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We demonstrate the possibility of creating optical beams with phase singularities

engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse

plane curves. To achieve this aim, we have developed a method for directly encoding the

geometric properties of a selected curve into a single azimuthal phase factor without

passing through indirect encryption methods involving lengthy numerical procedures.

The outcome is utilized to mold the optic axis distribution of a liquid-crystal-based

inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input

optical gaussian beam via the Pancharatnam-Berry phase.
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1. INTRODUCTION

Light sculpting has gained increasing importance in both fundamental and applied optics [1].
Engraving singularities in optical beams, in particular, has paved the way for multiple applications
in both classical and quantum optics, most of which relate to the angular momentum of
light. Singular Optics has gradually become an independent research field and now aspires to
become a fundamental cornerstone of modern photonics. Optical singular beams have proven
to be invaluable for non-contact manipulation over micro- and nanoscale [2, 3], which has
enormous implications for modern nanophysics, crystal growth, and metamaterials, to give just
a few examples. Furthermore, the infinite dimensionality of the orbital angular momentum
(OAM) space has paved the way for increasing the data capacity of both free-space and fiber-
optic communications [4] and for developing novel efficient protocols for classical [5] as well
as quantum information processing [6–8]. No less important, optical singularities have been
successfully utilized for super-resolution imaging [9, 10], on-chip optical switching [11–13],
advanced microscopy [14, 15], and material machining [16–18].

Needless to say, the great potential of singular optics—and, more generally, of sculpted light—
has been progressively unlocked over time, through the development of increasingly efficient and
versatile tools for shaping the optical wavefronts. The most prominent technologies currently
available for shaping spatial modes are computer-generated holograms (CGHs) displayed on spatial
light modulators (SLMs)—based on dynamic phase control—and Pancharatnam-Berry phase (or
geometric phase) Optical Elements (PBOEs). Indeed, several methods are nowadays available to
fabricate geometric-phase optical elements for wavefront shaping, ranging from subwavelength
metal stripe space-variant gratings [19] to multilayer plasmonic metasurfaces [20] and Spatially
Varying Axis Plates (SVAPs) based on liquid crystals [21–26].

In the present paper, we introduce a method for designing SVAPs enabling the generation of
scalar optical beams with non-linear azimuthal phase structures, giving birth to phase singularities
engraved within non-cylindrically symmetric intensity profiles. Indeed, the cylindrical symmetry
typical of the intensity profile of helical beams springs from their linear azimuthal phase profile,
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ei ℓφ . Helical beams have helical wavefronts —hence the
name—and carry an OAM of h̄ℓ per photon, ℓ being an
integer, and φ the azimuthal polar angle around the beam
propagation direction.There are multiple families of helical
beams, which differ in their radial dependencies. Well-known
examples are Laguerre-Gaussian (LG) beams [27, 28], Bessel
and Bessel-Gaussian (BG) beams [29], and the wider class of
Hypergeometric-Gaussian (HyG) beams [30], to name just a
few. A helical beam with an azimuthal index ℓ has an ℓ-
fold rotational symmetry, and its OAM spectrum accordingly
includes only the component ℓ. With the light beam wavevector
denoted as k, the azimuthal component of the linear momentum
is h̄kφ per photon: it does not depend on φ but only on
the distance from the beam axis. The energy flux is therefore
rotationally invariant around the beam axis, yielding the well-
known cylindrically symmetric doughnut-shaped profile. An
azimuthally non-uniform kφ , in contrast, will break such
symmetry and will give birth to an optical wavefront with a non-
uniform helical phase structure, which will result, in its turn, in a
non-cylindrically symmetric intensity profile. AnOAM spectrum
will broaden as a consequence of such symmetry breaking.

