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A passively Q-switched mode-locked (QML) operation in Tm,Ho:CaYAlO4 bulk laser was

demonstrated experimentally by employing double-walled carbon nanotubes (DWCNTs)

as a saturable absorber. The laser is pumped by a self-made wavelength tunable

Ti:sapphire laser, and the pump threshold of Tm,Ho:CaYAlO4 laser was measured at

677 mW using transmittance of 1.5% output coupler. A stable QML operation state

was achieved when the absorption pumping power reached 1,958 mW. When the

pumping power reached 2.6 W, the maximum output power was 64 mw with a central

wavelength of 2,085 nm, the corresponding repetition frequency of mode-locked pulse

was 98.04 MHz, and the modulation depth in Q-switching envelopes is close to 100%.

Keywords: Tm,Ho:CaYAlO4 laser, passively Q-switched mode-locked, double-walled carbon nanotube, saturable

absorber, resonant cavity

OCIS codes: 140.3580 (Lasers, solid-state), 140.3070 (Infrared and far-infrared lasers), 140.3380 (Laser materials),
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INTRODUCTION

Recently, thanks to the rapid development of laser technology, a variety of lasers, includingmedium
infrared ultrafast lasers [1, 2], ultrafast fiber lasers [3, 4] are playing an important role in more and
more fields [5, 6]. Among them, ultrafast solid-state lasers emitting around eye-safe 2 µm exhibits
the potential applications in LIDAR, biomedicine, time-resolved spectroscopy, atmospheric remote
sensing, nonlinear frequency conversion, optical communications, etc. [7–9]. Crystal, ceramic, and
glass materials doped with thulium (Tm3+), holmium (Ho3+) ions [10], or Tm3+, Ho3+ co-doped
are currently the most promising candidates for 2-µm mid-infrared laser sources. The passive
mode-locking technique with saturable absorber (SA) [11–13] is the most widely convenient
and low-cost method to obtain ultrafast lasers at 2-µm wavelength. Up to now, SAs such as
semiconductor saturable absorbermirrors (SESAMs) [14–16], carbon nanotubes [17–19], graphene
[20–22], and transition metal dichalcogenides (TMDs) [23, 24] have been adopted for passive
Q-switching or mode-locking operations. However, SESAMs have the disadvantage of having
narrow bandwidth, complex fabrication, and high cost to limit the application and development of
mid-infrared ultrafast lasers. Therefore, it is very important to develop 2-µm wavelength ultrafast
lasers based on new materials.

In recent years, a batch of new 2D nanomaterials with unique properties has received widespread
attention. Among them, carbon nanotubes are favored as new SA in the field of ultrashort pulse
laser due to their excellent electrical, optical, and mechanical properties. According to the number
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FIGURE 1 | The experimental setup of Tm,Ho:CaYAlO4 passively QML laser structure.

of graphite layers, carbon nanotubes are divided into single-
walled carbon nanotubes (SWCNT) and multiwalled carbon
nanotubes [25]. It has been reported that SWCNT-SAs can
passively mode lock in 0.8–2-µm laser [26–28]. As the simplest
multiwalled carbon nanotubes, double-walled carbon nanotubes
(DWCNTs) are made of two layers of graphite, which are coiled
according to a certain helix angle. The diameters of the inner
and outer walls are 0.8–1.1 and 1.6–1.8 nm, respectively, and the
spacing between the inner and outer layers is 0.34–0.39 nm [29].
Under the same irradiation condition, DWCNT conductivity is
better due to its higher chemical stability and smaller energy gap
than SWCNT [30]. Meanwhile, DWCNT has the characteristics
of relatively low cost, relatively short relaxation time, and the
advantages for mass production. Therefore, DWCNT-SAs has
ultra-short recovery time, wider absorption band, and higher
damage threshold in a 1–2-µm band [31]. Now, the reports on
mode-locked DWCNT-SAs are mainly focused on the solid-state
and fiber lasers at 1-µmband [32, 33], while the reports onmode-
lockedDWCNT-SAs at 2-µmband are few, and the output power
is lower than 200 mW [34–36]. For example, Wang et al. [37]
achieved a mode-locked operation of 0.98 ps in Tm3+-doped
silica fiber, and Qu et al. [38] achieved a mode-locked operation
in Tm:YAP laser. Over the years, our group has been devoted
to the research of ultrafast laser technology in the mid-infrared
band. In 2018, our group realized the Q-switched and mode-
locked simultaneous operation with low threshold based on the
DWCNTs in the Tm,Ho:LLF laser, and the maximum output
power was 234 mW [39].

