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This paper sheds light on the performance of the three-stage sequential estimation of

the population inverse coefficient of variation of the normal distribution under a moderate

sample size. We estimate the final sample size generated by the three-stage procedure,

and the population mean, the population variance, the population inverse coefficient of

variation, the asymptotic coverage probability, and the asymptotic regret incurred by

estimating the population inverse coefficient of variation by its sample statistics under

squared-error loss function plus linear sampling cost. Besides, we address the sensitivity

of the constructed confidence interval to detect a potential shift that may occur in

the population inverse coefficient of variation under uncontrolled and controlled optimal

sample size against type II error probability. We do so by computing the characteristic

operating function. Besides, we address the sensitivity of the three-stage procedure

as the underlying distribution departs away from normality. We consider two classes

of distributions: Student’s t distribution and beta distribution. We use Monte Carlo

simulations for this study. We write FORTRAN codes and use Microsoft developer

studio software. The simulation results revealed that the controlled confidence intervals

provide coverage probabilities that exceed the prescribed nominal value even for small

optimal sample size contrary to the uncontrolled case that attains the nominal value only

asymptotically. Moreover, under the controlled case, the sensitivity of the procedure to

depict a potential shift in the parameter of concern becomes more sensitive than the

uncontrolled case. Finally, the three-stage procedure is non-sensitive to departure from

normality for normal likewise distributions.

Keywords: asymptotic consistency, asymptotic efficiency, inverse coefficient of variation, Monte Carlo simulation,

normal distribution, squared-error loss function, three-stage procedure

INTRODUCTION

Let X1,X2, . . . be a sequence of independent and identically distributed random variables from a
normal distribution N

(

µ, σ 2
)

with mean µ∈ R and variance σ 2 ∈ R
+, both parameters are

finite but unknown. Pearson [1] introduced the concept of coefficient of variation in the statistical
literature. The population coefficient of variation is simply the ratio of the population standard
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deviation to the population mean, provided the mean is not zero.
The higher the coefficient of variation, the greater the level of
dispersion around the mean. It is a unit-free measure that allows
for comparison between distributions of values whose scales of
measurement are not comparable.

The measure has a wide range of applications across many
fields of science; see Nairy and Rao [2] for a brief survey of
recent applications in business, climatology, engineering, and
other fields. Recently, Hima Bindu et al. [3] published a book,
which provides necessary exposure of computational strategies,
properties of the coefficient of variation, and extracting the
metadata leading to efficient knowledge representation. It also
compiles representational and classification strategies based on
the measure through illustrative explanations. The disadvantage
of the measure lies when the population mean equal zero, or
when the mean approaches zero. For that reason, we recommend
to work with the reciprocal of the measure, inverse coefficient of
variation, that is η = µ

σ
, η∈ R.

Having observed a random sample X1,X2, . . . ,Xn of size

(n ≥ 2) from the normal distribution, we recommend using
the customary measures Xn = n−1

∑n
1 Xi and Sn =

(n− 1)−1/2
{

∑n
1

(

Xi − Xn

)2
}

1
2
as initial point estimates for the

population mean µ and the population standard deviation σ ,
respectively. Note

(

Xn, S
2
n

)

are complete sufficient statistics for
(

µ, σ 2
)

. Consequently, the customary sample inverse coefficient

of variation is η̂n = Xn
Sn
.

Lehman [4] obtained an exact form for the distribution
function of the sample coefficient of variation, which depends on
the non-central t−distribution, while Jayakumar and Sulthan [5]
derived a density function for the sample coefficient of variation
in terms of the confluent hypergeometric distribution. Moreover,
they obtained the first two moments of the distribution
and proved that the sample coefficient of variation is a
biased estimator for the population coefficient of variation.
Sharma and Krishna [6] found the asymptotic distribution for
the sample inverse coefficient of variation without assuming
normality. They derived an asymptotic confidence interval for
the population inverse coefficient of variation mathematically
and then invested the result in making inferences regarding
Gamma and Weibull distributions. Albatineh et al. [7] examined
the performance of the asymptotic confidence interval for a
wide class of underlying distributions: normal, lognormal, χ2

(Chi-squared-distribution), Gamma, and Weibull via Monte
Carlo simulation. Gulha et al. [8] considered several confidence
intervals for estimating the population coefficient of variation
using parametric, non-parametric, and modified methods using
Simulation. Their objective was to compare the performance
of the existing and newly proposed methods. Banik and Kibria
[9] also considered various confidence intervals for estimating
the population coefficient of variation under several classes
of distributions: symmetric and skewed distributions using
simulation. They also include some bootstrap proposed interval
estimators for estimating the coefficient of variation. Therefore,
the inference for the coefficient of variation is limited to
parametric methods or standard bootstrap. Wang et al. [10]

used non-parametric methods based on empirical likelihood and
modified jackknife empirical likelihood method for constructing
confidence intervals for the coefficient of variation. They also
propose bootstrap procedures for calibrating the test statistics.

In this paper, we propose sequential estimation for estimating
the population inverse coefficient of variation of the normal
distribution and prove that sequential estimation provides better
results than the classical methods.

PROBLEM SETTING

Suppose we desire to construct a confidence interval for η

such that

P
(∣

∣η̂n − η
∣

∣ ≤ d
)

≥ 1− α, for all µ∈ R and σ > 0 (1)

where d (> 0) and 0 < α < 1 are predetermined constants. That
is the half-width of the interval is d, and the coverage probability
is at least 100 (1− α )%.

It was shown from Yousef and Hamdy [11] Corollary 2 parts

(i) and (ii), that as n → ∞
√
2n
(

η̂n − η
)

N
D→
(

0, 2+ η2
)

, “D”
denotes convergence in distribution. It follows that

P

(∣

∣

∣

∣

∣

√
2n
(

η̂n − η
)

√

2+ η2

∣

∣

∣

∣

∣

≤ d
√
2n

√

2+ η2

)

≥ 1− α = 28(a) − 1

⇒ 28

(

d
√
2n

√

2+ η2

)

− 1 ≥ 28(a) − 1, (2)

where8(·) is the cumulative distribution function ofN (0, 1) and
a = Z α

2
the upper cut off point of N (0, 1). Solving Equation (2)

for n provides

n ≥ n∗ = λ
(

1+ η2/2
)

, λ = a2/d2 (3)

If η is known, then (3) is the optimal fixed sample size required
to solve (1) uniformly for all µ∈ R and σ > 0. However, since
η is unknown, then it has been shown by Dantzig [12] that no
fixed sample size procedure could satisfy (1) except by using
multistage sequential sampling procedures. In this paper, we use
Hall’s three-stage sequential sampling procedure.

Before we review Hall’s three-stage procedure [13, 14], we
summarize the customary asymptotic measures through which
one judges the quality of inference, as presented in the literature.
These asymptotic measures help in comparing different methods
of multistage sampling.