To impart a non-linear azimuthal structure, we have
developed a phase design method aimed at encoding the
geometric properties of a plane curve in order to create
an intensity profile imitating the shape of the curve. We
presently demonstrate that such an approach enables the direct
determination of the phase profile required to reshape the
intensity profile of a light beam as well as its OAM spectrum
according to one’s wishes. Here, in fact, we avoid passing through
indirect methods for encoding the amplitude and phase of the
target field into a single phase function [31], though the price
to be paid is that only some features of the intensity profile
and of the OAM spectrum will be precisely determined. Despite
these apparent limitations, our method spontaneously leads us
to introduce the concept of dark hollow beams with tailored
intensity profiles or “Free-Form Dark-Hollow” (FFDH) Beams.
A detailed study of the optical properties of FFDH beams will
be reported elsewhere. Here, we focus on the generation of
such beams by using the aforementioned SVAPs, of which q-
plates [32] are probably the most famous examples. Liquid
crystal-based SVAPs combine high conversion efficiency with
exceptional manageability for overall high performance. Our
SVAPs were fabricated by adopting a “direct-write approach,"
as defined in Kim et al. [21]. However, we would like to
emphasize that our focus is presently on the method developed
to determine the transmittance phase function. Specifically,
an arbitrary superposition of azimuthal modes amounts to a
complex function of φ with both an amplitude and a phase, i.e.,

∑

ℓ

cℓe
iℓφ = A(φ)ei9(φ). (1)

Several approaches, mostly based on the Gerchberg-Saxton
algorithm, are usually adopted to obtain a pure phase function
providing an acceptable approximation for Equation (1) [33]. In
what follows, we describe a method to directly generate a dark
hollow beam in which the shape of the dark zone is basically

inherited from the shape of a selected plane curve. This is
achieved without resorting to inverse algorithms such as those
mentioned above. They can be proved to be promising devices of
potential interest for multiple applications ranging from super-
resolution microscopy to directional selective trapping [34],
as well as material processing and optical coronagraphy,
not to mention the applications in classical and quantum
communications [35, 36]. As an example, we consider the case
of Stimulated Emission Depletion (STED) microscopy, in which
super resolution is achieved by the selective deactivation of
fluorophores through an excitation beam filling the internal
zone of a doughnut-shaped de-excitation spot. Replacing the
doughnut with an FFDH beam, the illumination area would
acquire a non-circular shape, suitable for optimally sending
photons to zones where they are really required and/or to prevent
them from damaging the surrounding areas.

2. FREE-FORM AZIMUTHAL PHASE
SHAPING

The question arises of to what extent the transverse intensity
profiles or the OAM spectrum of a light beam can be molded
by manipulating a purely azimuthal phase factor eiψ(φ), ψ(φ)
being an arbitrary function of the azimuthal coordinate φ. Such a
phase factor does not enable the exploration of all the possible
field distributions, even approximately, since ψ is assumed to
be independent of the distance r from the beam axis [31, 37].
As above mentioned, in this work, we aim at introducing a toy
method based on geometric intuition to determine the most
appropriate azimuthal phase factor eiψ(φ) required to generate
dark hollow beams with arbitrary shapes or, as we have baptized
them, FFDH beams. To this purpose, we need a “dough cutter”
for partitioning the plane around the beam axis into a number
of sectors—“slicing the doughnut.” One can then distribute the
transverse intensity of light among the several sectors according
to one’s wishes and necessities. Molding the intensity of light
within each sector is necessary for tailoring the boundaries
of the dark region around the axis—“shaping the hole of the
doughnut.” The portions of light within different sectors can
be disconnected from each other or not. Metaphors aside, our
“dough cutter” is the azimuthal component h̄kφ(φ) of the photon
linear momentum as a function of φ, i.e.,

kφ(φ) =
1

r

dψ(φ)

dφ
. (2)

Assuming ψ(φ) is proportional to the orientation angle 2(φ) of
the unit normal to some plane curve γ described by φ-dependent
parametric equations, then all the relevant features of kφ(φ) can
be gathered from the rotational symmetry properties of γ and
from the local radius of curvature—the latter being related to
both kφ and its derivative. Such a geometric approach has the
advantage that 2(φ)—and therefore the plane curve it comes
from—needs not to be determined, on a case-by-case basis, as a
solution of an inverse problem. Rather, it can be helpful to use a
representation of the curve in polar coordinates, with some free
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parameters that can be tuned to match as much as possible the
target intensity profile.

