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This article presents the fractional Laplace transformwith the help of new iterative method

(NIM) is extended for an estimated solution of coupled system of fractional order PDEs.

The time fractional Whitham–Broer–Kaup system is taken as a test example where

derivatives are given in the Caputo sense. Numerical results found by the proposed

method are compared with that of ADM, VIM, and OHAM. Numerical consequences

display that the proposed method is reliable and operative for solution of fractional order

coupled system of PDEs. The proposed method shows better accuracy in even two

iterations compared to the methods given above.

Keywords: fractional Whitham–Broer–Kaup equations, coupled system of time fractional PDEs, new iterative

method, fractional calculus (FC), Whitham–Broer–Kaup system, Caputo sense, ADM, VIM and OHAM

INTRODUCTION

As we know that many technical and engineering issues that arises in day-by-day existence are
modeled via mathematical tools form fractional calculus (FC), i.e., fractional calculus can be used
to simulate various real phenomena involving long memory, e.g., using fractional derivative, one
can model HIV/AIDS model based on the effect of screening of unaware infectives [1]. Maximum
problems that arise are non-linear, and it is not usually probable to locate systematic results of
such problems since some researchers introduced new approaches for finding the exact solution of
FPDEs [2]. However, these methods also have some drawbacks, and we cannot use it for any type
of problems. To fulfill these need, researchers introduced many semi analytical techniques such as
HPM [3], HPTM [4], HAM [5], FDM [6], RPSM [7], etc.

NIM was introduced by Daftardar-Gejji and Jafari in 2006 and is also known as the DJ method
for the solution of non-linear equations. This method is the modification of ADM in which the
complex Adomian polynomials are replaced by Jafari polynomials. Therefore, we have no need to
compute tedious Adomian’s polynomial in each iteration.

In this presentation, we have extended the applications of the DJmethod to a solution of coupled
WBK equations of fractional order using the fractional Laplace Transform. Using the Laplace
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transform for fractional PDEs is effortless compared to the
Riemann Liouvelle integral operator for fractional PDEs as well
as a system of fractional PDEs.

The fractional-orderWBK equations describe the propagation
of shallowwater waves [8] with different dispersion relations. The
WBK equations are of the form:

Dα
t u+ uux + vx + buxx = 0

Dα
t v+ (uv)x + auxxx − bvxx = 0,

where u(x, t) denotes the horizontal velocity, v(x, t) is the height
that deviates from the equilibrium position, a, b are real constants
that are represented in different diffusion powers, and Dα

t 0 <

α ≤ 1 is the Caputo derivative operator. For α = 1, we get the
usual WBK equations. It is also essential to show that when a = 1
and b = 0, we have fractional order modified Boussinesq (MB)
equation, and when a = 0, b = 1�2 , we get the fractional order
approximate long wave (ALW) equation. These equations took
the attention of many researchers in recent decades [9–11].

The present paper is divided into five sections. The
Fundamental Theory of Proposed Method section is devoted to
the analysis of the DJ method as well as the implementation
of the Laplace transform for fractional PDEs are given. In the
Application of Laplace Transform with DJ method to Fractional
Whitham-Broer-Kaup Equations section, the application of
Laplace transform to FPDEs are given. In the Results and
Discussion section, the results of the proposed method are
compared with VIM, ADM, and OHAM solutions for time-
fractional WBK, time fractional MB, and time-fractional ALW
equations, while in the Conclusion section, the conclusion of the
work is given.

FUNDAMENTAL THEORY OF PROPOSED
METHOD

New Iterative Method [12–16]
Daftardar-Gejji and Jafari consider the following equation [12]:

Consider the equations of the form:

νi = fi + ςi (ν1, ν2) + ξi (ν1, ν2) , i = 1, 2. (1)

wherefi are known functions, ςi, ξi are linear and non-linear
functions of νi. Assuming that equation (1) have a solution of the
series form:

νi =
∞
∑

j=0

νi,j, i = 1, 2. (2)

Since ςi is linear, so we write it as:

ςi





∞
∑

j=0

(

ν1,j, ν2,j
)



 =
∞
∑

j=0

ςi
(

ν1,j, ν2,j
)

, (3)

Decomposition of non-linear operators is as follows:

ξi





∞
∑

j=0

νi,j



 = ξi
(

ν1,0, ν2,0
)

+
∞
∑

j=1







ξi





j
∑

k=0

ν1,k,

j
∑

k=0

ν2,k



− ξi





j−1
∑

k=0

ν1,k,

j−1
∑

k=0

ν2,k











,

=
∞
∑

j=0

Gi,j. (4)

where Gi,0 = ξi
(

ν1,0, ν2,0
)

and Gi,j = ξi

(

j
∑

k=0

ν1,k,
j
∑

k=0

ν2,k

)

−

ξi

(

j−1
∑

k=0

ν1,k,
j−1
∑

k=0

ν2,k

)

, j ≥ 1. i = 1, 2.

