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The equations of motion for reduced density matrices form a coupled chain known as the

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. To close the coupled chain

at the two-body level, approximations for a three-body density matrix with one-body

and two-body density matrices are needed. The time-dependent density-matrix theory

(TDDM) assumes that the three-body density matrix is given by the antisymmetrized

products of the one-body and two-body density matrices. In this review the truncation

schemes of the BBGKY hierarchy beyond TDDM are discussed and a formulation for the

study of excited states which is derived from the time-dependent approach is explained.

The truncation schemes and the formulation for excited states are applied to the Lipkin

model and the Hubbard model to corroborate their validity. Two realistic applications of

the TDDM approaches are also presented. One is the dipole and quadrupole excitations

of 40Ca and 48Ca and the other the fusion reactions of 16O + 16O.

Keywords: extended TDHF, extended RPA, Lipkin model, Hubbard model, giant resonances, fusion

1. INTRODUCTION

The time-dependent Hartree-Fock theory (TDHF) is the basis of the mean-field theories such
as the Hartree-Fock theory (HF) and the random-phase approximation (RPA): The HF ground
state is given as a stationary solution of the TDHF equation and RPA can be formulated as the
small amplitude limit of the TDHF equation. HF and RPA have extensively been used as standard
theories to study nuclear structure problem [1]. Extensive TDHF simulations have also been
performed for heavy-ion collisions [2, 3]. However, most experimental data suggest that beyond-
mean field theories are required for a more realistic description of nuclear structure and reactions.
In this paper an approach to extend the mean-field theories based on the equations of motion
for reduced density matrices is reviewed. The equations of motion for reduced density matrices
form a coupled chain known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy
[4] where the time evolution of an n-body density matrix depends on n-body and n + 1-body
density matrices. The advantage of such a time-dependent density-matrix approach (TDDMA)
is that it is directly connected to TDHF in the lowest-level approximation: The truncation of
the BBGKY hierarchy at the level of the one-body density matrix by approximating the two-
body density matrix with the antisymmetrized product of the one-body density matrices gives
TDHF. A beyond TDHF is obtained by the truncation of the BBGKY hierarchy at the two-body
level and it needs approximations for the three-body density matrix. A few truncations schemes
have been proposed. The simplest truncation scheme is to replace the three-body density matrix
with the antisymmetrized products of the one-body and two-body density matrices, neglecting
the correlated part of the three-body density matrix [the three-body correlation matrix (C3)]
[5, 6]. This truncation scheme has been called the time-dependent density-matrix theory (TDDM).
TDDM has been applied to heavy-ion collisions [7–9] and collective excitations [6, 10–12]. A
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simplified TDDM called TDDMP [13] where two-body
correlations are consider only for a pair of time reversed
single-particle (s.p.) states have also been employed to simulate
heavy-ion collisions [13, 14]. It was found that TDDM sometimes
overestimates ground-state correlations in a solvable model [15],
gives unphysical s.p. occupation probabilities in dynamical
simulations [16, 17] and causes divergent dynamical behaviors
in highly excited and (or) strongly interacting cases [18, 19].
Obviously the problems originate in the neglect of C3 and are
related to the loss of N-representability [20] which refers to the
properties of reduced density matrices derived from an N-body
total wavefunction and is completely fulfilled only in the case of
the untruncated BBGKY hierarchy. To remedy the difficulties
of the naive truncation scheme in the description of ground
states, an approximation for C3 has been proposed based on
perturbative consideration [21], where C3 is given by the traced
products of the correlated part of the two-body density matrix
(C2). This truncation scheme is referred to as TDDM1 hereafter.
The correlation matrices C2 and C3 are also called the two-body
and three-body cumulants and the above approximation for C3

corresponds to taking the leading-order terms of the three-body
cumulant [22, 23]. It has been demonstrated that TDDM1
improves the TDDM results for the ground states of model
Hamiltonians [21, 23] and also 16O [24]. In the case of the Lipkin
model [25], however, TDDM1 was found to overestimate C3 in
strongly interacting regions. There, another truncation scheme
[26] where C3 in TDDM1 is divided by a reduction factor was
introduced. This truncation scheme is referred to as TDDM2.
In this paper three truncation schemes TDDM, TDDM1 and
TDDM2 are explained and their applications are presented.

The small amplitude limit of the TDDMA equations gives an
extended RPA (ERPA) which is used for the study of excited
states, as is the case of RPA which is formulated as the small
amplitude limit of TDHF. RPA and ERPA are also formulated by
using the equation of motion approach [27, 28]. ERPA consists of
the coupled equations for the one-body and two-body amplitudes
and include the effects of ground-state correlations through the
fractional occupation probability nα of a s.p. state α and C2.
ERPA is related to so far proposed beyond-RPA theories. When
the coupling to the two-body amplitude is omitted, the ERPA
equation for the one-body amplitude is the same as the self-
consistent RPA (SCRPA) [29, 30] equation which includes both
nα and C2. The neglect of C2 in the SCRPA equation corresponds
to the renormalized RPA (rRPA) [27, 28] which includes the
ground-state correlation effect via nα . When the HF ground
state is assumed, the equations in ERPA are reduced to those
in the second RPA (SRPA) [31]. If particle-hole correlations
included in the two-body amplitudes were expressed by phonons,
ERPA would be connected the particle-vibration coupling or
quasiparticle-phonon models [32]. ERPA has been applied to
solvable models [23, 33]. Realistic cases have also been studied
in ERPA [34–36]. Main results of the ERPA applications are
presented in this paper.

The TDDM truncation scheme has been used for simulations
of heavy-ion collisions [7–9] where the TDDM equations are
formulated by using the time-dependent s.p. states which
obey a TDHF-like equation. The application of such a

TDDM approach to the fusion reactions of 16O + 16O is
also presented.

The paper is organized as follows: The equations of motion
for the one-body and two-body density matrices formulated
by using a time-independent s.p. basis are given in section 2
and the truncation schemes of the BBGKY hierarchy and the
formulation of ERPA are discussed. The applications are made
to two model Hamiltonians, the Lipkin model [25] and the one-
dimensional Hubbard model [37] in section 2 and the obtained
results are compared with the exact solutions. The ERPA results
for the dipole and quadrupole excitations in 40Ca and 48Ca are
presented in section 2 as realistic applications of ERPA. The
TDDM formulation using a time-dependent s.p. basis and its
application to the fusion reactions of 16O + 16O are given in
section 3. Section 4 is devoted to summary and outlook.