2.1. Curve Selection
Multiple choices are available. Good options are Lamé curves
or their generalizations. A Lamé Curve, also known as a
superellipse [38], is a closed curve retaining the geometric
properties of semi-major axis and semi-minor axis, typical of
an ellipse, but with a different shape. In polar coordinates it is
described by the equation

(a cosφ)
n

n−1 +
(

b sinφ
)

n
n−1 = ρ(φ)

n
n−1 , (3)

where a, b, and n are positive reals.
In 2003, J. Gielis introduced a single parametric equation—

dubbed the “superformula”—describing multiple plane curves
of the most varied kinds to study forms in plants and other
living organisms [39]. The mathematical expression of the
superformula, in polar coordinates, is

ρ(φ) =
(
∣

∣

∣

∣

∣

cos mφ
4

a

∣

∣

∣

∣

∣

n2

+

∣

∣

∣

∣

∣

sin mφ
4

b

∣

∣

∣

∣

∣

n3)− 1
n1

, (4)

where ρ is the distance of a point of the curve γ from the origin
of the coordinate system as a function of the azimuthal angle φ,
m is an integer, n1, n2, and n3 are three integers controlling its
local radius of curvature, and, finally, the positive real numbers
a and b parameterize the radii of the circumferences respectively
inscribed and circumscribed to the curve γ . For even m = 2 k,
Equation (4) describes a curve γ2 k closing over the interval
[0, 2π). γ2 k is rotationally symmetric by an angle 2π/k. For odd
m = 2 k + 1, γ2 k+1 closes over the interval [0, 4π). When a = b
and n1 = n2, γm exhibits an m-fold rotational symmetry Cm. As
all the free parameters in Equation (4) can vary, the generated
curves can be deeply diverse. No doubt the curves could be
grouped according to a criterion based on the order of the their
rotational symmetry. For m = 4, a = b, and n2 = n3 > 2,
for instance, the superformula simply returns the superellipses
first introduced by G. Lamé in 1818 [38]. For fixed values of
m, a, and b, however, the signs and the absolute values of n1,
n2, and n3 can dramatically change the topological properties
of the curves. Besides, a peculiar feature of the superformula
is the fact that, independently of m, when n2 = n3 = 2, it
always degenerates into a circumference when a = b or into an
ellipse otherwise. Here, we are not interested in the mathematical
peculiarities of the superformula but rather in taking advantage
of its “shape-shifter” capabilities.

Encrypting the geometrical properties of the selected curves
into the optical phase. Assume γ (a, b,m, n1, n2, n3) is the curve
described by the superformula for some values of the free
parameters. The normal unit vector n =

(

nx, ny
)

of the curve
is given by

(

nx + i ny
)2 =

ρ(φ)− i ρ̇(φ)

ρ(φ)+ i ρ̇(φ)
e2 iφ , (5)

where ρ̇ is the derivative of ρ with respect to φ. Denoting as2(φ)
the angle that n forms with the x−axis, we set the optical phase
ψ(φ) to be

ψ(φ) = 22(φ; a, b,m, n1, n2, n3). (6)

Consequently, by varying the free parameters in Equation (4),
multiple phase profiles can be designed and FFDHs accordingly
generated. The realized phase profiles exhibit a modulation
with the same symmetry properties as the curve γ . In the
following, we show that the m-fold symmetry characterizing
the phase modulation also affects the intensity profile of the
generated beam. Light intensity, indeed, is expected to be
equally partitioned among the m equally spaced sectors of the
phase profile.

In Figure 1, this geometry-to-phase transfer procedure is
sketched in the case a = b = 1,m = 5, n1 = 1/2, and n2 = n3 =
4/3. The rippled helical wavefront arising from Equation (6) is
shown in Figure 2B for the same values of the parameters and
is compared to the smooth helical wavefront corresponding to a
doughnut beam with ℓ = 2 (Figure 2A). The latter can be easily
shown to come from a circumference.

