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The authors investigate, using both analytical and numerical methods, the entropy

associated with a diffusion process inside frictional finger patterns. The entropy obtained

from simulations of diffusion inside the pattern is compared to analytical predictions

based on an effective continuum description. The analytical result predicts that the

entropy depends in a particular way on the path dimension of the system, which governs

the scaling of simple paths in the system. The findings indicates that there is a close

analogy between the frictional fingers in the continuum and minimum spaning trees on

the lattice, as the path dimension is found, through studies of the entropy, to be close to

the defining value for the minimum spanning tree universality class.
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1. INTRODUCTION

Patterns with complex geometry and topology are ubiquitous in Nature. When transport processes
take place inside such patterns, their dynamical properties are typically anomalous due to the non-
trivial geometry. The case of anomalous diffusive transport, where the mean-square displacement
scales non-linearly with time, has been studied in some detail since the 1980s and remains a
popular topic to this day [1–9]. While many of the systems studied in this context are idealized and
synthetic, like that of hierarchical fractals, real systems are noisy and often have a geometry that
is too complex to be exactly captured by the simplified models. In order to utilize the simplified
models, one has to identify the right set of relevant geometric properties when a scaled-up effective
continuum description is used. These coarser geometric properties then determine the long-time
dynamical properties of diffusing particles in the geometry, like the mean square displacement
and the entropy. The entropy associated with anomalous diffusion processes has been studied in
some detail in the framework of fractional diffusion equations [10–13]. We here instead consider
diffusion with spatially dependent diffusivity, where the analytical form of the diffusivity is linked
to the systems geometry. It is the aim of this paper to investigate the entropy for such an effective
continuum description of diffusion in frictional finger patterns, and the associated insight it brings
into the systems coarser geometric properties.

Fricitonal patterns are space-filling bifurcating two-dimensional geometries that arise due to
instabilities in frictional fluids. Experimentally, the frictional finger patterns are produced by
preparing a mixture of glass beads and liquid in a Hele-Shaw cell before pumping out of liquid
from the center of the cell. When the cell has open ends, this forces air into the glass bead / liquid
mixture resulting in a deformation of the boundary of the mixture [14, 15]. The deformation takes
place where the energy needed to move the boundary is the smallest. A simulated version of the
pattern is shown in Figure 1A, based on the algorithms discussed in Olsen et al. [16].
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FIGURE 1 | Figure showing a frictional finger pattern (A) together with the one-dimensional skeletonized tree-structure obtained by contracting the finger widths to

zero (B). The skeletonized pattern is pixelized before random walkers are released as discussed in section 3.

It was recently hypothesized by the authors that since the
frictional finger patterns are formed through a optimal path-
finding process it may belong to the geometric universality
class of minimum spanning trees (MST)[16]. These are tree-
structures constructed on a lattice by assigning a random energy
to every lattice link and finding the loopless configuration
of links that globally minimizes the total system energy [17].
Universality in this context refers to the exponents reflecting
geometric properties of a pattern, like the fractal dimensions df
or minimum path dimension dm, the latter being the scaling
exponent connecting Euclidean and intrinsic distance measures.
Since on loopless structures there is an unique path connecting
any two points we will simply refer to dm as the path dimension.
The 2D MST class has df = 2 and dm = 1.22 ± 0.01 [17].
Direct measurements of the path dimension in the frictional
fingers have proven to be difficult, due to the noisy and complex
nature of the patterns. In particular, the path dimension can be
estimated locally by fixing a sample point in the system and
considering the average length ℓ of paths out to a radius of
Euclidean length r. To obtain a global "coarse-grained" estimate

dm for the path dimension of the system this local path dimension
should be averaged over many sample points. This gives a path

dimension of dm = 1.25 ± 0.03 [16]. The path dimension
can also be estimated by treating the pattern as a tree structure
and using branching statistics, similar to the study of river

networks. This method in stead gives dm = 1.20 ± 0.03 [16].
While both of these measurements are consistent with the MST
class, they are inconsistent with each other. Rather that directly
measuring the path dimension we will here use the diffusing
particles as a probe of the system geometry. In particular, since
the entropy is a measure of how fast the diffusion process is
relaxing toward equilibrium, the entropy will be a function of the
systems geometry and will therefore give us some insight into the

value of dm.
The rest of this paper is outlined as follows. Section 2 discusses

the diffusion entropy associated with the effective continuum

description, which is based on a simple power-law scaling of
the diffusivity. The entropy associated with the corresponding
Fokker-Planck equation is calculated analytically and compared
to results obtained using fractional diffusion equations. Section
3 discusses a new numerical implementation of random walkers
in frictional finger patterns that is expected to increase both
efficiency and accuracy. The entropy is calculated, and compared
to analytical predictions. Finding the best fit of the analytical
prediction as system parameters are varied gives a value for the
path dimension. Concluding remarks are offered in section 4.