CaYAlO4(CYA) crystal belongs to the perovskite structure,
which is an excellent laser medium matrix material fabricated
by the Czochralski method [40]. Tm,Ho:CaYAlO4 crystals have
higher absorption efficiency and wider tuning width, and their
main absorption peaks are 691, 797, 1,212, and 1,694 nm [41].
Currently, there are few researches on related mode locking
of this crystal. In 2018, only Zhao et al. realized continuous
mode-locking operation in Tm,Ho:CaYAlO4 laser based on
SESAM [10].

In this paper, a stable simultaneously Q-switched mode-
locking (QML) operation was experimentally demonstrated for
the first time in Tm,Ho:CaYAlO4 crystal by using DWCNTs-SA.
The pump source was a self-made wavelength-tunable

Ti:sapphire solid laser. With 1.5% output coupler, the maximum
output power of QML is 64 mw at the central wavelength of
2,085 nm, the repetition frequency of mode-locked pulse in
Q-switched envelope is 98.04 MHz, and the modulation depth
was close to 100%.

EXPERIMENTAL SYSTEM

The experimental setup of the passive mode-locking
Tm,Ho:CaYAlO4 laser is shown in Figure 1 [9]. A typical
X-type five-mirror cavity structure is adopted to obtain better
pattern matching effect, which is composed of a typical X-type
four-mirror folded cavity and focused concave mirror. The
laser is pumped by a self-made Ti:sapphire solid-state laser
with an output wavelength of 798 nm. The laser crystal of
Tm,Ho:CaYAlO4 with 6% Tm3+ and 0.5% Ho3+-doped was
cut at the angle of Brewster. Its size is 3 × 3 × 4 mm, and
the strongest absorption peak is 798 nm. In order to reduce
the thermal lensing effect of crystal and mitigate the thermal
load, it is necessary to cool the laser crystal to ensure the stable
operation of the laser. Here, the laser crystal is wrapped in
indium foil and mounted in a copper heat sink, which is cooled
by circulating water at a constant temperature of 12◦C [42]. The
standard X-folded cavity consisted of M1, M2, M3, M4, and an
output coupler (M5). In Figure 1, M1 and M2 are 2-µm pump
mirrors produced by Layertec company with curvature radii of
100 and 75 mm, respectively, whose transmittance are higher
than 95% in the wavelength range from 770 to 1,050 nm, and
reflectivity is higher than 99.9% at 2-µm wave bands. M3 is a
plane-concave reflector with the curvature radius of concave
surface of 100 mm, and M4 is a planar reflector. The reflectivity
of both flat concave mirror M3 and flat reflector M4 is >99.9%
for oscillating light at 2-µmwave bands. M5 is an output coupler
with partial transmission for oscillating light. In the experiment,
the output mirror with a transmittance of 1.5% was selected to
obtain a high intracavity power density. DWCNTs were inserted
before the M4 plane mirror as SA. The collimated pump light
is incident into the Tm,Ho:CaYAlO4 crystal by a focusing lens
(f = 150 mm) with higher than 95% transmittance for 798 nm.
The laser beam diameter is 54 µm on the surface of SA, which
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FIGURE 2 | Experimental data diagram. (A) The dependence of absorbed

power on incident pump power. (B) The dependence of average output power

on absorbed pump power under CW and QML.

is calculated using the laser cavity mode ABCD propagation
matrix theory.

EXPERIMENTAL RESULTS AND
DISCUSSION

The absorption and output characteristics of the laser are shown
in Figure 2. First, the absorption efficiency of the laser crystal
of Tm,Ho:CaYAlO4 is shown in Figure 2A [43]. It can be seen
that the absorption efficiency of laser crystal to the pump light
at 798 nm is 89.7% due to a large amount of pump light that
is absorbed by the crystal when there is no laser running in the
cavity. When continuous wave (CW) operation in the cavity is
realized, the absorption efficiency of the laser crystal increases
to about 91.6% due to the large number of upper-level particles
returning to the lower level under stimulated radiation. After
inserting the DWCNT-SA into the cavity, the operating state of
QML is achieved, and the absorption efficiency of the laser crystal
did not change significantly and still remained around 91.6%.