This structure primarily affects the OAM spectrum, which
includes only the components (ℓ − m) ± km, with k being an
integer (Figure 3) and ℓ being the OAM index corresponding to
the background helical mode. Specifically, in Figure 3, the OAM
power spectrum |cl|2 of the generated FFDH is presented. In
classical optics, the quantity |cl|2 is the fraction of the total power
of the optical field component carrying an OAM proportional
to l. In quantum optics, it is the probability that a photon in
the beam carries an OAM of h̄l. The actual values of |cl|2,
as reported in Figure 3, have been determined numerically, by
Fourier expansion of the azimuthal phase factor reported in
Equation (5). The skew rays follow the paths dictated by kφ .

FIGURE 1 | Schematic of the encryption procedure of the symmetry

properties of a plane curve into the azimuthal phase of a light beam. In (A), as

an example, we show t and n, i.e., the tangent and the normal unit vectors to

the curve at the point P, respectively. n forms an angle 2(φ) with the horizontal

axis. In (B), we show the transverse phase profile

ψ (φ) = 22(φ;1, 1, 5, 1/2, 4/3, 4/3) (Equation 6). The latter can be regarded as

the superposition of the phase modulation 212m(φ) (C) and the helical phase

profile 2φ (D).
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FIGURE 2 | Helical wavefronts corresponding to a circumference (A) and to

the curve represented in Figure 1A(B).

FIGURE 3 | OAM power spectrum arising from the azimuthal phase profile

corresponding to the parameter values a = b = 1, m = 5, n1 = 1/2, and

n2 = n3 = 4/3.

3. FREE-FORM AZIMUTHAL (FFA) SVAPS

We now focus on the experimental methods for generating
optical beams with the phase structure prescribed by
Equation (6). To reshape a TEM00 laser beam according to our
wishes, we opted for a properly tailored SVAP. The latter is a half-
wave retardation plate in which the direction-angle of 2̄(r,φ) of
the optic axis is spatially variant [23, 24, 26]. When a circularly
polarized input beam passes through the plate, it acquires a

geometric phase factor e±i22̄(r,φ). The sign in the exponent
depends on the handedness of the incident beam polarization
C± =

(

x± iy
)

/
√
2, which is reversed by the SVAP [25]. For

a comprehensive view of the mechanism underlying wavefront
reshaping via the Geometric or Pancharatnam-Berry Phase, we
address the reader to Piccirillo et al. [25]. In essence, molding
the phase of a SVAP amounts to patterning the optic-axis so that
its direction-angle is locally equal to half the prescribed optical
phase. In order to fabricate a liquid-crystal SVAP for generating
FFDH beams, the optic-axis angular distribution must be set to

2̄(r,φ) =
ψ(φ)

2
= 2(φ; a, b,m, n1, n2, n3). (7)

FIGURE 4 | Optic axis patterns deduced from Equation (7) for the parameter

values a = b = 1, m = 5, n1 = 1/2, and n2 = n3 = 4/3. (A) Optic axis pattern

for a SVAP imparting to an input beam the geometric phase 2φ + 212m(φ)

(Figure 1B). (B) Optic axis pattern for a SVAP imparting the geometric phase

212m(φ) (Figure 1C).

In Figure 4, we show the optic-axis pattern of a SVAP
corresponding to 2(φ; a = 1, b = 1,m = 5, n1 =
1/2, n2 = 4/3, n3 = 4/3) (Figure 4A) and, for comparison,
the contribution to such a pattern of the modulation only
(Figure 4B). Figure 5A shows a microscope image of the
SVAP under crossed polarizers, with a birefringent λ-
compensator inserted between the SVAP and the analyzer.
The λ-compensator has a path difference of 550 nm and
therefore introduces a π retardation at that wavelength.
The fast axis forms a 45◦ angle to the axis of the analyzer.
When the compensator is put in, the sample changes its
color depending on its orientation. The changes in color are
based on optical interference. This method fully unveils the
optic axis pattern underlying the SVAP (Figure 4A) because,
differently from the simple crossed-polarizers method, it
enables the orthogonal orientations of the optic axis to be
distinguished between.

Though pure-phase holograms displayed on SLM could be
used to create FFDH beams, fabricating optical devices based
on Geometric Phase has proved to be not only the best-
performing choice but also the most natural, since the unit
normal distribution deduced from a generating curve is directly
translated into an optic axis pattern. As an example, we have here
chosen curves generated via the superformula to take advantage
of a large variety of shapes grouped under the same equation. A
similar method, however, can be applied to any other curve or
family of curves.