2. FORMULATION IN TIME-INDEPENDENT
SINGLE-PARTICLE BASIS

The TDDMA equations are formulated for an N fermion system
described by the Hamiltonian H consisting of a one-body part t
(the kinetic energy term) and a two-body interaction v

H =
∑

αα′
〈α|t|α′〉a+α aα′ +

1

2

∑

αβα′β ′
〈αβ|v|α′β ′〉a+α a+β aβ ′aα′ ,

where a+α and aα are the creation and annihilation operators
of a particle at a s.p. state α and the s.p. states are assumed
time-independent.

2.1. Time-Dependent Density-Matrix
Theory and Truncation Schemes
The TDDMA equations given in Tohyama and Schuck [21] are
explained below. They consist of the coupled equations of motion
for the one-body density matrix (the occupationmatrix) nαα′ and
the correlated part of the two-body density matrix Cαβα′β ′ (C2).
These matrices are defined as

nαα′ (t) = 〈8(t)|a+
α′aα|8(t)〉, (1)

Cαβα′β ′ (t) = ραβα′β ′ (t)−A(nαα′ (t)nββ ′ (t)), (2)

where |8(t)〉 is the time-dependent total wavefunction |8(t)〉 =
exp[−iHt]|8(t = 0)〉, ραβα′β ′ is the two-body density matrix
(ραβα′β ′ (t) = 〈8(t)|a+

α′a
+
β ′aβaα|8(t)〉) and A is an operator

which properly antisymmetrizes nαα′nββ ′ under the exchange of
the s.p. indices such as α ↔ β and α′ ↔ β ′. Units h̄ = 1 are
used hereafter. The equations of motion for nαα′ and Cαβα′β ′ are
derived from

iṅαα′ = 〈8(t)|[a+
α′aα ,H]|8(t)〉 (3)

iρ̇αβα′β ′ = 〈8(t)|[a+
α′a

+
β ′aβaα ,H]|8(t)〉, (4)
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by evaluating the commutation relations. They are written as

iṅαα′ =
∑

λ

(ǫαλnλα′ − nαλǫλα′ ) (5)

+
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3α′λ1 − Cαλ1λ2λ3〈λ2λ3|v|α′λ1〉],

iĊαβα′β ′ =
∑

λ

(ǫαλCλβα′β ′ + ǫβλCαλα′β ′ − ǫλα′Cαβλβ ′ (6)

− ǫλβ ′Cαβα′λ)+ Bαβα′β ′ + Pαβα′β ′ +Hαβα′β ′ + Tαβα′β ′ ,

where ǫαα′ is the s.p. energy including the mean field and is given
by

ǫαα′ = 〈α|t|α′〉 +
∑

λ1λ2

〈αλ1|v|α′λ2〉Anλ2λ1 . (7)

Here the subscript A means that the corresponding matrix is
antisymmetrized. The term Bαβα′β ′ in Equation (6) consists of
only the occupation matrices and describes 2 particle (p) – 2
hole (h) and 2h–2p excitations, while Pαβα′β ′ andHαβα′β ′ contain
C2 and express p–p (and h–h) and p–h correlations to infinite
order, respectively [6]. The Tαβα′β ′ term gives the coupling to the
three-body correlation matrix (C3)

Tαβα′β ′=
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3βα′λ1β ′

+ 〈λ1β|v|λ2λ3〉Cλ2λ3αα′λ1β ′ (8)

− 〈λ1λ2|v|α′λ3〉Cαλ3βλ1λ2β ′ − 〈λ1λ2|v|λ3β ′〉Cαλ3βλ1λ2α′ ],

where Cαβγα′β ′γ ′ (C3) is given by

Cαβγα′β ′γ ′ = 〈8(t)|a+
α′a

+
β ′a

+
γ ′aγ aβaα|8(t)〉 −A(nαα′ρβγβ ′γ ′ ).(9)

Approximations for C3 are needed to close the equations of
motion within nαα′ and C2. Three truncation schemes TDDM,
TDDM1 and TDDM2 have been proposed. In TDDM, C3 is
simply omitted [5, 6]. In TDDM1, C3 is given by [21]

Cp1p2h1p3p4h2 =
∑

h

Chh1p3p4Cp1p2h2h, (10)

Cp1h1h2p2h3h4 =
∑

p

Ch1h2p2pCp1ph3h4 , (11)

where p and h refer to particle and hole states, respectively.
These expressions were derived from perturbative consideration
using the Coupled-Cluster-Doubles (CCD)-like ground state
wavefunction [38]. In a time-independent density-matrix
approach in quantum chemistry, known as the contracted
Schrödinger equation [20], Mazziotti [22] has proposed a
method for constructing the three-body cumulant (C3) with
nαα′ and C2. Equations (10) and (11) describe the leading-order
terms in the three-body cumulant [23]. TDDM2 [26] is the most

effective in the large N and strongly interacting limits of the
Lipkin model and gives

Cp1p2h1p3p4h2 = 1

N

∑

h

Chh1p3p4Cp1p2h2h, (12)

Cp1h1h2p2h3h4 = 1

N

∑

p

Ch1h2p2pCp1ph3h4 , (13)

whereN is

N = 1+ 1

4

∑

pp′hh′
Cpp′hh′Chh′pp′ . (14)

The factor N was introduced to simulate many-body effects
which reduce C3 in large N systems and (or) strongly interacting
regions of the Lipkin model. In the perturbative region where the
second term on the right-hand side of Equation (26) is smaller
than unity,N has the meaning of the normalization factor of the
total wavefunction.

The conservation of the total energy and total particle
number is not affected by the truncation schemes for C3

as long as its symmetry and anti-symmetry properties under
the exchange of s.p. indices is respected. However, the trace
relation between the one-body and two-body density matrices
nαα′ = ∑

λ ραλα′λ/(N − 1) is not conserved when any
approximation is made for C3. This is an example of the loss
of N-representability [20]. It was pointed out [21] that the
fulfillment of the trace relation is drastically improved by going
from TDDM to TDDM1. In an attempt to conserve the trace
relation, Cassing and Pfitzner [39] proposed an approximation
for C3 which also contains quadratic terms of C2. However, C3

is not uniquely determined only by the requirement of the trace
relation conservation. In contrast to TDDM1 their quadratic
terms do not have the leading-order terms (Equations 10, 11) of
the three-body cumulant [22, 23] and the dynamical effect of C3

was found small in one-dimensional heavy-ion simulations [39].
C3 in Reference [39] is not anti-symmetric under the exchange
of s.p. indices, which may violate even the conservation of the
trace relation as was pointed out by Gherega et al. [17]. There
is another attempt [40] to conserve the trace relation, where the
equation motion for C3 was solved by truncating the BBGKY
hierarchy at the three-body level. However, the application of
such an approach was limited to model Hamiltonians [40].

