0,T]. Since g(0) = 0, one has f (0) = f0. On the other hand,

an elementary calculation shows that
(
Dα
0,a,b

f
)
(t) = g(t) for all

0 < t < T. Therefore, f is a solution of (5.1).

Consider now the non-linear initial value problem

{ (
Dα
0,a,b

u
)
(t) = F(t, u(t)), 0 < t < T,

u(0) = u0,
(5.7)

where the function F :[0,T]×R → R is continuous and satisfies
F(0, u0) = 0.

Definition 5.2. We say that u ∈ C[0,T] is a weak solution of
(5.7), if u solves the integral equation

u(t) = u0 +
(
Iα0,a,bF(·, u(·)

)
(t), 0 ≤ t ≤ T,

i.e.,

u(t) = u0 +
a(1− α)
a2 + b2

F(t, u(t))

+α
(∫ t

0
F(σ , u(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , u(σ )) dσ

)
,

for all 0 ≤ t ≤ T.

Remark 5.1. Observe that, if F ∈ C1([0,T] × R), and u ∈
C1[0,T] is a solution of (5.7), then u ∈ C[0,T] is a weak solution
of (5.7).

Theorem 5.2. Suppose that

|F(t, η)− F(t, ξ )| ≤ ℓ|η − ξ |, (η, ξ ) ∈ R
2, (5.8)

where ℓ > 0 is a constant. If

ℓ
(
Aα + (α + Bα)T

)
< 1, (5.9)

where Aα = a(1−α)
a2+b2

and Bα = αb2

a2+b2
, then (5.7) admits a unique

weak solution u∗ ∈ C[0,T]. Moreover, for any z0 ∈ C[0,T], the
Picard sequence {zn} defined by

zn+1(t) = u0 +
a(1− α)
a2 + b2

F(t, zn(t))

+α
(∫ t

0
F(σ , zn(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , zn(σ )) dσ

)
,

for all 0 ≤ t ≤ T, converges uniformly to u∗.

Proof: Consider the self-mapping H :C[0,T] → C[0,T] defined
by

(Hu)(t) = u0 +
a(1− α)
a2 + b2

F(t, u(t))

+α
(∫ t

0
F(σ , u(σ )) dσ −

b2

a2 + b2

∫ t

0
e
−aα(t−σ )

1−α F(σ , u(σ )) dσ

)
,

for all 0 ≤ t ≤ T. We endow C[0,T] with the norm

‖u‖∞ = max
{
|u(t)| : 0 ≤ t ≤ T

}
.

Then (C[0,T], ‖·‖∞) is a Banach space. For all u, v ∈ C[0,T] and
0 ≤ t ≤ T, using (5.8), one has

|(Hu)(t)− (Hv)(t)|

≤ Aα|F(t, u(t))− F(t, v(t)| + α
∫ t

0
|F(σ , u(σ ))− F(σ , v(σ ))| dσ

+ Bα

∫ t

0
e
−aα(t−σ )

1−α |F(σ , u(σ ))− F(σ , v(σ ))| dσ

≤ ℓAα‖u− v‖∞ + αℓT‖u− v‖∞ + BαℓT‖u− v‖∞
= ℓ

(
Aα + (α + Bα)T

)
‖u− v‖∞,

which yields

‖Hu−Hv‖∞ ≤ ℓ
(
Aα + (α + Bα)T

)
‖u− v‖∞.

Hence by (5.9), one deduces that H is a contraction. Therefore,
the result follows from Banach fixed point theorem.

6. NUMERICAL SOLUTION VIA PICARD
ITERATION

Consider the initial value problem

{ (
Dα0,1,1u

)
(t) = u(t)

3 + et , 0 < t < 1,

u(0) = −3,
(6.1)

where 0 < α < 1. For α = 1, (6.1) reduces to

{
u′(t) = u(t)

3 + et , 0 < t < 1,
u(0) = −3.

(6.2)

The exact solution of (6.2) is given by

u1(t) =
3

2
et −

9

2
e
t
3 , 0 ≤ t ≤ 1.

(6.1) is a special case of (5.7) with T = 1, a = b = 1, u0 = −3
and F(t, x) = x

3 + et . One can check easily that F satisfies (5.8)

with ℓ = 1
3 . Moreover, one has

ℓ
(
Aα + (α + Bα)T

)
=

1

3

(
1

2
+ α

)
< 1.

Hence by Theorem 5.2, (6.1) has a unique weak solution u∗ ∈
C[0, 1]. Consider now the Picard sequence {zn} ⊂ C[0, 1] given
by z0(t) = −3 and

zn+1(t) = −3+
(1− α)

2
F(t, zn(t)) (6.3)

+α
(∫ t

0
F(σ , zn(σ )) dσ −

1

2

∫ t

0
e
−α(t−σ )
1−α F(σ , zn(σ )) dσ

)
,

for all n = 0, 1, , 2, · · · By Theorem 5.2, the sequence {zn}
converges uniformly to u∗. In Figure 1A, for α = 0.95, we
plot u1(t) [the exact solution of (6.2)], z1(t), z3(t), and z10(t). In
Figure 1B, for α = 0.7, we plot z1(t), z3(t), and z10(t).
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FIGURE 1 | Picard iterations for different values of α. (A) α = 0.95. (B) α = 0.7.