Hence, equation (1) is equivalent to:

∞
∑

j=0

νi,j = fi +
∞
∑

j=0

ςi
(

ν1,j, ν1,j
)

+
∞
∑

j=0

Gi,j. (5)

Further, the recurrence relation is defined as follows:

νi,0 = fi,

vi,1 = ςi
(

ν1,0, ν2,0
)

+ Gi,0,

vi,2 = ςi
(

ν1,1, ν2,1
)

+ Gi,1,
.....
vi,m+1 = ςi

(

ν1,m, ν2,m
)

+ Gi,m, m = 1, 2, .....

(6)

The kth-order approximation is given by:

νi =
k−1
∑

j=0

νi,j.

For convergence analysis, we refer to Daftardar-Gejji and Jafari
[13] where explanatory example is solved.

Laplace Transform and Fractional Partial
Differential Equations [4]
Consider the following equations:

Dα
t vi(x, t)+ ςvi(x, t)+ ξvi(x, t) = 0, (7)

0 < α ≤ 1,
with ICs.

vi(x, 0) = fi(x). (8)

where ς is the linear operator, ξ is the non-linear operator, and
Dα
t vi(x, t) is the Caputo fractional derivative of a function vi(x, t),

which is defined as:
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Dα
t vi(x, t) =

1

Ŵ(n− α)

t
∫

0

(
vi
n(x, γ )

(t − γ )α+1−n
)dγ , (9)

(n− 1 < α ≤ n, n ∈ N).
Using the property of Laplace transform for Caputo fractional

derivatives is:

L[Dα
t vi] = sαL[vi(x, t)]−

n−1
∑

k=0

vi
k(x, 0+)sα−1−k. (10)

Taking the Laplace transform on both sides of equation (10)
we get:

L[Dα
t vi(x, t)]+ L[ςvi(x, t)]+ L[ξvi(x, t)] = 0. (11)

Using equation (10), we have:

L[vi(x, t)] =
1

s
vi(x, 0)−

1

sα
L[ςvi(x, t)]−

1

sα
L[ξvi(x, t)]. (12)

Taking the inverse Laplace transform on both sides of equation
(12), we get:

TABLE 1 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for WBK equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 1.04892 ×10−4 1.23033 ×10−4 1.07078 ×10−4 1.67111 ×10−12

(0.1,0.3) 9.64474 ×10−5 3.69597 ×10−4 3.04565 ×10−4 4.51196 ×10−11

(0.1,0.5) 8.88312 ×10−5 6.16873 ×10−4 4.81303 ×10−4 2.08888 ×10−10

(0.2,0.1) 4.25408 ×10−4 1.19869 ×10−4 1.04388 ×10−4 1.57879 ×10−12

(0.2,0.3) 3.91098 ×10−4 3.60098 ×10−4 2.97260 ×10−4 4.26227 ×10−11

(0.2,0.5) 3.60161 ×10−4 6.01006 ×10−4 4.70138 ×10−4 1.97328 ×10−10

(0.3,0.1) 9.71922 ×10−4 1.16789 ×10−4 1.01776 ×10−4 1.49181 ×10−12

(0.3,0.3) 8.93309 ×10−4 3.50866 ×10−4 2.90150 ×10−4 4.02799 ×10−11

(0.3,0.5) 8.22452 ×10−4 5.85610 ×10−4 4.59590 ×10−4 1.86481 ×10−10

(0.4,0.1) 1.75596 ×10−3 1.13829 ×10−4 9.92418 ×10−5 1.41043 ×10−12

(0.4,0.3) 1.61430 ×10−3 3.41948 ×10−4 2.83229 ×10−4 3.80803 ×10−11

(0.4,0.5) 1.48578 ×10−3 5.70710 ×10−4 4.49118 ×10−4 1.76298 ×10−10

(0.5,0.1) 2.79519 ×10−3 1.10936 ×10−4 9.67808 ×10−4 1.33388 ×10−12

(0.5,0.3) 2.56714 ×10−3 3.33274 ×10−4 2.76492 ×10−4 3.60145 ×10−11

(0.5,0.5) 2.36184 ×10−3 5.56235 ×10−4 4.38895 ×10−4 1.66734 ×10−10

TABLE 2 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for MB equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 8.16297 ×10−7 6.35269 ×10−5 6.35267 ×10−5 4.57301 ×10−13