2.2. Ground-State Calculation
The ground state in TDDMA is given as a stationary solution
of the time-dependent equations (Equations 5, 6) which satisfies
ṅαα′ = 0 and Ċ2 = 0. Two methods have been employed
to obtain the stationary solution. One is the adiabatic method:
Equations (5) and (6) are solved by starting from the HF
configuration and gradually increasing the strength of the

residual interaction such as v(Er − Er′) × t/T. This method
is based on the Gell-Mann-Low theorem [41] and has often
been used to obtain approximate ground states with various
time-dependent functionals [11, 13, 14, 42, 43]. To suppress
oscillating components which come from the mixing of excited
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states, T must be much larger than the longest period in the
system considered. The other method is a usual iterative gradient
method which is useful to obtain a rigorously stationary solution.
Since it involves matrix inversion, the application of the gradient
method is limited to small systems: The gradient method has
been employed to obtain the ground states of the Lipkin model
[15] and the oxygen, calcium and tin isotopes [34–36] using
several s.p. states around the Fermi level [34, 36] or the valence
neutron s.p. states [35].

2.3. Excited-States Calculation
The formulation for excited states can be derived by either taking
the small amplitude limit of the TDDM equations or using the
equation of motion approach [1, 27]. Here the formulation based
on the equation of motion approach is presented. Let us consider
a generalized RPA operator with one-body and two-body sectors

Q+
µ =

∑

λλ′
x
µ

λλ′a
+
λ aλ′ +

∑

λ1λ2λ
′
1λ

′
2

X
µ

λ1λ2λ
′
1λ

′
2
a+λ1a

+
λ2
aλ′2aλ

′
1
, (15)

where there is no restriction on the s.p. indices: They can be
both p and h. As usual with the equation of motion approach,
the properties of the excitation operator Q+

µ |80〉 = |8µ〉 and
Qµ|80〉 = 0 are assumed and the following equations of motion
satisfied by exact states are taken into account

〈80|[a+λ aλ′ ,H]|8µ〉 = ωµ80|a+λ aλ′ |8µ〉 (16)

〈80|[a+λ1a
+
λ2
aλ′2aλ

′
1
,H]|8µ〉 = ωµ〈80|a+λ1a

+
λ2
aλ′2aλ

′
1
|8µ〉, (17)

where ωµ is the excitation energy of an excited state |8µ〉.
The equations for x

µ

λλ′ and X
µ

λ1λ2λ
′
1λ

′
2
are obtained by inserting

Equation (15) into the above equations. They are written in
matrix form [15, 40]

(

A B
C D

) (

xµ

Xµ

)

= ωµ

(

S1 T1

T2 S2

) (

xµ

Xµ

)

. (18)

The Hamiltonian matrices A, B, C and D are given by

A(αα′ : λλ′) = 〈80|[[a+α′aα ,H], a+
λ
aλ′ ]|80〉, (19)

B(αα′ : λ1λ2λ′1λ
′
2) = C+

= 〈80|[[a+α′aα ,H], a+
λ1
a+
λ2
aλ′2

aλ′1
]|80〉, (20)

D(αβα′β ′ : λ1λ2λ′1λ
′
2) = 〈80|[[a+α′a

+
β′aβaα ,H], a+

λ1
a+
λ2
aλ′2

aλ′1
]|80〉.

(21)

The norm matrices S1, T1, T2, and S2 are given as

S1(αα
′
: λλ′) = 〈80|[a+α′aα , a+λ aλ′ ]|80〉, (22)

T1(αα
′
: λ1λ2λ

′
1λ

′
2) = T+

2 = 〈80|[a+α′aα , a+λ1a
+
λ2
aλ′2aλ

′
1
]|80〉,
(23)

S2(αβα
′β ′ : λ1λ2λ′1λ

′
2) = 〈80|[a+α′a+β ′aβaα , a+λ1a

+
λ2
aλ′2aλ

′
1
]|80〉.

(24)

These matrices are evaluated by assuming |80〉 to be the ground
state in TDDMA. This means that the effects of ground-state

correlations are included in the above matrices through nαα′ and
C2. All matrix elements in Equation (18) are given in Tohyama
and Schuck [40]. The one-body sector of Equation (18), Axµ =
ωµS1x

µ, is explicitly shown below to explain how nαα′ and C2 are
included. The matrix S1 is given by

S1(αα
′
: λλ′) = (nα′α′ − nαα)δαλδα′λ′ (25)

and A by

A(αα′ : λλ′) = (ǫα − ǫα′ )(nα′α′ − nαα)δαλδα′λ′

+ (nα′α′ − nαα)(nλ′λ′ − nλλ)〈αλ′|v|α′λ〉A
− δα′λ′

∑

γ γ ′γ ′′
〈αγ |v|γ ′γ ′′〉Cγ ′γ ′′λγ

− δαλ

∑

γ γ ′γ ′′
〈γ γ ′|v|α′γ ′′〉Cλ′γ ′′γ γ ′

+
∑

γ γ ′
(〈αγ |v|λγ ′〉ACλ′γ ′α′γ+〈λ′γ |v|α′γ ′〉ACαγ ′λγ )

−
∑

γ γ ′
(〈αλ′|v|γ γ ′〉Cγ γ ′α′λ + 〈γ γ ′|v|α′λ〉Cαλ′γ γ ′ ),

(26)

where ǫαα′ and nαα′ are assumed to be diagonal for simplicity.
The first two terms on the right-hand side of Equation (22)
are of the same form as the RPA and rRPA euqations, the
next two terms with C2 and the Kronecker delta δαα′ describe
the self-energies of the α–α′ configurations due to ground-state
correlations [29, 44], and the other terms with C2 are interpreted
as the vertex corrections [29, 44]. Equation (18) has the most
general form of beyond RPA theories: It is reduced to SRPA
when the ground-state correlations are neglected and the one-
body sector of Equation (18) Axµ = ωµS1x

µ is formally the
same as the equation in SCRPA. Equation (18) is referred to as
the extended RPA (ERPA) hereafter.

Although ERPAhas great advantages over other extended RPA
theories, it is worth pointing out its limitations. The numbers
of the matrix elements of C2 and X

µ

αβα′β ′ increase rapidly with

increasing number of the s.p. states. Therefore, truncation of
the s.p. space is required in realistic applications. As shown
below, basic effects of two-body correlations can be described
with rather small s.p. space, however. The other limitation is
concerned with hermiticity of D in Equation (18), which is
related to the truncation of the BBGKY hierarchy. Equation (21)
contains C3 and it is approximated depending on the truncation
scheme. Hermiticity of D which is guaranteed only when all the
matrix elements of C3 satisfy the stationary condition as those
of nαα′ and C2 do is not fulfilled [40] when any approximated
is made for C3. The non-hermiticity has not caused serious
problems in the applications thus far considered, though. In the
case of the Lipkin model, an attempt [40] to obtain Hermitian D
was carried out by solving the equation of motion for C3.