Let N be the final random sample size generated by a
multistage sampling procedure, and let n∗ be as in (3). Then the
multistage procedure is said to be (i) first-order asymptotically
efficient if as λ → ∞, E

(

N
n∗
)

→ 1 while it is (ii) second-order
asymptotically efficient if as λ → ∞, E (N − n∗) is bounded
by a finite number unrelated to n∗, in the sense of Ghosh and
Mukhopadhyay [15].

Let IN be the fixed-width confidence interval constructed via
a multistage procedure. Then the procedure is (iii) consistent
or exactly consistent if P (η ∈ IN) ≥ 1 − α, uniformly for all
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∀ µ and σ . while it is (iv) asymptotically consistent if as λ → ∞,
P (η ∈ IN) → 1 − α in the sense of Stein [16], Mukhopadhyay
[17], and Chow and Robbins [18].

Let RN be the multistage risk encountered in estimating η by
the corresponding samplemeasure η̂ and Rn∗ be the optimal fixed
sample size risk had η been known. Then, the procedure is (v)
first-order asymptotically risk efficient if as λ → ∞, RN

Rn∗
→ 1

while it is (vi) asymptotically second-order regret if as λ → ∞,
RN − Rn∗ is bounded by a finite number in the sense of Ghosh
and Mukhopadhyay [15]. For more details about the procedures,
see Mukhopadhyay and de Silva ([19], Ch. 6).

In addition to the above asymptotic measures, we address
other factors for comparison: the practical implementations in
real-life problems, the insensitivity to changes in the underline
distribution, and the sensitivity to depict any changes in the
parameter under consideration.

Three-Stage Sequential Procedure
Stein [16, 20] and Cox [21] introduced the two-stage procedure
for solving (1) regarding the population normal mean. The two-
stage procedure attains consistency, but unfortunately, it leads to
oversampling, in other words, it is asymptotically inefficient. To
overcome such deficiency, Anscombe [22], Ray [23], and Chow
and Robbins [18] proposed the purely sequential procedure.
The procedure attains efficiency and asymptotic consistency but
lacks time consumption. As a compromising procedure, Hall [13]
introduced the three-stage procedure to achieve two primary
objectives, the operational savings made possible by sampling
in batches and the asymptotic efficiency attained by the purely
sequential sampling. The procedure based on three stages, as
we describe later. The procedure combines the efficiency of
Anscombe, and Chow and Robbins one-by-one purely sequential
procedure and the operational saving made possible by sampling
in bulks by applying Stein’s group sampling techniques. It is
a nice trade-off between purely sequential procedure and two-
stage procedure ease of implementation. The procedure attains
all properties except exact consistency.

Mukhopadhyay [24] made further developments to the three-
stage sampling by focusing on higher-order moments of the
stopping variable. Hamdy [25] extended Hall’s results and
proposed a three-stage sampling point estimation procedure to
estimate the normal mean while Liu [26] extended Hall’s results
to tackle hypothesis-testing problems for the normal mean.

Yousef [27, 28] tackle the three-stage fixed-width confidence
interval for the mean of a continuous distribution where
E |X1|6 < ∞ but unknown under two cases; the first when
the explicit form of the underlying function is known and the
second when the underlying distribution can be approximated
by Edgeworth series of order two. Heuristically, he showed that
the kurtosis of the underlying distribution mainly influences
the performance of the asymptotic coverage probability. He
studied the asymptotic characteristics of each confidence interval
and discussed the sensitivity of the three-stage procedure as
the underlying distribution departs away from normality. Son
et al. [29] proposed a triple sampling sequential procedure,
which yields both a fixed-width confidence interval and a
hypothesis testing for the normal mean while controlling Type

II error probability. Yousef [28] extended their results to a wider
class of underlying continuous distributions. Both Son et al.
[29] and Yousef [28] provided second-order approximations to
the characteristic operating function of the inference. See also
Hamdy et al. [30].

For a complete list of three-stage estimation, see Ghosh
et al. [31].

In this paper, we use the three-stage procedure to generate
inference for the population inverse coefficient of variation η

based on (3).
The Pilot-Stage: take a pilot sample of sizem from the normal

distribution and calculate the sample mean, sample variance, and
the sample inverse coefficient of variation.

The Main-Study Stage: let [x] be the largest integer function
and γ (design factor)0 < γ < 1. The stage depends on the
stopping rule

T = max

{

m,

[

γλ

(

1+ 1

2
η̂2m

)]

+ 1

}

(4)

The Fine-Tuning Stage: Apply the rule

N = max{ T,
[

λ

(

1+ 1

2
η̂2T

)]

+ 1 }. (5)

Once the procedure terminates, we propose µ̂N = X̄N , σ̂N = SN

and η̂N = X̄N
SN

. The 100 (1− α)%fixed-width confidence interval

of η is IN ∈
(

η̂N − d, η̂N + d
)

.

Review of Sequential Estimation of the
Population Inverse Coefficient of Variation
Regarding sequential estimation of the population inverse
coefficient of variation of the normal distribution, Chaturvedi
and Rani [32] developed a purely sequential procedure to find
a fixed-width confidence interval estimation for the inverse
coefficient of variation of the normal distribution. They showed
mathematically that the proposed procedure attains asymptotic
efficiency and consistency in the sense of Chow and Robbins [18]
without any numerical or simulation results.

Later, Yousef and Hamdy [33] tackle the same problem using
Hall’s three-stage sequential procedure. They found a unified

optimal sample size in the form, n∗ = λ
(

σ 2

2

)

that tackle

both point and interval estimation for the population normal
mean. As an application, they found the asymptotic coverage
probability of the population inverse coefficient of variation
and the asymptotic regret under the squared-error loss function
with linear sampling cost through Monte Carlo simulation. The
results showed that the three-stage procedure attains asymptotic
efficiency and consistency in the sense of Chow and Robbins [18].
Recently, Yousef andHamdy [11] reconsidered the same problem
but theoretically using an optimal sample size of the form,

n∗ = λ

(

η2

2

)

, that is, the stopping rule directly depends on the

population inverse coefficient of variation. They found a compact
form for the asymptotic coverage probability for the population
inverse coefficient of variation, as well as the asymptotic regret
under a squared-error loss function plus linear sampling cost.
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TABLE 1 | Three-stage sequential estimation of the population inverse coefficient of variation under (3) at m = 15, γ = 0.5, α = 5%, η = 20, 10, 5, 3, 2, 1.5, 1.0, and 0.5.