FIGURE 3 | The emission spectrum of QML Tm,Ho: CaYAlO4 laser.

Next, the average output power as a function of the absorbed
pump power under CW and QML is plotted in Figure 2B. In
the experiment, 1.5% output coupling mirror is used. When the
laser is in CW operation, the laser threshold power is 249 mW,
the maximum output power is 301 mW, and the corresponding
slope efficiency is 14.97%. When DWCNT-SA was inserted
before M4 in the cavity, the laser threshold power increased to
677 mW. When the absorbed pump power reached 1,958 mW,
laser entered a stable QML operation, and the maximum output
power under the same conditions was 64 mW, which has a
corresponding slope efficiency of 4.44%. Here, the main reason
why we choose 1.5% output coupler is that it can provide high
intracavity power to start QML.

Figure 3 shows the typical spectra of the mode-locked pulse
measured with a spectrometer (AvaSpecNIR256-2.5TEC) [9]. As
can be seen from Figure 3, the central wavelength of a mode-
locked laser pulse is 2,085 nm, and the full width at half-
maximum bandwidth is about 13 nm. A 2-µm fast photodiode
(ET-5000) was used to connect a 200-MHz digital oscilloscope
(RIGOL, DS4024) to detect QML pulse sequences. Figure 4

shows the QML pulse sequences, which is obtained by scanning
times of (a) 1 ms, (b) 100 µs, and (c) 10 ns. When the output
power reaches the maximum, the pulse width of the Q-switched
envelope is 12 µs, the repetition frequency is 83.33 kHz, the
frequency of the mode-locked pulse is 98.04 MHz, and the
modulation depth of the mode-locked pulse is close to 100%,
which is consistent with the theoretical repetition frequency
corresponding to the 1.5-m cavity length.

QML is in the transition state from Q-switch to CW mode
locking [44–46], Since an autocorrelator is only suitable for
measuring the pulse width of a CW mode-locked pulse, a QML
pulse cannot obtain autocorrelation envelope because of the
envelope modulation of kilohertz, so we can only estimate the
pulse duration roughly in theory.

Hence, formula (1) is used to calculate the width of the
mode-locked pulse [47].

tm =

√

tr2 + tp2 + to2 (1)
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FIGURE 4 | Mode-locked pulse sequence recorded in (A) 1 ms, (B) 100 µs,

and (C) 10 ns per division (div) timescales.

Here, tm is the rising edge time of the measured mode-
locked pulse, tr is the rising edge time of the actual mode-
locked pulse, tp is the rising edge time of the photodetector,
and t0 is the rising edge time of the oscilloscope. In the
experiment, the rising edge time of the mode-locked pulse is
about 2.1 ns, and the rising edge time of the photodetector is
about 35 ps. t0 can be estimated as 2,000 ps using formula (2)
as follows.

t0 ×Wb(200MHz) = 0.35 ∼ 0.4 (2)

Among them, Wb is the bandwidth of the oscilloscope, which is
200 MHz in the experiment. Therefore, it can be calculated that
the rise time of a mode-locked pulse is about 639.35 ps. Since
the actual mode-locked pulse width is about 1.25 times the rising
edge time, it is calculated as 799.2 ps.

CONCLUSION

A passively Q-switched mode locking operation is realized
experimentally by using DWCNT-SA in Tm,Ho:CaYAlO4 all-
solid laser for the first time. After DWCNT-SAwas added into the
resonator cavity, the pump threshold of Tm,Ho:CaYAlO4 solid-
state laser was measured as 677 mW using the transmittance
of 1.5% output coupler. When the absorption pumping power
reached 1,958 mW, Tm,Ho:CaYAlO4 solid state laser entered
a stable QML operation state. When the pump power was
2.6 W, the maximum output power was 64 mw at the central
wavelength of 2,085 nm, the mode-locked pulse repetition
frequency is 98.04 MHz, and the modulation depth is close to
100%. The experimental results show that DWCNT-SA can be
used as a quick starting element for passively QML solid state
laser of 2-µm band, which has an important development and
application value.
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