2.4. Applications
TDDMA’s in the time-independent s.p. basis have been applied
to model Hamiltonians [23, 33] to corroborate their validity:
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The Lipkin model [25] was used to compare three truncation
schemes TDDM, TDDM1 and TDDM2. Comparison of ERPA
with other beyond-RPA theories, rRPA, SCRPA and SRPA was
performed for the one-dimensional Hubbard model [37]. As
realistic applications of ERPA, the quadrupole excitations of
oxygen isotopes [34], the low-lying quadrupole states in tin
isotopes [35] and the dipole and quadrupole excitations of 40Ca
and 48Ca [36] have been studied. In the following some of the
results are presented.

2.4.1. Lipkin Model

The Lipkin model [25] has extensively been used to test
theoretical models. It describes an N-fermions system with two
N-fold degenerate levels. The upper (lower) levels have energies
ǫ/2 (−ǫ/2) and quantum number p (−p) with p = 1, 2, ...,N. The
Hamiltonian is given by

H = ǫJz +
V

2
(J2+ + J2−), (27)

where the operators are the followings

Jz = 1

2

N
∑

p=1

(c+p cp − c−p
+c−p), (28)

J+ = J+− =
N

∑

p=1

c+p c−p. (29)

For χ = |V|(N − 1)/ǫ ≤ 1 the HF ground state is given by
|HF〉 = ∏N

p=1 c
+
−p|0〉, where |0〉 is the true vacuum. For χ > 1

the lowest s.p. states are obtained by the transformation

(

a+−p

a+p

)

=
(

cosα sinα
− sinα cosα

) (

c+−p

c+p

)

,

(30)

where α satisfies cos 2α = 1/χ . The HF ground state in this case
is often called the “deformed” HF (DHF) state and is given by
|DHF(α)〉 = ∏N

p=1 a
+
−p|0〉.

The truncation schemes TDDM, TDDM1 and TDDM2 have
been applied to the Lipkin model and it was found that the
simplest scheme TDDM gives the exact solutions in the limits
of large N and χ [45]. This is due to the unique property of
the Lipkin model that the ground-state energy in DHF becomes
exact in such limits [1]. The relation between the density-matrices
in DHF and TDDM is discussed below. The occupation matrix
in DHF is given by n−p−p = cos2 α, npp = 1 − n−p−p =
sin2 α, and np−p = cosα sinα. The two-body and three-body
density matrices in DHF are given by the above elements of the
occupation matrix. For example the 2p–2h and ph–ph elements
of the two-body density matrix are expressed as

ρpp′−p−p′ = 〈DHF(α)|c+−pc
+
−p′cp′cp|DHF(α)〉

= cos2 α sin2 α = np−pnp′−p′ = ρp−p′−pp′ (p 6= p′).

(31)

Similarly, the three-body density matrix is given by

ρp−p′p′′pp′−p′′ = cos2 α sin4 α = nppρ−p′p′′p′−p′′ . (32)

This means that the correlated part (Cp−p′p′′pp′−p′′ ) of the three-
body density matrix vanishes in DHF. The “spherical” total
wavefunction |9〉 in DHF which does not have the mixing of the
p and−p states is given by the two DHF solutions as

|9〉 = 1√
2
(|DHF(α)〉 + |DHF(−α)〉). (33)

Since the overlap between |DHF(α)〉 and |DHF(−α)〉 is negligibly
in the large χ and N limits, the three-body density matrix
calculated with |9〉 has also no correlated part. This is the reason
why the results in TDDM approach the exact solutions in the
large χ and N limits.

The ground-state energy E0 calculated in TDDM (solid line)
for N = 12 and 50 is presented respectively in Figures 1, 2
as a function of χ . The dashed and green (gray) lines denote
the results in TDDM1 and TDDM2, respectively. In the case of
N = 50 the results in TDDM2 are not displayed because they lie
between the TDDM results and the exact values. The dotted and
dot-dashed lines depict the results in HF and DHF (χ > 1) and
the exact values, respectively. As seen in Figures 1, 2, the factor
N in Equations (12) and (13) plays a role in greatly reducing C3,
making TDDM2 almost equivalent to TDDM for N = 50. In the
limits of large N and χ both TDDM and DHF results become
close to the exact solutions. In the transitional region χ ≈ 1,
however, TDDM1 and TDDM2 were found better than TDDM
and DHF [45]. In the case of N = 12 this extends to χ ≈ 2 as
seen in Figure 1.

The excitation energies of the first and second excited states
calculated from the small oscillations of the TDDM solutions
(dots) are compared with the exact solutions (dot-dashed line)
in Figures 3, 4 for N = 200 where TDDM is supposed to give
the nearly exact ground state. The dotted lines in Figures 3, 4
depict the results in RPA and the “deformed” RPA (χ > 1) for
the first excited state. In contrast to RPA and the deformed RPA
TDDM reproduces the smoothly decreasing excitation energy of
the first excited state with increasing interaction strength beyond
χ = 1. Figure 4 shows that TDDM also gives good description
of the second excited state. As seen in Figure 4, the excitation
energies for the first excited state calculated in the deformed RPA
become close to the exact values for the second excited state [1]
with increasing χ . The excited states were also calculated for a
small system with N = 4 by using the ground states in TDDM
[15] and TDDM1 [23], and it was found that the TDDM1 ground
state gives much better results.

As was pointed out above, the fact that TDDM becomes
exact in large N and χ limits is due to the unique feature of
the Lipkin model that the mean-field theory DHF gives the
exact solutions in such limits. In the transitional region χ ≈
1 TDDM1 and TDDM2 give better description of the exact
solutions than TDDM, and the applications to the ground states
of other solvable models [23, 26] and 16O [24] also showed
that TDDM1 largely improves TDDMwhereas the improvement
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FIGURE 1 | Ground-state energy in TDDM (solid line) as a function of

χ = |V|(N− 1)/ǫ for N = 12. The results in TDDM1 where the three-body

correlation matrix is given by Equations (10) and (11) are shown with the

dashed line. The green (gray) line depicts the results in TDDM2 where the

three-body correlation matrix is given by Equations (12) and (13). The results in

HF and DHF(χ > 1) are depicted with the dotted line. The exact values are

given by the dot-dashed line. Adapted from Tohyama and Schuck [45] with

permission from Società Italiana di Fisica/Springer-Verlag GmbH Germany.