n* N SN µ̂ Sµ̂ σ̂ Sσ̂ η̂ Sη̂ ω̂ ν̂ 1 − α̂

µ = 10, σ = 0.5, η = 20

24 35.02 0.032 9.999 0.0005 0.5142 0.0003 19.811 0.0120 −0.99 0.982 0.9643

43 46.92 0.053 9.998 0.0004 0.5168 0.0003 19.671 0.0110 −17.96 0.792 0.9051

61 62.91 0.071 9.999 0.0003 0.5082 0.0002 19.874 0.0086 −28.69 0.766 0.9406

76 77.79 0.083 9.999 0.0003 0.5053 0.0002 19.930 0.0075 −36.22 0.762 0.9444

96 98.10 0.096 9.999 0.0002 0.5040 0.0002 19.949 0.0065 −45.89 0.761 0.9483

125 127.53 0.114 9.999 0.0002 0.5030 0.0001 19.961 0.0057 −59.96 0.760 0.9465

171 174.49 0.140 10.000 0.0002 0.5020 0.0001 19.977 0.0049 −81.95 0.759 0.9487

246 250.61 0.176 10.000 0.0001 0.5014 0.0001 19.983 0.0040 −118.35 0.760 0.9500

500 509.10 0.302 10.000 0.0001 0.5008 0.0001 19.988 0.0028 −240.94 0.759 0.9509

µ = 10, σ = 1.0, η = 10

24 35.09 0.033 9.992 0.0010 1.0300 0.0007 9.889 0.0061 −0.95 0.976 0.9620

43 46.91 0.052 9.991 0.0008 1.0347 0.0006 9.820 0.0055 −18.01 0.791 0.9025

61 62.73 0.070 9.996 0.0006 1.0161 0.0005 9.936 0.0043 −28.87 0.764 0.9420

76 77.58 0.082 9.997 0.0005 1.0112 0.0004 9.958 0.0038 −36.47 0.761 0.9447

96 97.96 0.096 9.998 0.0005 1.0087 0.0003 9.967 0.0033 −46.10 0.760 0.9457

125 127.41 0.113 9.998 0.0004 1.0064 0.0003 9.976 0.0029 −60.13 0.760 0.9471

171 174.14 0.137 9.999 0.0003 1.0045 0.0002 9.984 0.0025 −82.38 0.760 0.9477

246 250.21 0.177 9.999 0.0003 1.0036 0.0002 9.984 0.0020 −118.93 0.758 0.9497

500 508.80 0.299 10.000 0.0002 1.0016 0.0001 9.994 0.0014 −241.25 0.759 0.9498

µ = 10, σ = 2.0, η = 5

24 34.82 0.032 9.973 0.0021 2.0521 0.0013 4.951 0.0031 −1.18 0.977 0.9643

43 46.80 0.051 9.971 0.0015 2.0597 0.0012 4.922 0.0028 −18.00 0.789 0.9030

61 62.77 0.069 9.985 0.0012 2.0285 0.0009 4.970 0.0022 −28.79 0.764 0.9434

76 77.62 0.079 9.989 0.0010 2.0199 0.0008 4.981 0.0019 −36.39 0.760 0.9440

96 97.86 0.092 9.991 0.0009 2.0151 0.0007 4.985 0.0017 −46.14 0.759 0.9470

125 127.30 0.108 9.994 0.0008 2.0107 0.0006 4.991 0.0015 −60.16 0.760 0.9486

171 174.14 0.135 9.995 0.0007 2.0078 0.0005 4.993 0.0013 −82.32 0.759 0.9484

246 250.33 0.169 9.996 0.0006 2.0055 0.0004 4.995 0.0010 −118.66 0.759 0.9499

500 508.56 0.289 9.999 0.0004 2.0023 0.0003 4.999 0.0007 −241.30 0.758 0.9501

µ = 10, σ = 10/3,η = 3

24 34.57 0.031 9.936 0.0034 3.4161 0.0022 2.965 0.0020 −1.44 0.970 0.9599

43 46.21 0.048 9.925 0.0026 3.4229 0.0020 2.948 0.0018 −18.57 0.786 0.8943

61 62.50 0.065 9.966 0.0020 3.3721 0.0015 2.983 0.0014 −29.02 0.762 0.9436

76 77.60 0.075 9.973 0.0018 3.3590 0.0013 2.990 0.0012 −36.36 0.761 0.9466

96 97.82 0.085 9.983 0.0015 3.3540 0.0011 2.992 0.0011 −46.13 0.760 0.9461

125 127.25 0.101 9.988 0.0013 3.3483 0.0010 2.995 0.0009 −60.16 0.759 0.9473

171 173.62 0.123 9.990 0.0011 3.3453 0.0008 2.995 0.0008 −82.86 0.758 0.9510

246 249.50 0.155 9.992 0.0010 3.3411 0.0007 2.997 0.0007 −119.46 0.758 0.9479

500 506.62 0.262 9.996 0.0007 3.3377 0.0005 2.998 0.0005 −243.41 0.757 0.9498

µ = 10, σ = 5.0, η = 2

24 34.24 0.027 9.863 0.0052 5.0953 0.0035 1.974 0.0015 −1.74 0.963 0.9588

43 45.55 0.044 9.870 0.0039 5.0882 0.0028 1.970 0.0013 −19.06 0.778 0.8950

61 62.33 0.058 9.942 0.0030 5.0348 0.0021 1.992 0.0010 −29.08 0.760 0.9479

76 77.31 0.066 9.954 0.0026 5.0295 0.0019 1.992 0.0009 −36.63 0.760 0.9481

96 97.60 0.076 9.963 0.0023 5.0215 0.0016 1.995 0.0008 −46.32 0.760 0.9496

125 126.80 0.089 9.975 0.0020 5.0199 0.0014 1.995 0.0007 −60.66 0.758 0.9510

171 173.24 0.106 9.981 0.0017 5.0142 0.0012 1.996 0.0006 −83.22 0.757 0.9498

246 248.95 0.139 9.987 0.0014 5.0091 0.0010 1.998 0.0005 −119.99 0.756 0.9507

(Continued)
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TABLE 1 | Continued