(0.1,0.3) 7.64245 ×10−7 1.90854 ×10−4 1.90854 ×10−4 1.23478 ×10−11

(0.1,0.5) 7.16083 ×10−7 3.18549 ×10−4 3.18548 ×10−4 5.71662 ×10−11

(0.2,0.1) 3.26243 ×10−6 6.18930 ×10−5 6.18931 ×10−5 4.32265 ×10−13

(0.2,0.3) 3.05458 ×10−6 1.85945 ×10−4 1.85945 ×10−4 1.16698 ×10−11

(0.2,0.5) 2.86226 ×10−6 3.10352 ×10−4 3.10352 ×10−4 5.40272 ×10−11

(0.3,0.1) 7.33445 ×10−6 6.03095 ×10−5 6.03098 ×10−5 4.08618 ×10−13

(0.3,0.3) 6.86758 ×10−6 1.81187 ×10−4 1.81187 ×10−4 1.10335 ×10−11

(0.3,0.5) 6.43557 ×10−6 3.02408 ×10−4 3.02408 ×10−4 5.10809 ×10−11

(0.4,0.1) 1.30286 ×10−5 5.87746 ×10−5 5.87749 ×10−5 3.86524 ×10−13

(0.4,0.3) 1.22000 ×10−5 1.76574 ×10−4 1.76574 ×10−4 1.04358 ×10−11

(0.4,0.5) 1.14333 ×10−5 2.94707 ×10−4 2.94708 ×10−4 4.83143 ×10−11

(0.5,0.1) 2.03415 ×10−5 5.72867 ×10−5 5.72865 ×10−4 3.65707 ×10−13

(0.5,0.3) 1.90489 ×10−5 1.72102 ×10−4 1.72102 ×10−4 9.87438 ×10−12

(0.5,0.5) 1.78528 ×10−5 2.87241 ×10−4 2.87240 ×10−4 4.5715 ×10−11

Frontiers in Physics | www.frontiersin.org 3 May 2020 | Volume 8 | Article 104

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nawaz et al. Application of New Iterative Method

vi(x, t) = vi(x, 0)− L−1[
1

sα
L[ςvi(x, t)]]

− L−1[
1

sα
L[ξvi(x, t)]]. (13)

Now, we apply a new iterative technique that was derived in the
New Iterative Method section.

APPLICATION OF LAPLACE TRANSFORM
WITH DJ METHOD TO FRACTIONAL
WHITHAM-BROER-KAUP EQUATIONS

Problem 3.1: Time Fractional WBK Equation

Dα
t u+ uux + vx + buxx = 0,

Dα
t v+ (uv)x + auxxx − bvxx = 0. (14)

Subject to ICs

u(x, 0) = λ − 2Bk coth(kξ ),

v(x, 0) = −2B(B+ b)k2csch2(kξ ), (15)

where β =
√

a+ b
2
, ξ = x+ cand λ, c, k, are any constants.

For α = 1, the exact solution of the system is as follows:

TABLE 3 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for ALW equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 8.02989 ×10−6 3.17634 ×10−5 3.17634 ×10−5 1.20348 ×10−13

(0.1,0.3) 7.38281 ×10−6 9.54273 ×10−5 9.54269 ×10−5 3.25026 ×10−12

(0.1,0.5) 6.79923 ×10−6 1.59274 ×10−4 1.59274 ×10−4 1.50478 ×10−11

(0.2,0.1) 3.23228 ×10−5 3.09466 ×10−5 3.09465 ×10−5 1.13895 ×10−13

(0.2,0.3) 2.97172 ×10−5 9.29725 ×10−5 9.29723 ×10−5 3.07447 ×10−12

(0.2,0.5) 2.73673 ×10−5 1.55176 ×10−4 1.55176 ×10−4 1.42339 ×10−11

(0.3,0.1) 7.32051 ×10−5 3.01549 ×10−5 3.01549 ×10−5 1.07747 ×10−13

(0.3,0.3) 6.73006 ×10−5 9.05935 ×10−5 9.05932 ×10−5 2.90939 ×10−12

(0.3,0.5) 6.19760 ×10−5 1.51204 ×10−4 1.51204 ×10−4 1.34695 ×10−11

(0.4,0.1) 1.31032 ×10−4 2.93874 ×10−5 2.93874 ×10−5 1.02029 ×10−13

(0.4,0.3) 1.20455 ×10−4 8.82871 ×10−5 8.82870 ×10−5 2.75424 ×10−12

(0.4,0.5) 1.10919 ×10−4 1.47354 ×10−4 1.47354 ×10−4 1.27514 ×10−11

(0.5,0.1) 2.06186 ×10−4 2.86433 ×10−5 2.86432 ×10−5 9.66033 ×10−14

(0.5,0.3) 1.89528 ×10−4 8.60509 ×10−5 8.60506 ×10−5 2.60846 ×10−12

(0.5,0.5) 1.74510 ×10−4 1.43620 ×10−4 1.43620 ×10−4 1.20763 ×10−11

TABLE 4 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for WBK equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 6.41419 ×10−3 1.10430 ×10−4 5.86860 ×10−5 3.28081 ×10−12