FIGURE 2 | Ground-state energy in TDDM (solid line) as a function of χ for

N = 50. The exact values are given with the dot-dashed line. The dashed line

depicts the results in TDDM1. The results in TDDM2 lie between the TDDM

results and the exact values and are not displayed here. The results in HF and

DHF(χ > 1) are shown with the dotted line but cannot be distinguished from

the exact values in the scale of the figure except for the region χ ≈ 1. Adapted

from Tohyama and Schuck [45] with permission from Società Italiana di

Fisica/Springer-Verlag GmbH Germany.

from TDDM1 to TDDM2 is not large [26]. Therefore, TDDM1
or TDDM2 may be a useful truncation scheme to be applied to
realistic cases except for strongly interacting regions.

FIGURE 3 | Excitation energy of the first excited state calculated in TDDM

(dots) as a function of χ for N = 200. The exact values are shown with the

dot-dashed line. The dotted line depicts the results in RPA. Adapted from

Tohyama and Schuck [45] with permission from Società Italiana di

Fisica/Springer-Verlag GmbH Germany.

FIGURE 4 | Same as Figure 3 but for the second excited state. The dotted

line depicts the RPA results for the first excited state. Adapted from Tohyama

and Schuck [45] with permission from Società Italiana di Fisica/Springer-Verlag

GmbH Germany.

2.4.2. One-Dimensional Hubbard Model

ERPA based on the TDDM1 ground state has been applied to
the one-dimensional (1-D) Hubbard model [37] to compare with
other beyond RPA theories [33]. The Hubbard model is one
of the most widespread models to investigate strong electron
correlations and has often been used to corroborate the validity of
beyond RPA theories [46]. In momentum space the Hamiltonian
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FIGURE 5 | Ground-state energy Etot calculated in TDDM1 (dots) as a function

of U/t for N = 6 with half-filling. The exact solutions are displayed with the solid

line. Adapted from Tohyama [33] under the Creative Commons CCBY license.

is given by [46]

H =
∑

k,σ

ǫka
+
k,σ

ak,σ + U

2N

∑

k,p,q,σ

a+
k,σ

ak+q,σ a
+
p,−σ ap−q,−σ , (34)

where U is the matrix element of the on-site repulsive Coulomb
interaction, σ spin projection and the s.p. energies are given by
ǫα = −2t cos kα with the nearest-neighbor hopping potential t.
In the case of the six sites at half filling considered here, there are
the following six wave numbers

k1 = 0, k2 =
π

3
, k3 = −π

3
,

k4 = 2π

3
, k5 = −2π

3
. k6 = −π . (35)

The s.p. energies are ǫ1 = −2t, ǫ2 = ǫ3 = −t, ǫ4 = ǫ5 = t,
and ǫ6 = 2t. In HF the lower states with ǫ1, ǫ2 and ǫ3 are fully
occupied by 6 particles.

The ground state energy calculated in TDDM1 (dots) with
the adiabatic method is displayed in Figure 5 as a function of
U/t. It was found [21] that TDDM1 gives much better ground
states of this model Hamiltonian than TDDM and that the
improvement from TDDM1 to TDDM2 is minor [26]. The exact
values obtained in exact diagonalization approach are depicted
with the solid line. The TDDM1 results agree well with the
exact values. The occupation probabilities of the four s.p. states
in TDDM1 (circles and squares) given in Figure 6 as functions
of U/t also have reasonable agreement with the exact solutions
(solid, dotted, dashed and dot-dashed lines). The deviation of
the occupation probabilities from the HF values (nαα = 1 or 0)
exceeds 10% at U/t = 4.

ERPA is compared with other beyond RPA theories for the
spin mode with the momentum transfer q = π/3 which is

FIGURE 6 | Occupation probability of each s.p. state calculated in TDDM1

(circles and squares) as a function of U/t. The exact solutions are depicted

with the solid, dotted, dashed and dot-dashed lines. Adapted from Tohyama

[33] under the Creative Commons CCBY license.

excited mainly by the one-body operator a+
k4↑ak2↑ − a+

k4↓ak2↓.
Since the s.p. states are partially occupied, the h–h and p–p
transitions such as k1 → k2 and k6 → k5 also contribute
in rRPA, SCRPA and ERPA. In Figure 7 the excitation energies
in ERPA (dots), RPA (open triangles), rRPA (filled triangles),
SCRPA (squares) and SRPA (crosses) are shown as functions of
U/t. The exact solutions are given with the solid line. The rRPA
and SCRPA results are calculated with nαα and Cαβα′β ′ which are
not self-consistently determined by the p–h and h–p amplitudes
[28, 29] but given by the TDDM1 calculations. In the case of a
repulsive interaction, the excitation energy of a spin mode where
the s.p. transitions between spin-up states and spin-down states
destructively interfere decreases with increasingU. The results in
RPA agree rather well with the exact solutions. In rRPA there are
two states below E/t < 2. The main components of the lower
state at E/t ≈ 1 are the p–p and h–h transitions and the higher
state consists of the p–h and h–p components. Thus in rRPA
the configurations consisting of the p–p and h–h components
appear as the lowest state as if it is a physical state. This indicates
that it is not appropriate to include the ground-state correlation
effects only through nα . In SCRPA the states originating from
the p–p and h–h transitions gain self energies and move to the
high energy region (E/t > 10). This is because the terms in
Equation (26) with C2 are divided by the small values npp − np′p′

or nhh − nh′h′ when Axµ = S1x
µ is solved. Thus in SCRPA the

states consisting of the p–p and h–h components are energetically
separated from the lowest state. The excitation energies of the
lowest state calculated in SCRPA, however, exceed significantly
the exact values. This is due to the neglect of the coupling to
the two-body amplitudes. SRPA includes the coupling to the two-
body amplitudes though the ground-state correlation effects are
neglected. As shown in Figure 7 with the crosses, the coupling to

Frontiers in Physics | www.frontiersin.org 7 March 2020 | Volume 8 | Article 67

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tohyama Applications of Time-Dependent Density-Matrix Approach

FIGURE 7 | Excitation energy of the spin mode with momentum transfer

q = π/3 as a function of U/t calculated in ERPA (dots). The results in RPA,

rRPA, SCRPA, and SRPA are denoted with the open triangles, filled triangles,

squares and crosses, respectively. The exact solutions are depicted with the

solid line. Adapted from Tohyama [33] under the Creative Commons CCBY

license.

the 2p–2h amplitudes considered in SRPA downwardly shift the
RPA results with increasing U and SRPA collapses at U/t = 3.9.
The results in ERPA have reasonable agreement with the exact
solutions. The coupling to the two-body amplitudes included in
ERPA plays a role in bringing down the results in SCRPA.