n* N SN µ̂ Sµ̂ σ̂ Sσ̂ η̂ Sη̂ ω̂ ν̂ 1 − α̂

µ = 10, σ = 5.0, η = 2.0

500 505.14 0.219 9.993 0.0010 5.0045 0.0007 1.999 0.0003 −244.80 0.755 0.9509

µ = 10, σ = 20/3, η = 1.5

24 33.73 0.025 9.814 0.0068 6.7614 0.0048 1.481 0.0013 −2.19 0.954 0.9524

43 44.92 0.040 9.837 0.0052 6.7341 0.0035 1.482 0.0011 −19.55 0.772 0.9193

61 62.18 0.051 9.921 0.0039 6.6958 0.0027 1.494 0.0008 −29.20 0.761 0.9488

76 77.27 0.058 9.935 0.0035 6.6919 0.0024 1.494 0.0007 −36.63 0.759 0.9487

96 97.47 0.067 9.951 0.0031 6.6841 0.0022 1.496 0.0007 −46.40 0.758 0.9510

125 126.71 0.079 9.962 0.0027 6.6813 0.0019 1.497 0.0006 −60.67 0.757 0.9495

171 172.75 0.092 9.968 0.0023 6.6780 0.0016 1.497 0.0005 −83.67 0.755 0.9482

246 248.35 0.116 9.982 0.0019 6.6755 0.0013 1.498 0.0004 −120.55 0.755 0.9516

500 504.01 0.188 9.991 0.0013 6.6708 0.0009 1.499 0.0003 −245.87 0.754 0.9504

µ = 10, σ = 10,η = 1.0

24 33.06 0.021 9.701 0.0101 10.0631 0.0075 0.983 0.0011 −2.82 0.942 0.9477

43 44.27 0.033 9.852 0.0070 10.0175 0.0049 0.995 0.0008 −20.05 0.766 0.9509

61 62.28 0.041 9.900 0.0057 10.0093 0.0041 0.997 0.0007 −29.04 0.762 0.9518

76 77.29 0.045 9.924 0.0052 10.0135 0.0036 0.998 0.0006 −36.53 0.760 0.9499

96 97.33 0.052 9.942 0.0046 10.0149 0.0032 0.998 0.0006 −46.48 0.758 0.9499

125 126.48 0.059 9.941 0.0040 10.0056 0.0028 0.997 0.0005 −60.88 0.756 0.9517

171 172.66 0.072 9.963 0.0034 10.0045 0.0024 0.999 0.0004 −83.67 0.754 0.9515

246 247.67 0.087 9.970 0.0029 10.0051 0.0020 0.998 0.0003 −121.21 0.754 0.9509

500 502.20 0.135 9.986 0.0020 10.0025 0.0014 0.999 0.0002 −247.66 0.752 0.9508

µ = 10, σ = 20, η = 0.5

24 32.13 0.016 9.54 0.0207 19.910 0.0158 0.4893 0.0011 −3.62 0.925 0.9357

43 44.31 0.020 9.81 0.0133 19.941 0.0096 0.4972 0.0007 −19.97 0.768 0.9536

61 62.32 0.023 9.86 0.0113 19.957 0.0081 0.4980 0.0006 −28.96 0.763 0.9529

76 77.39 0.027 9.90 0.0101 19.958 0.0072 0.4989 0.0005 −36.38 0.761 0.9518

96 97.35 0.029 9.91 0.0091 19.966 0.0065 0.4990 0.0005 −46.42 0.758 0.9506

125 126.42 0.034 9.93 0.0080 19.976 0.0057 0.4991 0.0004 −60.86 0.757 0.9519

171 172.47 0.040 9.95 0.0068 19.987 0.0048 0.4993 0.0004 −83.81 0.755 0.9513

246 247.56 0.049 9.97 0.0057 19.995 0.0040 0.4996 0.0003 −121.22 0.754 0.9491

500 501.59 0.071 9.98 0.0040 19.992 0.0028 0.4998 0.0002 −248.19 0.752 0.9490

n* indicates the optimal sample size.

Moreover, they found the characteristic operating function for a
simple hypothesis against a shift that may occur in the population
inverse coefficient of variation. They showed mathematically
that the three-stage procedure attains asymptotic efficiency while
under some proper choices of γ (the design factor) and α

the procedure attains consistency. Collectively, the three-stage
procedure attains the nominal value only asymptotically. In both
cases, the asymptotic regret provides negative values.

Up to our knowledge, none of the existing papers in the
literature of sequential estimation use Monte Carlo simulations
to examine the performance of the three-stage procedure to
tackle inference of the normal inverse coefficient of variation
using the optimal size defined in (3).

In this paper, we continue the research of estimating
the population inverse coefficient of variation of the normal
distribution by examining the performance of the procedure
under (3) and verify the theoretical results found by Yousef

and Hamdy [11] under moderate sample sizes. We estimate
all the parameters in concern; the final sample size N, the
population, mean µ, the population variance σ 2, and the
population inverse coefficient of variation η. We tackle two
estimation problems; first, the point estimation problem under
the squared-error loss function plus linear sampling cost, and
second, the fixed-width confidence estimation problem under
controlled optimal sample size against type II error probability.
Besides, we discuss the sensitivity of the procedure to depict
any potential shift in the population inverse coefficient of
variation under both uncontrolled and controlled optimal sample
size. Finally, we study the sensitivity of the procedure as the
underlying distribution departs away from normality considering
t − distribtuion with different degrees of freedom (Leptokurtic)
and Beta distribution with different parameters (Platykurtic).
We use Monte Carlo simulations for this study using Microsoft
Developer Studio software.
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FIGURE 1 | Performance of the simulated coverage probability at µ = 10, σ = 0.5, 1, 2, 103 ,5, 203 ,10, 20, γ = 0.5, m = 15, and 1− α = 0.95.

SEQUENTIAL INFERENCE FOR THE
POPULATION INVERSE COEFFICIENT OF
VARIATION

Point Estimation Problem
Consider the loss incurred by estimation the population inverse
coefficient of variation η by its customary estimate, the sample
inverse coefficient of variation η̂n given by

Ln (A) = A
(

η̂n − η
)2 + cn, (6)

where A is a known constant, and c is the cost per unit sample.
The risk associated with (6) is

Rn (A) = E (n (A)) = A

2n

(

2+ η2
)

+ cn (7)

By minimizing (7) concerning n yields

n0 =
√

A/2c
√

(

2+ η2
)

(8)

where n0 is the optimal fixed sample size required for
estimating η.

Now, if we set Equation (3) equal Equation (8), we find the
optimal sample size needed to perform both point and confidence
interval estimation for η with fixed-width 2d and coverage
probability at least 100 (1− α)%. That is, the constant A should
be chosen such that

A =
(

a/d
)4 (

2+ η2
)

c =
(

a/d
)2 (

cn∗
)

(9)

As d → 0, A → ∞. For more details regarding A, see [33].
The optimal risk is Rn∗

(

d
)

= 2cn∗. While the three-stage
sequential risk is

RN
(

d
)

= AE
(

η̂N − η
)2 + cE (N) (10)

The asymptotic regret, which is the difference between the risks of
using the three-stage procedure minus the optimal risk, would be

ω
(

d
)

= RN
(

d
)

− Rn∗
(

d
)

(11)

While the asymptotic relative risk (efficiency ratio) is the
sequential risk relative to the optimal risk, that is

ν
(

d
)

=
RN

(

d
)

Rn∗
(

d
) (12)

Now, if RN
(

d
)

< Rn∗
(

d
)

, then Equation (11) provides a negative
regret see Martinsek [34] while Equation (12) yields ν

(

d
)

< 1.
This implies that the three-stage procedure provides a better
estimation than the optimal had η been known.