2. ENTROPY OF THE EFFECTIVE
CONTINUUM DESCRIPTION

To study the diffusion process in the frictional finger patterns
on a large length scale we use state-dependent diffusion
equations where the diffusivity can depend of the particle
position. Microscopically, Brownian particles move throughout
the pattern with a constant diffusivity. However, the collisions
with the walls of the confining geometry affects the macroscopic
transport properties. We imagine that after a sort of coarse-
graining or homogenization procedure the diffusion process can
be described by an overdamped Langevin equation of the form

ẋa =
√

2D(x)ηa(t) (1)

where a is the spatial component of the vector and η is a delta-
correlated white noise with 〈ηa(t)ηb(t

′)〉 = 2δabδ(t − t). The
diffusivity is here assumed to be isotropic but inhomogeneous.
When going from a Langevin description on the microscopic
scale to an evolution equation for the particle density on the
macroscopic scale one has to decide on which stochastic calculus
to be used, as discussed in the classical books by Risken [18] and
Van Kampen [19]. This problem, known as the Itô-Stratonovich
dilemma, results in different forms of the macroscopic equations
that differ in the presence of an additional drift term proportional
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to the gradient of the diffusivity. Recently it has also been showed
that these different form of the density evolution equation can be
obtained as scaling limits of a random walk on a lattice where
inhomogeneities are associated with bonds and/or vertices of
the lattice [20].

In the case of diffusion in frictional finger patterns we
chose the diffusion law associated with the Hänggi-Klimontovich
convention, where no drift term associated with diffusivity
gradients are present. This choice of diffusion law together with
the Einstein relation was recently used to identify the form of
the spatially dependent diffusivity for transport in the frictional
fingers, where under an isotropy assumption one has D(r) =

D0r
−ξ [16]. As is the case for perfectly hierarchical fractals, the

exponent ξ is related to the fractal dimensions of the pattern as
ξ = df − 2+ dm = dm, where we used the space-filling property
of the finger pattern [1, 16].

The corresponding density evolution equation in the Hänggi-
Klimontovich interpretation takes the following form

∂tρ(r, t) = ∂r[rD(r)∂rρ(r, t)] (2)

This generalized Ficks equation has a well-known solution for
radial power-law diffusivity, taking the form [6]

ρ(r, t)=
2+ ξ

2πŴ
(

ds
2

)

[

1

D0(2+ ξ )2t

]
ds
2

exp

(

−
r2+ξ

D0(2+ ξ )2t

)

(3)

where dS = 4/(2 + ξ ) is the spectral dimension and the
normalization used is

∫

dr(2πr)ρ = 1. This solution is typically
thought of as a smoothened out envelope of the discrete set of
probabilities associated with the vertices of a fractal, as discussed
in the original paper [6]. There are several properties of this
solution that are only approximately shared with the actual
frictional finger system. For example, the solution is completely
isotropic ∂θρ(r, t) = 0. Since diffusing particles will be forces
to move along fingers in our pattern, we know that locally the
system is very anisotropic. However, on large time and length
scales, the different anisotropies are expected to cancel to produce
an approximately isotropic behavior. Furthermore, the solution
assumed a single globally well-defined path dimension dm, while
it is known that in noisy real systems this dimension can vary
locally. Again we expect that on large space and time scales
the inhomogeneities average out, producing a single global path

dimension dm as discussed in the introduction. The predicted
second moment of the solution Equation (3) was tested against
themean-square displacement of randomwalk simulations in the
pattern with reflecting boundary conditions in previous work and
was seen to agree well with the simulations, adding to its validity
as an effective model [16].

Given the above solution Equation (3) the entropy of the
diffusion process can be calculated analytically. What type of
entropy we consider is not of great importance here, as long
as it is the same entropy that is calculated later in section 3 in
the numerical methods. This is because at the end of the day,
we are interested in using the numerical measurements of the
entropy as an indirect measurement of the path dimension for

the frictional fingers. From an information theoretic perspective
there are dozens of entropies that could be considered, most of
which can be thought of as an analytical continuation of the
Shannon-Gibbs entropy which is recovered as some entropic
parameter is tuned correctly [21].We here consider the Shannon-
Gibbs formula as it is not only readily calculated but also closer
connected to the entropy familiar in extensive thermodynamics.

The Shannon-Gibbs entropy for the particle density takes the
form [22]

H[ρ] = −

∫

dVρ(x) log ρ(x). (4)

We will write Equation (3) in the form ρ(r, t) = A(t, ξ ) exp ( −
r2+ξ/a(t, ξ )) for notational simplicity. According to Equation (4)
we then have the entropy in terms of a non-integer moment:

H[ρ(t), ξ ] =
〈r2+ξ 〉

a(t, ξ )
− logA(t, ξ ). (5)

Since our distribution is a simple shifted Gaussian a change of
variables easily allows us to find this moment. Using the integral

∫ ∞

0
dxxµe−xν/a =

a
µ+1

ν

ν
Ŵ

(

µ + 1

ν

)

. (6)

With µ = 3+ ξ and ν = 2+ ξ , the entropy can be calculated as

H[ρ(t), dm] =
2

2+ dm

[

1+ log
(

D0(2+ dm)
2
)]

+

log

[

πŴ

(

4

2+ dm

)]

+
2

2+ dm
log t, (7)

where we used ξ ≈ dm based on the above discussion.
Interestingly the associated entropy production Ḣ = 2/(t(2 +

dm)) has also been obtained by using a two-dimensional diffusion
equation with Caputo or Weyl fractional-time derivative [13].