From the application to the 1-D Hubbard model it was
clarified that when the couping to the two-body amplitude
is considered, the effects of ground-state correlations should
also be included, and vice versa. Therefore, rRPA, SCRPA and
SRPA which only include either the ground-state correlations
effects or the coupling to the two-body amplitude cannot give
satisfactory results.

2.4.3. Dipole and Quadrupole Excitations of 40Ca and
48Ca

In this subsection the applications of ERPA to the dipole
excitation of 48Ca and the quadrupole excitation of 40Ca [36]
are presented. It is demonstrated that the effects of ground-state
correlations which are not fully incorporated in other beyond
RPA theories play a significant role in the fragmentation of
transition strengths.

Since the numbers of C2 and X
µ

αβα′β ′ increase rapidly with

the number of the s.p. states, rather sever truncation of the
s.p. space is required in realistic applications. The occupation
probability nαα and C2 were calculated within TDDM by using
the truncated s.p. basis consisting of the 2s–1d and 1f –2p states,
and only the 2p–2h and 2h–2p elements of C2 were included
to reduce the dimension size. It was pointed out in Reference
[24] that TDDM with this truncation of C2 gives as good results
for the ground state of 16O as TDDM1 with all components
of C2. The Skyrme III force [47] was used to obtain the s.p.

TABLE 1 | Single-particle energies ǫα and occupation probabilities nαα calculated

in TDDM for 40Ca.

ǫα [MeV] nαα

Orbit Proton Neutron Proton Neutron

1d5/2 −15.6 −22.9 0.923 0.924

1d3/2 −9.4 −16.5 0.884 0.884

(0.65 ± 0.05) (0.80 ± 0.11)

2s1/2 −8.5 −15.9 0.846 0.846

1f7/2 −3.4 −10.4 0.154 0.154

Observed occupation probabilities [48] are shown for the 1d3/2 states.

wavefunctions which satisfy a HF-like nαα-dependent equation.
In Pfitzner et al. [11] and Peter et al. [12] a fixed harmonic
oscillator basis was chosen to facilitate the calculations of two-
body matrix elements when the TDDM equations were applied
to the study of giant resonances. A simplified interaction which
contains only the t0 and t3 terms of the Skyrme III force was used
as the residual interaction. The ground states were calculated with
the iterative gradient method [15]. The one-body amplitudes x

µ

αα′
in Equation (18) were defined with a large number of s.p. states
including those in the continuum to satisfy the energy-weighted
sum rule: The continuum states were discretized by confining
the wavefunctions in a sphere with radius 15 fm and all the s.p.
states with ǫα ≤ 50 MeV and jα ≤ 11/2h̄ were included. The
residual interaction in Equation (18) was assumed to have the
same form as that used in the ground-state calculations. Since
the residual interaction differs from the effective interaction used
in the calculation of the s.p. states, it is necessary to reduce the
strength of the residual interaction. The reduction factors 0.66
and 0.69 for 40Ca and 48Ca, respectively, were determined so that
the spurious mode corresponding to the center-of-mass motion
has zero excitation energy in RPA. To reduce the number of the
two-body amplitudes, only the 2p–2h and 2h–2p components of
X
µ

αβα′β ′ were considered for the 2s–1d and 2p–1f states.

The occupation probabilities calculated in TDDM for 40Ca
and 48Ca are given in Tables 1, 2, respectively. They deviate more
than 10% from the HF values (nαα=1 or 0) in

40Ca. This indicates
that the ground state of 40Ca is highly correlated as an RPA study
[49] and perturbative calculations [31, 50] have already shown.
Since the occupation of the neutron 1f7/2 state in 48Ca blocks
some 2p–2h excitations, the ground-state correlations are weaker
in 48Ca than in 40Ca. As will be discussed below, the fractional
occupation of the 2p–1f states plays an important role in the
fragmentation of dipole and quadrupole transition strengths.
Occupation probabilities deduced from ground-state-to-ground-
state (p, d) and (e, e′p) reactions [48] are also shown for some
s.p. states in Tables 1, 2 (values in parentheses). These values
also strongly deviate from the HF value (nα = 1). The TDDM
results cannot be directly compared with these data, however.
A more appropriate formalism such as the odd-particle number
RPA [51] which deals with odd particle systems is needed to
compare with experiment.

The strength function for the isovector dipole excitation in
48Ca calculated in ERPA (solid line) is displayed in Figure 8.
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TABLE 2 | Same as Table 1 but for 48Ca.

ǫα [MeV] nαα

Orbit Proton Neutron Proton Neutron

1d5/2 −22.6 −22.4 0.963 0.965

1d3/2 −17.1 −17.0 0.952 0.940

2s1/2 −15.1 −16.4 0.905 0.932

(0.54 ± 0.04)

1f7/2 −10.6 −10.6 0.059 0.919

(0.73 ± 0.14)

2p3/2 −1.7 −3.8 – 0.103

2p1/2 0.1 −2.0 – 0.064

1f5/2 −2.2 −1.9 0.022 0.116

Observed occupation probabilities [48] are shown for the proton 2s1/2 and neutron 1f7/2

states.

The dotted and dot-dashed lines depict the results in RPA and
SRPA, respectively. An artificial width Ŵ = 0.5 MeV is used to
smooth the distributions. The strength distributions in Figure 8

exhaust about 90% of the energy-weighted-sum-rule (EWSR)
value including the enhancement term given by the t1 and t2
parameters of the Skyrme III force. A better treatment of the
residual interaction and the continuum states is required to fulfill
the EWSR value. The sharp peak in RPA corresponds to the
giant dipole resonance (GDR). GDR strongly couples to the
2p–2h states and it is damped both in SRPA and ERPA. The
occupation of the neutron 1f7/2 state in 48Ca allows the 2p–2h
states which include the neutron 1f7/2 state as a hole state. Since
these states have energies close to the energy of GDR, GDR is
strongly damped due to the coupling to the 2p–2h states. The
SRPA result in Figure 8 dose not show a strong downward shift of
the dipole strength which has been reported in large scale SRPA
calculations [53]. This is due to fact that a rather small number
of the s.p. states are used to define the 2p–2h amplitudes. The
peak position and width of GDR in ERPA are comparable with
the experimental photo absorption cross section [52] as shown in
the inset of Figure 8.