The Asymptotic Coverage Probability of
the Population Inverse Coefficient of
Variation
Recall the three-stage sampling confidence interval IN = (η̂N −
d, η̂N + d) of the inverse coefficient variation, the asymptotic
coverage probability of η is

P (ηǫIN) =
∞
∑

n=m

(P
∣

∣ η̂N − η
∣

∣ ≤ d, N = n)

=
∞
∑

n=m

(P
∣

∣η̂N − η
∣

∣ ≤ d|N = n) P( N = n)
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TABLE 2 | The impact of increasing the pilot sample m on the procedure at µ = 10, σ = 5, η = 2.

m = 8

n* N SN µ̂ Sµ̂ σ̂ Sσ̂ η̂ Sη̂ ω̂ 1 − α̂

24 27.61 0.049 9.77 0.0054 5.151 0.0039 1.9497 0.0018 −8.48 0.9044

43 46.25 0.076 9.92 0.0035 5.049 0.0025 1.9883 0.0012 −18.16 0.9494

61 65.27 0.095 9.94 0.0029 5.033 0.0021 1.9920 0.0010 −26.15 0.9484

76 81.24 0.124 9.96 0.0026 5.028 0.0018 1.9930 0.0009 −32.69 0.9504

96 102.47 0.145 9.97 0.0023 5.022 0.0016 1.9943 0.0008 −41.47 0.9521

125 133.46 0.189 9.97 0.0020 5.015 0.0014 1.9962 0.0007 −53.95 0.9519

171 182.36 0.252 9.98 0.0017 5.013 0.0012 1.9962 0.0006 −74.11 0.9521

246 261.55 0.345 9.99 0.0014 5.008 0.0010 1.9981 0.0005 −107.36 0.9520

500 531.03 0.696 9.99 0.0010 5.004 0.0007 1.9993 0.0003 −218.84 0.9516

m = 10

24 28.61 0.034 9.75 0.0053 5.182 0.0039 1.9335 0.0017 −7.61 0.9272

43 45.14 0.056 9.92 0.0035 5.046 0.0025 1.9895 0.0012 −19.26 0.9490

61 63.65 0.074 9.95 0.0029 5.032 0.0021 1.9927 0.0010 −27.75 0.9496

76 79.01 0.083 9.95 0.0026 5.027 0.0018 1.9925 0.0009 −34.92 0.9499

96 99.54 0.101 9.96 0.0023 5.023 0.0016 1.9933 0.0008 −44.43 0.9490

125 129.47 0.123 9.97 0.0020 5.019 0.0014 1.9952 0.0007 −57.98 0.9491

171 177.06 0.167 9.98 0.0017 5.012 0.0012 1.9975 0.0006 −79.34 0.9506

246 254.77 0.235 9.99 0.0014 5.009 0.0010 1.9979 0.0005 −114.15 0.9512

500 516.49 0.431 9.99 0.0010 5.004 0.0007 1.9993 0.0003 −233.39 0.9515

m = 15

24 34.24 0.030 9.87 0.0051 5.093 0.0035 1.9751 0.0015 −1.73 0.9566

43 45.45 0.044 9.87 0.0039 5.086 0.0028 1.9701 0.0013 −19.16 0.8942

61 62.32 0.058 9.94 0.0030 5.036 0.0021 1.9913 0.0010 −29.10 0.9491

76 77.33 0.066 9.96 0.0026 5.031 0.0019 1.9923 0.0009 −36.61 0.9490

96 97.53 0.076 9.96 0.0023 5.024 0.0016 1.9935 0.0008 −46.42 0.9479

125 126.87 0.088 9.97 0.0020 5.016 0.0014 1.9958 0.0007 −60.56 0.9503

171 173.10 0.105 9.98 0.0017 5.013 0.0012 1.9963 0.0006 −83.36 0.9498

246 249.06 0.137 9.99 0.0014 5.006 0.0010 1.9987 0.0005 −119.79 0.9488

500 504.94 0.223 9.99 0.0010 5.005 0.0007 1.9988 0.0003 −245.01 0.9519

m = 20

24 41.09 0.038 9.97 0.0048 4.977 0.0033 2.0443 0.0016 5.70 0.9511

43 49.65 0.037 9.83 0.0040 5.123 0.0028 1.9470 0.0013 −15.29 0.9252

61 62.66 0.054 9.92 0.0031 5.048 0.0022 1.9847 0.0011 −28.87 0.9353

76 77.11 0.063 9.95 0.0026 5.028 0.0019 1.9932 0.0009 −36.81 0.9494

96 97.20 0.071 9.97 0.0023 5.021 0.0016 1.9956 0.0008 −46.69 0.9481

125 126.31 0.082 9.97 0.0020 5.017 0.0014 1.9961 0.0007 −61.10 0.9490

171 172.18 0.097 9.98 0.0017 5.013 0.0012 1.9965 0.0006 −84.28 0.9519

246 247.38 0.118 9.99 0.0014 5.010 0.0010 1.9975 0.0005 −121.57 0.9493

500 502.43 0.178 9.99 0.0010 5.005 0.0007 1.9989 0.0003 −247.51 0.9481

n* indicates the optimal sample size.

The results of Anscombe [35] provide that
√
2N(η̂N −η)√

2+η2
N (0, 1) as

λ → ∞ independent of the random variableN = m, m+1, m+
2, . . .. Thus,

P (ηǫIN) =
∞
∑

n=m

(

P

∣

∣

∣

∣

∣

√
2n (η̂N − η)
√

2+ η2

∣

∣

∣

∣

∣

≤ d
√
2n

√

2+ η2

)

P( N = n) = 2E

{

8

(

d
√
2N

√

2+ η2

)}

− 1 (13)

Constructing a Fixed-Width Confidence
Interval With Controlled Type II Error
Probability for the Population Inverse
Coefficient of Variation
There is a close relationship between statistical testing hypotheses
and confidence intervals in the sense that they can perform
similar inference objectives. Confidence intervals, however,
provide more information compared to the hypotheses testing
counterpart see, Tukey [36]. They signify by their length, the
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FIGURE 2 | The impact of increasing m on the coverage probability at µ = 10, σ = 5, η = 2, γ = 0.5, and 1− α = 0.95.

precision of estimation, and the direction of error. Moreover,
confidence intervals show which parameter value should not
be rejected if they were hypothesized as null values. Therefore,
the sensitivity of confidence intervals to depict shifts in the real
parameter value η0 becomes a crucial issue to ensure the quality
of inference.

Son et al. [29], Costanza et al. [37] were the first who
brought up the idea for the normal mean, while Hamdy [38]
considered the idea for estimating the location parameter of the
exponential distribution.

From a practical standpoint, this issue is essential when
constructing quality control charts to monitor the mean quality
of service or production. We formulate the following hypotheses:

H0 : η = η0, vs.

Ha : η = η1, η1 = η0 ±
(

k+ 1
)

d /∈ IN , ∀ k ≥ 0 (14)

Both hypotheses make statements about the population value of
the test statistic and are mutually exclusive. The null hypothesis
H0 asserts that no shift in the actual population inverse coefficient
of variation occurred against the alternative hypothesisHa which
emphasized that the actual inverse coefficient of variation has
shifted by a distance kMeasured in unites of d.

The probability of not depicting a shift given that the shift
has already occurred can be assessed by the type II error
probability βkc.

βkc = P (η0 ∈ IN |Ha)

= P
(

η̂N − d ≤ η ≤ η̂N + d
∣

∣η1 = η0 ± d
(

k+ 1
))

(15)

Since the process has an equal probability of committing a type II
error probability above the centerline or below the centerline, we,

therefore, consider only the probability of committing a positive
shift from the actual parameter value η0.

Let τ be the probability of committing a type II error
probability. Our objective is to control the probability of
committing a type II error probability. We do so by finding
the characteristic operating curve that gives the probability of
acceptance of various possible values of η1. Theminimum sample
size required to control both α and τ is

n0 =
(

a+ b
)2

d2

(

1+ η2

2

)

(16)

where b = Z τ
2
is the upper τ

2 point of N (0, 1). For more details,
see Nelson [39, 40].