4. INTENSITY PROFILES

As mentioned above, by adding a periodical azimuthal phase
modulation to the phase of a helical beam, the cylindrical
symmetry typical of the intensity profile of a doughnut is broken.
In fact, each photon at distance r from the beam axis suffers
a change in its azimuthal linear momentum kφ that depends
periodically on the orientation of the meridional plane it starts
from. As kφ has the same period as ρ(φ) in Equation (4), the
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FIGURE 5 | Experimental observation of the optic axis distribution of the SVAP

(a = b = 1, m = 5, n1 = 1/2, and n2 = n3 = 4/3). (A) Microscope image of

the SVAP between crossed polarizers + birefringent compensator plate at 45◦.

This image reveals the optic axis pattern underlying the SVAP (Figure 4A),

which is displayed in the image overlay. The image was recorded when

illuminating the sample with white light, sandwiched between crossed

polarizers, and inserting, between the sample and the analyzer, a birefringent

λ-compensator (λ = 550 nm) with the optic axis rotated by 45◦. The arrows in

the lower left corner sketch the axes orientations of the input linear polarizer

(black arrow), the output analyzer (red arrow), and the λ-compensator (blue

arrow). (B) Optical transverse phase profile associated with the optic axis

pattern in (A)—the same as in Figure 1B—here replicated for the sake of

comparison.

FIGURE 6 | Comparison between the experimental (A) and theoretical (B)

intensity profiles of the beam generated through the SVAP with the optic axis

pattern shown in Figure 4A at distance z = 1 m, for the values a = b = 1,

m = 5, n1 = 1/2, and n2 = n3 = 4/3 of the curve parameters and for an input

gaussian beam with a plane wavefront and radius w0 = (1.50± 0.04) mm.

resulting transverse intensity profile becomes periodic as well.
What’s more, the details of the profile of kφ are inherited from
the azimuthal rate of change of the unit vector normal to the
curve, also meaning that the inflections of the intensity profiles
will be inherited from the local curvature of the generating curve.
This enables a one-to-one correspondence to be set between the
geometric properties of the generating curve and the transverse
intensity profile of the beam, especially as far as the dark region
is concerned. In Figure 6A, we show the intensity profile of the
beam experimentally generated for the parameter values a = b =
1, m = 5, n1 = 1/2, and n2 = n3 = 4/3 at distance z = 1 m
from the SVAP for a circularly polarized input TEM00 Gaussian
mode with a plane wavefront and radius w0 = (1.50± 0.04) mm.
For comparison, Figure 6B shows the theoretical intensity profile

predicted by calculating the Fresnel transform of the optical field

E0 e
− x2+y2

w20

+2 i2(φ;1,1,5,1/2,4/3,4/3)
, (8)

for the same parameter values. The faint striped structure
surrounding the core profile originates by diffraction from the
abrupt azimuthal changes in the transverse phase profile shown
in Figure 5B.

5. CONCLUDING REMARKS

We have shown the possibility of generating dark hollow
beams with a large variety of intensity landscapes by using a
single azimuthal phase factor without passing through numerical
methods for optical field encryption. The method is based on
a geometric approach in which the intensity profile around the
beam axis is supposed to imitate the shape of a selected closed
curve. Also, the OAM spectrum is affected by the shape of the
generating curve. If the generating curve has m-fold rotational
symmetry, the OAM spectrum will include only components
with multiple of m within a global shift determined by the OAM
index of the unperturbed helical mode. Liquid-crystal SVAPs
turn out to be the most natural choice for implementing such
a method, since the unit vector normal to the generating curve
comes to be copied over the axis pattern. Applications of FFA
SVAPs can be easily devised, in particular, for manipulating
non-spherical objects trapped by optical tweezers—as unwanted
rotations of micro-objects could then be avoided—as well as for
increasing contrast in optical coronagraphy—as properly tailored
dark-hollow beams with line singularities along radial directions
could be exploited to split the intensity distribution around the
optical axis.
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