ERPA gives 7 states below 10 MeV, which are compared with
experiment [54] in Figure 9. These states involve the transitions
from the partially occupied neutron 2p1/2, 2p3/2 and 1f5/2 states
and the p–p transition components exhaust 15 − 39% of the
transition amplitude (xµ, Xµ). The summed strength below
10 MeV is 213 ×10−3e2fm2, which somewhat overestimates
the experimental value 61.5 ± 7.8 ×10−3e2fm2. SRPA gives
two dipole states at 9.2 MeV and 9.3 MeV with the summed
strength 21× 10−3e2fm2. The study of low-lying dipole strength
distribution has been attracting strong interests and various
theoretical approaches such as the large scale SRPA [55, 56] and
the quasi-particle phonon coupling models [57, 58] have been
successfully applied to calcium isotopes.

The strength function for the isoscalar quadrupole excitation
in 40Ca calculated in ERPA (solid line) is shown in Figure 10.
The dotted and dot-dashed lines depict the results in RPA and
SRPA, respectively. The distributions are smoothed with an
artificial width Ŵ = 0.5 MeV. The energy-weighted sums of

FIGURE 8 | Strength functions calculated in RPA (dotted line), SRPA

(dot-dashed line) and ERPA (solid line) for the isovector dipole excitation in
48Ca. The distributions are smoothed with an artificial width Ŵ = 0.5 MeV. In

the inset the photo absorption cross section in ERPA (solid line) is compared

with experimental data [52] (dots). Readapted from Tohyama [36] under the

Creative Commons CCBY license.

FIGURE 9 | Distribution of B(E1) strength below 10 MeV calculated in ERPA

for 48Ca. Experimental data (dashed line) are taken from Hartmann et al. [54].

Adapted from Tohyama [36] under the Creative Commons CCBY license.

the strength distributions in Figure 10 exceed the EWSR value
by about 10% due to the simple approximations for the residual
interaction and the continuum states. The main peak in RPA
corresponds to the giant quadrupole resonance (GQR). ERPA
brings much larger fragmentation of the quadrupole strength
than SRPA especially to the low energy region, indicating the
importance of the ground-state correlations effects included in
ERPA. The large fragmentation of the quadrupole strength is
consistent with experiment [59, 60]. The p–p transitions allowed
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FIGURE 10 | Strength functions calculated in RPA (dotted line), SRPA

(dot-dashed line) and ERPA (solid line) for the isoscalor quadrupole excitation

in 40Ca. The distributions are smoothed with an artificial width Ŵ = 0.5 MeV. In

the inset the ERPA strength distribution (lower part) is compared with the

experimental data from (p,p′) experiments at Ep = 200 MeV and θLab = 11◦

[59] (upper part). Redapted from Tohyama [36] under the Creative Commons

CCBY license.

by the fractional occupation of the 1f7/2 states and the coupling of
the 2p–2h amplitudes to the h–h or p–p amplitudes through C2

were found to play an important role in the large fragmentation
of the quadrupole strength [34, 36]. The importance of the
coupling of the one-body amplitude to C2 in the fragmentation
of GQR in 40Ca was also pointed out by the 1p–1h⊗phonon
configurationsmodel [61, 62]. A large scale SRPA calculation [63]
shows a downward shift of the quadrupole strength and larger
fragmentation of GQR than the SRPA result in Figure 10. This
difference again originates from the difference in the number of
the 2p–2h configurations used. In the inset the ERPA strength
distribution in the GQR region (lower part) is compared with
the experimental data from (p, p′) experiments [59] (upper
part). Although the peak position in ERPA corresponds to the
experimental data, ERPA cannot describe the large fragmentation
of GQR. The result of the large scale SRPA calculation [63]
suggests the importance of higher configurations.

There are 19 sates below 10 MeV in ERPA, which are
compared with experiment [54] in Figure 11. The first 2+ state
in 40Ca cannot be described in RPA and ERPA because it mainly
consists of 4p–4h states [64] as in the case of 16O [65]. The
summed strength below 10 MeV is 166 e2fm4 in ERPA, which is
about two thirds of the experimental value 263± 46 e2fm4 where
the first 2+ state is excluded.

From the applications of ERPA to the dipole and quadrupole
excitations of 48Ca and 40Ca it was clarified that the ground
state correlation effects should be included to explain the
large fragmentation of the dipole and quadrupole strengths
in doubly-magic nuclei. The ground-state correlation effects
in magic nuclei have extensively been studied for spin-isospin
modes [31, 50, 66–68].

FIGURE 11 | Distribution of B(E2) strength below 10 MeV for 40Ca.

Experimental data (dashed line) are taken from Hartmann et al. [54]. Adapted

from Tohyama [36] under the Creative Commons CCBY license.

3. FORMULATION IN TIME-DEPENDENT
SINGLE-PARTICLE BASIS

The first applications of the time-dependent density-matrix
approach were based on the TDDM truncation scheme and
the TDDM calculations [6, 7] were performed by using the
time-dependent s.p. wavefunctions obtained from the then
available TDHF code with axial symmetry and without spin-orbit
force [69]. More advanced TDHF codes with spin-orbit force,
unconstrained symmetry and improved effective interactions
have been used to solve the TDDM equations [8, 13]. Since the
calculation of the two-body matrix elements is time-consuming,
a simpler approximation called TDDMP [13, 14] has also been
employed in heavy-ion collisions, where two-body correlations
are considered only for a pair of time reversed s.p. states to reduce
the number of matrix elements of C2. The TDDM approaches
based on the time-dependent s.p. basis have been applied to
study the particle transfers in heavy-ion collisions [7], the fusion
reactions [8, 9] and the damping of giant resonances at zero
[6, 70, 71] and finite temperatures [10]. TDDMP has been applied
to the particle transfers in heavy-ion collisions [13] and the fusion
reactions [14]. In the following the TDDM formulation in the
time-dependent s.p. basis is given and the application to the
fusion reactions of 16O + 16O is presented in some detail as
an example.