In Equation (7) we see that the global path dimension dm
determines the temporal evolution of the entropy. As expected,
a higher path dimension, meaning a more disordered system
geometry, will give a lower entropy production since the diffusion
process is more hindered. Using the same integral formula as
above it is also easily shown from the solution Equation (3) that
the mean-square displacement takes the form

〈r2〉 =
Ŵ (2α) [D0(2+ dm)

2]α

Ŵ(α)
tα (8)

where the diffusion exponent is given by α = 2/(2 + dm). Note
that the diffusion exponent also governs the temporal scaling of
the entropy H ∼ α log t.

3. RESULTS FROM NUMERICAL
SIMULATION

To calculate the numerical entropy we construct a simplified
discrete random walk-based model for the diffusion process. To
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FIGURE 2 | The entropy associated with three randomly chosen initial

positions inside the finger pattern. The point were chosen inside a circle of

∼ 50% pattern radius in order to avoid the outer boundaries of the pattern.

The dotted line is a reference line 0.62 log10(t).

FIGURE 3 | Averaged entropy H shown in semi-log scale. The entropy grows

with a linear slope of α = 0.62. Since the entropy of the three different initial

positions may vary at short times we have ignored the first 20% of the

datapoints when performing the linear fit. The slope α = 0.62 is in good

agreement with the expected minimum spanning tree value.

make these simulations more efficient, wemake some simplifying
assumptions. The biggest simplification comes from applying
a topological contraction on the pattern so that the finger
widths are set zero, effectively turning the problem into a
one dimensional one. The resulting skeletonized version of the
pattern, showed in Figure 1B, is what we will release random
walkers on. This topological simplification will not change the
main geometric features of the pattern, since the folding and
connectedness of every branch is conserved.

When performing the numerical simulations the one-
dimensional skeletonized pattern is discretized before a discrete
random walk process is released. In the resulting discrete
"morphological graph" of the pattern there are no additional

inhomogeneities associated with transition probabilities over
links as all the inhomogeneity we are interested in stems from
the pattern itself. In practice, the discretization is obtained
by pixelating the skeletonized pattern and treating the pixels
as sites for the random walker. A cartoon of the pixels are
shown in Figure 1B. A random walker jumps to one of its
neighboring pixels, including diagonal neighbors, with equal
probability. Since the code is ran with a very large number of
particles, we estimate the number of particles that move to a
given neighboring pixel according to a binomial distribution.
Hence, at every time step we only need as many random
numbers as there are neighbors for a given pixel rather
than one number for every particle as in traditional random
walk methods.

To calculate the entropy numerically we use the Gibbs-
Shannon formula for the discrete random walk

Hnum(t) = −
∑

pixels i

ρi(t) log ρi(t) (9)

where ρi(t) is the probability of finding a particle at pixel i at time
t. This probability is straightforwardly calculated as the ratio of
the number of particles at pixel i at time t to the total number of
particles in the system

ρi(t) =
ni(t)

N
. (10)

The system is initialized with all particles released at the
same position, as the analytical solution assumes a Dirac
delta-like initial condition. Figure 2 shows the entropy of
the simulation for three different randomly chosen initial
positions close to the center of the pattern. We see that
while the temporal scaling agrees, they have different zero-
point entropies. By inspection of Equation (7) we see that it
is possible to have the same temporal scaling but a different
zero-point entropy is the diffusion constant D0 is allowed
to vary throughout the system. This may indicate that a
more realistic diffusivity is D(x, y) = D0(x, y)r

−ξ where
D0 is a slowly varying function taking into account small
inhomogeneities in the pattern not captured by the simplified
power-law model.

Figure 3 shows the average entropy H(t) =
∑3

i=1Hi(t) where
i runs over the three different initial positions. The entropy
shows a very convincing growth proportional to log t over several
decades. The best fit for the slopes of the entropies in Figure 2 is
given by α = 0.62. This is consistent with the global estimate

of the path dimension dm ≈ 1.22, which is exactly the path
dimension of minimum spanning trees [17]. This value for the
path dimension is consistent with the ones obtained in earlier
work, although the value obtained through the entropy is much
closer to the MST value [16]. This significantly strengthens our
belief that the frictional finger pattern lies in theMST universality
class and can be seen as a continuum analog of the lattice MST.
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4. CONCLUSION

In this paper we have studied the entropy of diffusion in frictional
finger patterns. In addition to being a measure of how fast
the non-equilibrium process is evolving, the entropy is also
considered as a tool for studying the systems coarser geometry
as the diffusing particles explore the large-scale structure at late
times. Our results show that the (coarse) path dimension takes
a value close to dm = 1.22 which is the defining value of the
minimum spanning tree universality class. This strengthens the
current hypothesis that the frictional fingers belong to this class.
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