The second-order approximation of the controlled
characteristic operating function under Equations (14) and
(16) as λ → ∞

βkc = P (η ∈ IN |Ha) =
∑∞

n = m
P
(
∣

∣η̂N−η1
∣

∣≤ d|N = n
)

P (N = n )

=
∞
∑

n = m

P
(

− (2+k) d ≤ηN−η0≤ −kd
)

P (N = n )

= EN

(

Φ

(

−dk

√
2N

η

))

− EN

(

Φ

(

−
(

2+ k
)

d

√
2N

η

))

(17)

The uncontrolled case occurs by setting b = 0 in (16) to give βk.

MONTE CARLO SIMULATION

Since the sequential results are asymptotic, it is worth
mentioning to estimate the above equations through Monte
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TABLE 3 | The robustness of three–stage at m = 15, γ = 0.5, α = 0.05, µ = 10, σ = 5, η = 2.0.

Uncontrolled optimal sample size defined in (3)

n* 24 43 61 76 96 125 171 246 500

1–α̂ 0.9588 0.895 0.9479 0.9481 0.9496 0.951 0.9498 0.9507 0.9509

Uncontrolled characteristic operating values β̂k

k 24 43 61 76 96 125 171 246 500

0 0.5088 0.5146 0.5126 0.5114 0.5085 0.5050 0.5094 0.5055 0.5061

0.1 0.4355 0.4394 0.4367 0.4298 0.4324 0.4319 0.4281 0.4271 0.4241

0.2 0.3625 0.3633 0.3595 0.3595 0.3536 0.3538 0.3552 0.3503 0.3542

0.3 0.2949 0.2971 0.2881 0.2879 0.2912 0.2839 0.2847 0.2812 0.2782

0.4 0.2314 0.2403 0.2275 0.2265 0.2263 0.2230 0.2226 0.2216 0.2193

0.5 0.1808 0.1895 0.1696 0.1704 0.1677 0.1684 0.1684 0.1683 0.1672

0.6 0.1317 0.1517 0.1292 0.1267 0.1261 0.1251 0.1250 0.1226 0.1188

0.7 0.0929 0.1238 0.0912 0.0929 0.0917 0.0909 0.0876 0.0884 0.0877

0.8 0.0620 0.1034 0.0655 0.0658 0.0617 0.0621 0.0630 0.0597 0.0600

0.9 0.0412 0.0919 0.0449 0.0417 0.0419 0.0418 0.0415 0.0407 0.0401

1.0 0.0231 0.0852 0.0306 0.0306 0.0279 0.0285 0.0276 0.0277 0.0267

1.5 0.0006 0.0121 0.0027 0.0024 0.0022 0.0021 0.0020 0.0022 0.0018

2.0 0.0000 0.0007 0.0005 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001

Controlled optimal sample size defined in (15) τ = 0.05

n* 24 43 61 76 96 125 171 246 500

1–α̂ 0.9999 0.9994 0.9993 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

Controlled characteristic operating values β̂kc

k 24 43 61 76 96 125 171 246 500

0 0.5102 0.5160 0.5096 0.5109 0.05059 0.5055 0.5076 0.5050 0.5017

0.1 0.3628 0.3622 0.3583 0.3587 0.3555 0.3552 0.3565 0.3562 0.3475

0.2 0.2313 0.2369 0.2243 0.2244 0.2250 0.2214 0.2213 0.2199 0.2166

0.3 0.2313 0.2369 0.2243 0.2244 0.2250 0.2214 0.2213 0.2199 0.2166

0.4 0.1343 0.1536 0.1301 0.1286 0.1250 0.1256 0.1254 0.1246 0.1230

0.5 0.0619 0.1045 0.0645 0.0644 0.0632 0.0612 0.0616 0.0621 0.0604

0.6 0.0242 0.0848 0.0291 0.0278 0.0285 0.0272 0.0260 0.0275 0.0265

0.7 0.0064 0.0419 0.0125 0.0125 0.0112 0.0101 0.0101 0.0102 0.0095

0.8 0.0013 0.0189 0.0044 0.0042 0.0045 0.0037 0.0038 0.0034 0.0033

0.9 0.0002 0.0067 0.0018 0.0015 0.0012 0.0011 0.0011 0.0009 0.0009

1.0 0.0000 0.0020 0.0008 0.0004 0.0004 0.0004 0.0003 0.0004 0.0003

1.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

n* indicates the optimal sample size.

Carlo simulations.We do so by writing FORTRAN codes and run
them usingMicrosoft Developer Studio software.

Simulation Methodology
The simulation process performs as follows: Fix the values of
m, γ , α andñ∗.

A. Generate an i-th sample of size m ≥ 8 from the normal

distribution, and compute Xm, S
2
m and η̂m as initial point

estimates of µ, σ 2 and η, respectively.
B. Apply Equation (4), T = max

{

m,
[

γλ
(

1+ η̂2m
)]}

.
Furthermore, compute the numerical value of T.

• If T ≤ m, then we have enough observations, and thus the
experiment terminates. In this case µ̂N = Xm, σ̂

2
N = S2m

and η̂N = η̂m.

• If T > m then sample extra observations of size T −m, say
Xm+1, Xm+2, Xm+3, . . . , XT , then augment the new sample
with the previous sample in (A) to have a sample of size
T. Then compute the statistics XT , S2T and η̂T for the
parameters µ, σ , and η, respectively.

C. Apply Equation (5), N = max
{

T,
[

λ
(

1+ η̂2T

)]}

and
compute N.

• If N ≤ T, sampling is terminated with µ̂N = XT , σ
2
N = S2T

and η̂N = η̂T .
• If N > T, further observations needed. Sample the

difference N − T say X T+1,XT+2,. . . , . . . ,XN Furthermore,
augmented with the previous T observations. The updated
sample is of size N, and the new estimates are µ̂N = XN ,
σ 2
N = S2N and η̂N = η̂N .
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FIGURE 3 | Operating characteristic values under uncontrolled optimal sample size as the shift increases at µ = 10, σ = 5, η = 2, γ = 0.5, and α = 0.05.

FIGURE 4 | Operating characteristic values under controlled optimal sample size as the shift increases at µ = 10, σ = 5, η = 2, γ = 0.5, and α = 0.05 and β = 0.05.

Upon termination, record the resultant sample size N∗
i , the

simulated mean Xi, the simulated standard deviation σ̂i and the
simulated inverse coefficient of variation η̂i for i = 1, 2, . . . , L.

D. As a result, record the observations
(

N∗
1 ,N

∗
2 , . . . ,N

∗
L

)

,
(

X1,X2, . . . ,XL

)

,
(

σ̂1, σ̂2, . . . , σ̂L
)

, and
(

η̂1, η̂2, . . . , η̂L
)

.