7. APPLICATIONS TO RC ELECTRICAL
CIRCUITS

In this section, we give some applications to RC electrical circuits
using the generalized Caputo-Fabrizio fractional derivative
introduced in section 4.

The governing ODE of an RC electrical circuit (see Figure 2)
is given by

dV(t)

dt
+

V(t)

RC
=
µ(t)

RC
, (7.1)

where V is the voltage, R is the resistance, C is the capacitance
andµ(t) is the source of volt. In this part, we consider a fractional
version of (7.1) using the generalized Caputo-Fabrizio fractional
derivative introduced in section 4. Namely, using the following
transformation suggested in [33]:

d

dt
−→

1

σ 1−αD
α
0,a,b, a > 0, b ≥ 0, 0 < α < 1, (7.2)

where σ is a positive parameter having dimensions of seconds,
we obtain the fractional differential equation

(
Dα0,a,bV

)
(t)+

1

κα
V(t) =

1

κα
µ(t), (7.3)

where

κα =
RC

σ 1−α .

We consider (7.3) with the source term

µ(t) = sin(φt)

and the initial condition

V(0) = 0. (7.4)

In this case, (7.3) reduces to

(
Dα0,a,bV

)
(t) = AV(t)+ B sin(φt),

FIGURE 2 | RC circuit.

where A = − 1
κα

and B = −A. Applying the Laplace transform
and using Corollary 4.3, one obtains

(a2 + b2)

a

(
sL{V(t)}(s)− V(0)

) [ (1− α)s+ αa
((1− α)s+ αa)2 + b2α2

]

= AL{V(t)}(s)+
Bφ

s2 + φ2
.

Using (7.4), it holds

L{V(t)}(s) =
Bφ

s2 + φ2
(
sFα,a,b(s)− A

)−1
,

where

Fα,a,b(s) =
(a2 + b2)

a

[
(1− α)s+ αa

((1− α)s+ αa)2 + b2α2

]
. (7.5)

By Laplace transform inverse, one gets

V(t) = L
−1

{
Bφ

s2 + φ2
(
sFα,a,b(s)− A

)−1
}
(t).

Examples. All simulations are obtained using MATLAB 7.5.
Consider an RC circuit with R = 10�, C = 0.1F, φ =
15 and σ = RCα. In this case, we have κα = αα−1(RC)α ,
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A = −α1−α(RC)−α and B = α1−α(RC)−α . Figure 3 shows
the voltage V(t) for different values of α in the case (a, b) =
(1, 0) (Caputo-Fabrizio case). Figure 4 shows the voltage
V(t) for different values of α in the case (a, b) = (2,

√
2).

Figure 5 shows the voltage V(t) for different values of α in the
case (a, b) = (10, 3).

8. CONCLUSION

In this contribution, we suggested a fractional derivative
involving the kernel function

ka,b(t, s) =
(

1

1− α

)(
a2 + b2

a

)
e−

aα(t−s)
1−α cos

(
bα(t − s)

1− α

)
,

a > 0, b ≥ 0, 0 < α < 1.

In the particular case (a, b) = (1, 0), the above function
reduces to Caputo-Fabrizio kernel. We studied fractional
differential equations via this new concept in both theoretical
and numerical aspects. In the theoretical point of view, we
investigated the existence and uniqueness of solutions to non-
linear fractional boundary value problems involving the new
introduced fractional derivative. Namely, using Banach fixed

FIGURE 3 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (1, 0).

FIGURE 4 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (2,
√
2).
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FIGURE 5 | Graph of the voltage in the RC circuit for different values of α with µ(t) = sin(15t) and (a,b) = (10, 3).

point theorem, the existence and uniqueness of weak solutions
to (5.7) was established under certain conditions imposed on
the non-linear term F and the parameters a, b and α. In
the numerical point of view, a numerical algorithm based
on Picard iterations was proposed for solving the considered
problem. Numerical experiments were provided using as a
model example the fractional boundary value problem (6.1).
In Figure 1, we presented the exact solution (u1(t)) for α =
1 and numerical solutions z1(t), z3(t), and z10(t) to (6.1) for
α ∈ {0.95, 0.7}. One observes that for n = 10, zn(t) is
close enough to u1(t), which confirms the convergence of
the proposed algorithm. Finally, as application, we proposed
a fractional model of an RC electrical circuit using the new
introduced fractional derivative. One can compare the voltage
V(t) obtained for different values of α in the Caputo-Fabrizio
case (a, b) = (1, 0) (see Figure 3) with that obtained using
different values of (a, b) (see Figures 4, 5). Namely, one can show
that the voltage V(t) obtained with the use of the generalized

fractional Caputo-Fabrizio derivative is more stable with respect

to α than that obtained with the use of Caputo-Fabrizio
fractional derivative.
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