3.1. TDDM Equations
The one-body density matrix ρ and the correlated part C2 of the
two-body density matrix ρ2 are expanded with a finite number of
time-dependent s.p. states ψα

ρ(11′, t) =
∑

αα′
nαα′ (t)ψα(1, t)ψ

∗
α′ (1

′, t), (36)
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C2(121
′2′, t) = ρ2 −A(ρρ)

=
∑

αβα′β ′
Cαβα′β ′ (t)ψα(1, t)ψβ (2, t)ψ

∗
α′ (1

′, t)ψ∗
β ′ (2

′, t),

(37)

where the numbers denote space, spin and isospin coordinates.
The equations of motion of TDDM in the time-dependent basis
consist of the following three coupled equations [6]:

i
∂

∂t
ψα(1, t) = h(1, t)ψα(1, t), (38)

iṅαα′ =
∑

βγ δ

[〈αβ|v|γ δ〉Cγ δα′β − Cαβγ δ〈γ δ|v|α′β〉], (39)

iĊαβα′β ′ = Bαβα′β ′ + Pαβα′β ′ +Hαβα′β ′ , (40)

where h is the mean-field Hamiltonian given by ρ. When the
time-dependent s.p. states are chosen, the terms with the s.p.
energies on the right-hand side of Equations (5) and (6) are
incorporated into the equation for the s.p. wavefunctions [6]. In
TDDMP [13, 14] Hαβα′β ′ is neglected and two-body correlations
are considered only for a pair of time reversed s.p. states.

3.2. Fusion Reactions of 16O + 16O
The fusion reactions of 16O + 16O studied in TDDM with
the time-dependent s.p. basis are explained below. This work
Tohyama and Umar [8] finally solved the longstanding problem
of fusion window anomaly. Early TDHF calculations showed that
the colliding heavy ions do not fuse in a small impact parameter
region when incident energy is higher than a certain relatively
low threshold value Eth [2]. This is known as the fusion window
anomaly. Experimental search for the fusion window anomaly
has found no evidence [72–75]. It was found that the inclusion
of spin-orbit force introduced enough one-body dissipation to
16O + 16O collisions [76] because the degeneracy of the 1p3/2
and 1p1/2 states is lifted. It was also found [77] that the effects
of two-body dissipation taken in TDDM resulted in the doubling
of Eth without incorporating spin-orbit force. This is due to
the inclusion of additional unoccupied s.p. states in TDDM. In
Tohyama and Umar [8] the combined effects of spin-orbit force
and two-body dissipation were studied for 16O + 16O. In this
study the Skyrme II force (SKII) [78] was chosen as an effective
interaction to calculate the s.p. wavefunctions since SKII has
often been used in TDHF calculations [69]. The s.p. states were
restricted to the 1s–1p and 2s–1d states and the simple force of

the δ function form v = v0δ
3(Er − Er′) with v0 = −350 MeV·fm3

was used as the residual interaction to facilitate the calculation of
the matrix elements. The threshold energy Eth was searched for
four different calculation schemes for the head-on collisions of
16O + 16O: TDHF with and without spin-orbit force, and TDDM
with and without spin-orbit force.

The obtained results for Eth in the center-of-mass (c.m.)
frame are summarized in Table 3. The inclusion of either spin-
orbit force or two-body dissipation dramatically increases Eth.

TABLE 3 | Threshold energy Eth in the center-of-mass frame for the head-on

collisions of 16O + 16O.

Method Eth [MeV]

TDHF without Eℓ · Es 30

TDDM without Eℓ · Es 66

TDHF with Eℓ · Es 69

TDDM with Eℓ · Es 80

Fusion occurs below Eth.

However, two-body dissipation increases Eth only about 10 MeV
when spin-orbit force is included. It was also found that the
translational motion damps faster in TDDM than in TDHF [8]
below Ec.m. = 69 MeV where the colliding system fuses both in
TDHF and TDDM. The fusion reactions of 16O + 16O below Eth
were also studied by Wen et al. [14] using the TDDMP approach
and a paring interaction as the residual interaction and it was
found that extracted friction coefficients are enhanced by about
20% due to two-body dissipation.

In the case of heavy-ion collisions the TDDM (and TDDMP)
equations ostensibly do not conserve the total energy because
of the truncation of the s.p. space [7, 14]. Wen et al. [14] has
proposed a method to recover the energy conservation within the
truncated s.p. space.

4. SUMMARY AND OUTLOOK

An approach which extends the time-dependent Hartree-Fock
theory (TDHF) based on the equations of motion for reduced
density matrices was presented. The equations of motions for
reduced density matrices form a coupled chain known as the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
In this time-dependent density-matrix approach (TDDMA) the
truncation of the BBGKY hierarchy is applied at the two-
body level by approximating the correlated part of the three-
body density matrix (C3). TDDMA has great advantages that a
correlated ground state is obtained as a stationary solution of
the TDDMA equations and that the small amplitude limit of
the TDDMA equations gives the most general form of beyond
the random-phase approximation (RPA). TDDMA was applied
to the Lipkin model to test the approximations for C3. It was
found that the simplest approximation where C3 is neglected
becomes exact in the limits of large number of particles and
strong interaction. The extended RPA (ERPA) derived from the
TDDMA equations was applied to the one-dimensional Hubbard
model to compare with other beyond RPA theories. It was
pointed out that when the effects of ground-state correlations
are included, the coupling to the two-body amplitudes should
also be considered, and vice versa. As the realistic applications
of ERPA, the dipole and quadrupole excitations of 40Ca and
48Ca were studied. It was found that the effects of ground-state
correlations play an important role in fragmenting the dipole
and quadrupole strengths. The TDDMA study for the fusion
reactions of 16O + 16O was also presented as an application of
the TDDMA formulation with a time-dependent singe-particle
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basis. It was pointed out that the two-body dissipation plays a
role in further damping the translational motion of 16O + 16O.

Although the obtained results indicate that TDDMA provides
a promising beyond mean-field framework to include two-body
correlation effects which are missing in TDHF, TDDMA has
limitations and issues to be resolved. One limitation is the fact
that the number of matrix elements of the two-body density
matrix rapidly increases with increasing number of the s.p.
states, which forces us to use small s.p. space around the Fermi
level in realistic applications, though the obtained results show
that basic effects of two-body correlations can be described
with rather small s.p. space. In the realistic applications, simple
residual interactions of the δ function form were used to facilitate
the calculations of two-body matrix elements whereas the s.p.
wavefunctions were obtained from the Skyrme interactions
included in TDHF codes. The consistent treatment of the
effective interactions is a subject to be addressed in TDDMA.

Another point is the truncation scheme of the BBGKY hierarchy
itself. In TDDMA the BBGKY hierarchy is truncated at the two-
body level by making approximations for C3. The truncation
violates the properties of reduced density matrices which should
be fulfilled if they are derived from anN-body total wavefunction.
It was pointed out that the TDDM1 truncation scheme where
C3 is given by the traced products of the 2p–2h elements of the
two-body correlation matrix largely improves the simple scheme
where C3 is neglected. However, the validity of TDDM1 cannot
be simply extended to highly excited cases such as heavy-ion
collisions. The study of the truncation schemes in such cases
remains a difficult but interesting subject to be investigated.
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