E. Calculate the estimated means for N, µ, σ and η respectively
as follows

• N = L−1
∑L

1 N
∗
i is the estimated mean sample size,

• X = L−1
∑L

1 Xi is the estimated mean of the sample mean,

• σ = L−1
∑L

1 σ̂i is the estimated mean of the sample
variance and
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TABLE 4 | Three–stage estimation of the inverse coefficient of variation for underlying T (r) , r = 5, 10, 20 m = 15,γ = 0.5, α = 5%.

r = 5

n* N SN µ̂ Sµ̂ σ̂ Sσ̂ η̂ Sη̂ ω̂ ν̂ 1 − α̂

24 30.60 0.012 0.0003 0.0015 1.246 0.0016 −0.0001 0.0012 −4.99 0.894 0.8665

43 44.61 0.006 0.0000 0.0009 1.272 0.0010 −0.0002 0.0007 −19.64 0.771 0.9540

61 62.61 0.006 0.0004 0.0007 1.276 0.0009 0.0003 0.0006 −28.64 0.765 0.9538

76 77.62 0.006 −0.0007 0.0007 1.280 0.0008 −0.0005 0.0005 −36.13 0.762 0.9524

96 97.63 0.006 −0.0006 0.0006 1.282 0.0007 −0.0004 0.0005 −46.12 0.760 0.9515

125 126.62 0.006 −0.0008 0.0005 1.283 0.0006 −0.0006 0.0004 −60.63 0.758 0.9520

171 172.63 0.006 −0.0009 0.0004 1.285 0.0006 −0.0007 0.0003 −83.62 0.756 0.9511

246 247.63 0.006 0.0000 0.0004 1.287 0.0005 0.0000 0.0003 −121.12 0.754 0.9504

500 501.48 0.006 −0.0001 0.0003 1.288 0.0003 −0.0001 0.0002 −248.27 0.752 0.9494

r = 10

24 30.37 0.013 0.0005 0.0012 1.093 0.0011 0.0003 0.0012 −5.22 0.894 0.8656

43 44.61 0.006 −0.0009 0.0007 1.108 0.0006 −0.0006 0.0007 −19.64 0.771 0.9528

61 62.63 0.006 −0.0007 0.0006 1.110 0.0005 −0.0005 0.0006 −28.63 0.765 0.9518

76 77.62 0.006 −0.0008 0.0006 1.114 0.0005 −0.0007 0.0005 −36.14 0.762 0.9531

96 97.62 0.006 −0.0009 0.0005 1.115 0.0004 −0.0008 0.0005 −46.13 0.760 0.9518

125 126.62 0.006 −0.0004 0.0004 1.115 0.0004 −0.0004 0.0004 −60.64 0.757 0.9506

171 172.63 0.006 −0.0005 0.0004 1.116 0.0003 −0.0004 0.0003 −83.63 0.755 0.9503

246 247.63 0.006 −0.0003 0.0003 1.116 0.0003 −0.0002 0.0003 −121.13 0.754 0.9510

500 501.48 0.007 −0.0006 0.0002 1.117 0.0002 −0.0005 0.0002 −248.27 0.752 0.9502

r = 20

24 30.60 0.011 −0.0005 0.0012 1.035 0.0009 −0.0004 0.0012 −4.99 0.896 0.8667

43 44.61 0.006 −0.0004 0.0007 1.047 0.0005 −0.0004 0.0007 −19.65 0.772 0.9543

61 62.62 0.006 0.0001 0.0006 1.049 0.0005 0.0002 0.0006 −28.64 0.765 0.9522

76 77.61 0.006 0.0000 0.0005 1.051 0.0004 0.0000 0.0005 −36.14 0.762 0.9535

96 97.62 0.006 −0.0001 0.0005 1.051 0.0004 −0.0001 0.0005 −46.13 0.760 0.9526

125 126.63 0.006 −0.0011 0.0004 1.052 0.0003 −0.0010 0.0004 −60.63 0.757 0.9518

171 172.62 0.006 −0.0004 0.0004 1.052 0.0003 −0.0005 0.0003 −83.63 0.755 0.9511

246 247.62 0.006 0.0003 0.0003 1.053 0.0002 0.0003 0.0003 −121.13 0.754 0.9508

500 501.49 0.006 −0.0002 0.0002 1.054 0.0002 −0.0002 0.0002 −248.26 0.752 0.9503

n* indicates the optimal sample size.

• η = L−1
∑L

1 η̂i is the estimated mean of the sample inverse
coefficient of variation across replicates.

F. The simulated standard errors are

• SN =
(

L2 − L
)
−1
2

{

∑L
1

(

N∗
i − N

)2
}

−1
2
, Sµ̂ =

(

L2 − L
)
−1
2

{

∑L
1

(

Xi − X
)2
}

−1
2
,

• Sσ̂ =
(

L2 − L
)
−1
2

{

∑L
1

(

σ̂i − σ
)2
}

−1
2

and Sη =
(

L2 − L
)
−1
2

{

∑L
1

(

η̂i − η
)2
}

− 1
2
.

G. The simulated regret is ω̂
(

d
)

= AL−1
{

∑L
1

(

η̂i − η
)2
}

+
cN − R (n∗).

H. The simulated relative risk ν̂
(

d
)

I. The simulated coverage probability is

• ˆ(1− α) = #(η̂i−d<η<η̂i+d)
L , i = 1, . . . , L

J. The simulated controlled operating characteristic function

β̂kc =
#(η̂i+kd<η<η̂i+(2+k)d)

L , i = 1, . . . , L; k = 0 (0.1) 1,1.5
and 2

The study covers two points; the performance of the procedure at
fixedm and the performance of the procedure asm changes from
m = 8, 10, 15, and 20.

Simulation Experiment and Results
To conduct the simulation study, a series of L = 50, 000
replications were generated from N (µ, σ), with µ =
10, σ = 0.5, 1.0, 2.0, 103 , 5, 20/3 and 10 provided η =
20, 10, 5, 3, 2, 1.5, 1 and 0.5.

The optimal sample sizes are chosen to represent small,
medium to large performance, that is

n∗ = 24, 43, 61, 76, 96, 125, 171, 246, and 500.
While the design factor is chosen to be γ = 0.5, and the pilot

samples are taken m = 8, 10, 15, and 20. As small to moderate
pilot samples. For brevity, we consider α = 5%, which gives
a = 1.96.
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TABLE 5 | Three–stage estimation of the inverse coefficient of variation for underlying Beta (0.5, 0.5) and (1, 1) m = 15, γ = 0.5, α = 5%.

Beta (0.5, 0.5)

n* N SN µ̂ Sµ̂ σ̂ Sσ̂ η̂ Sη̂ ω̂ ν̂ 1−α̂

24 33.04 0.022 0.4891 0.0004 0.356 0.0001 1.381 0.0010 −3.08 0.936 0.9886

43 43.51 0.033 0.4934 0.0003 0.354 0.0001 1.399 0.0008 −21.05 0.755 0.9788

61 61.42 0.040 0.4960 0.0002 0.354 0.0001 1.405 0.0006 −30.12 0.752 0.9866

76 76.44 0.045 0.4966 0.0002 0.354 0.0001 1.406 0.0006 −37.64 0.752 0.9869

96 96.42 0.051 0.4975 0.0002 0.354 0.0001 1.408 0.0005 −47.64 0.752 0.9871

125 125.49 0.064 0.4978 0.0001 0.354 0.0001 1.409 0.0004 −62.09 0.752 0.9867

171 171.59 0.072 0.4985 0.0001 0.354 0.0000 1.410 0.0004 −84.99 0.752 0.9875

246 246.76 0.088 0.4989 0.0001 0.354 0.0000 1.411 0.0003 −122.34 0.752 0.9872

500 501.53 0.136 0.4995 0.0001 0.354 0.0000 1.413 0.0002 −248.48 0.751 0.9874

Beta (1, 1)

24 33.38 0.022 0.4913 0.0003 0.291 0.0001 1.701 0.0012 −2.72 0.940 0.9873

43 43.88 0.035 0.4939 0.0002 0.290 0.0001 1.713 0.0009 −20.72 0.759 0.9624

61 61.50 0.044 0.4969 0.0002 0.289 0.0001 1.723 0.0007 −30.02 0.754 0.9855

76 76.59 0.050 0.4975 0.0001 0.289 0.0001 1.725 0.0007 −37.43 0.754 0.9852

96 96.56 0.057 0.4980 0.0001 0.289 0.0001 1.726 0.0006 −47.48 0.753 0.9856

125 125.71 0.066 0.4984 0.0001 0.289 0.0001 1.727 0.0005 −61.83 0.753 0.9856

171 171.80 0.077 0.4988 0.0001 0.289 0.0000 1.728 0.0004 −84.75 0.752 0.9853

246 247.07 0.097 0.4992 0.0001 0.289 0.0000 1.730 0.0004 −121.96 0.752 0.9859

500 501.75 0.154 0.4996 0.0001 0.289 0.0000 1.731 0.0003 −248.32 0.752 0.9854

n* indicates the optimal sample size.

Table 1 demonstrates the simulation results at m = 15 as the
optimal sample size increases. We noticed the following

1. Regarding the final sample size N; N > n∗ for all values of n∗

and the absolute difference between N and n∗ reduces as the
optimal sample size increases. The simulated standard errors
increase as n∗ increases.

2. Regarding the population mean, the simulated mean
converges asymptotically to the population mean. That is µ̂ is
asymptotically unbiased estimator to µ. The standard errors
decrease as n∗ increases.

3. Regarding the population standard variance, the estimates
converge to the population standard deviation asymptotically.
σ̂ is asymptotically unbiased to σ . The standard errors
decrease as n∗ increases.

4. The simulated regret has negative values, which indicates
that the three-stage procedure provides estimates for the
population inverse coefficient of variation better than the
optimal had n∗ been known.

5. Regarding the relative risk, the simulation results
reveal that

– For fixed n∗ as η decreases the estimated values ν̂
(

d
)

decreases slightly.
– For fixed η as n∗ increases the simulated values

ν̂
(

d
)

decreases.

a. At n∗ = 500, ν̂
(

d
)

converges asymptotically to 0.759 at η =
20 and 10 and approaches 0.752 at η = 1. Even for η < 1, ν̂

(

d
)

will converge asymptotically to 0.752.

6. Regarding the relative risk, the simulated ν̂
(

d
)

converges asymptotically to nearly 0.75. This

implies that the sequential risk is 25% less than the
optimal risk.

7. Regarding the simulated coverage probability, the three-stage
procedure attains the desired nominal value asymptotically
(asymptotic consistency). The coverage improves as n∗

increases. Figure 1 shows the performance of the coverage
probability as the optimal sample size increases at µ = 10
while σ = 0.5, 1, 2, 103 , 5,

20
3 , 10 and 20. In other words, as

η decreases.

Now let us record the impact of increasingm on the performance
of the procedure. To do so, we present Table 2. We noticed
the following

1. At n∗ = 24 and 43: As the pilot sample increases the absolute
difference between the optimal sample size and the simulated
final sample size increases, while at n∗ = 61, 76, 96, and
125, the absolute difference decreases slightly. At n∗ = 171,
246, and 500, the absolute difference decreases significantly to
approach the desired optimal sample size. The corresponding
standard deviations decreases.

2. For fixed n∗, as the pilot sample increases, the simulated
mean is nearly approaching the population mean. While the
estimations become better as the optimal sample size increases
with decreased standard deviation.

3. The simulated standard deviation approaches the population
standard deviation as the optimal sample size increases. The
biased decreases as the optimal sample size increases.

4. In general, the simulated regret decreases as the pilot sample
increases except at n∗ =24.

5. Figure 2 demonstrates the performance of the simulated
coverage probability asm increases.
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Table 3 shows the asymptotic coverage probability and
the asymptotic characteristic operating function under the
uncontrolled optimal sample size given in (3). The procedure
attains the desired nominal value, only asymptotically. As k
increases the simulated β̂k decreases and approaches zero at
k = 2. The other part of Table 3 shows the results under the
controlled optimal sample size given in (16) against type II
error probability. The procedure exceeds the desired nominal
value, even for small optimal sample sizes. The simulated β̂kC

decreases significantly to zero and β̂kc < β̂k. This indicates
that by controlling the confidence interval against type II error
probability, the procedure becomes more sensitive toward a
remarkable shift. Figures 3, 4 reflect the previous comments.

THE SENSITIVITY OF THE
NORMAL-BASED THREE-STAGE
PROCEDURE FOR UNDERLYING
DISTRIBUTION

Assume we need to estimate the population inverse coefficient
of variation for a class of non-normal distributions using the
normal-based optimal sample size in (3). How sensitive is the
three-stage procedure toward estimation? To examine this and
without loss of generality, we consider two families of underlying
distributions; the student’s t (r) , r=5, 10 and 20, r indicates
the degrees of freedom and the family of beta distribution;
Beta(0.5, 0.5) and Beta(1, 1). Table 4 shows the asymptotic
results for the t-distribution with the selected degrees of
freedom. We obtain better estimation for all parameters, and the
procedure satisfies all asymptotic measures except consistency.
The simulated relative risk ν̂ (d) converges asymptotically to

0.752.Table 5 shows the results for the beta distribution. Here the
three-stage procedure provides coverage probabilities that exceed
the prescribed nominal value. This may resort to the structural
behavior of the beta distribution since it belongs to uniform
power series functions. Again ν̂ (d) approaches nearly to 0.752.

CONCLUSION

We examine the performance of the three-stage procedure for
estimating the population inverse coefficient of variation of the
normal distribution. We estimated all parameters in concern
and found that the three-stage procedure attains efficiency and
asymptotic consistency as the width of the interval approaches
zero. By controlling the confidence intervals against type II error
probabilities, the procedure provides coverage probabilities that
exceed the prescribed nominal value and becomes more sensitive
toward any potential shift that may occur in the population
inverse coefficient of variation. Regarding the sensitivity of the
procedure as the underlying distribution departs away from
normality, we found that the three-stage procedure is robust for
likewise normal distributions.
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