(0.1,0.3) 5.99783 ×10−3 3.31865 ×10−4 3.04565 ×10−4 8.85812 ×10−11

(0.1,0.5) 5.61507 ×10−3 5.54071 ×10−4 3.08812 ×10−4 4.10099 ×10−10

(0.2,0.1) 1.33181 ×10−2 1.07016 ×10−4 5.56884 ×10−5 3.07768 ×10−12

(0.2,0.3) 1.24441 ×10−2 3.21601 ×10−4 2.97260 ×10−4 8.30963 ×10−11

(0.2,0.5) 1.16416 ×10−2 5.36927 ×10−4 2.92626 ×10−4 3.84706 ×10−10

(0.3,0.1) 2.07641 ×10−2 1.03737 ×10−4 5.28609 ×10−5 2.88849 ×10−12

(0.3,0.3) 1.93852 ×10−2 3.11737 ×10−4 2.90150 ×10−4 7.79908 ×10−11

(0.3,0.5) 1.81209 ×10−2 5.20447 ×10−4 2.77382 ×10−4 3.6107 ×10−10

(0.4,0.1) 2.88100 ×10−2 1.00579 ×10−4 5.01929 ×10−5 2.71246 ×10−12

(0.4,0.3) 2.68724 ×10−2 3.02245 ×10−4 2.83229 ×10−4 7.32356 ×10−11

(0.4,0.5) 2.50985 ×10−2 5.04593 ×10−4 2.63019 ×10−4 3.39055 ×10−10

(0.5,0.1) 3.75193 ×10−2 9.75385 ×10−5 4.76741 ×10−5 2.54828 ×10−12

(0.5,0.3) 3.49617 ×10−2 2.93107 ×10−4 2.76492 ×10−4 6.88039 ×10−11

(0.5,0.5) 3.26239 ×10−2 4.89335 ×10−4 2.49480 ×10−4 3.18537 ×10−10
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u(x, t) = λ − 2Bk coth(k(ξ − λt)),

v(x, t) = −2B(B+ b)k2csch2(k(ξ − λt)). (16)

Applying Laplace transform and inverse Laplace transform to
equation (3.1), we have:

u(x, t) = u(x, 0)

+ L−1[
1

Sα
L[−

(

u(x, t)ux(x, t)+ vx(x, t)+ buxx(x, t)
)

]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−

(

(u(x, t)v(x, t))x

+ auxxx(x, t)− bvxx(x, t)
)

]]. (17)

Now, using the basic idea of the DJ method discussed in the
Fundamental Theory of Proposed Method section, we have:

u0 = λ − 2Bk coth(kξ ),

v0 = −2B(B+ b)k2csch2(kξ ), (18)

u1 =
−2Bk2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (19)

v1 =
1

Ŵ(1+ α)
4Bk3tα csc h2(k(x+ c))(−(b+ B)λ coth(k(x+ c))

− (a+ b2 − B2)k(2+ 3 csc h2(k(c+ x)))), (20)

TABLE 5 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for MB equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 5.88676 ×10−5 1.65942 ×10−5 1.65942 ×10−5 2.59213 ×10−13

(0.1,0.3) 5.56914 ×10−5 4.98691 ×10−5 4.98691 ×10−5 6.99872 ×10−12

(0.1,0.5) 5.27169 ×10−5 8.32598 ×10−5 8.26491 ×10−4 3.24016 ×10−11

(0.2,0.1) 1.18213 ×10−4 1.60813 ×10−5 1.60812 ×10−5 2.43233 ×10−13

(0.2,0.3) 1.11833 ×10−4 4.83269 ×10−5 4.83269 ×10−5 6.56712 ×10−12

(0.2,0.5) 1.05858 ×10−4 8.06837 ×10−5 7.94290 ×10−4 3.04035 ×10−11

(0.3,0.1) 1.78041 ×10−4 1.55880 ×10−5 1.55880 ×10−5 2.28336 ×10−13

(0.3,0.3) 1.68429 ×10−4 4.68440 ×10−5 4.68439 ×10−5 6.16531 ×10−12

(0.3,0.5) 1.59428 ×10−4 7.82068 ×10−5 7.63646 ×10−4 2.85432 ×10−11

(0.4,0.1) 2.38356 ×10−4 1.51135 ×10−5 1.51135 ×10−5 2.14485 ×10−13

(0.4,0.3) 2.25483 ×10−4 4.54174 ×10−5 4.54174 ×10−5 5.79099 ×10−12

(0.4,0.5) 2.13430 ×10−4 7.58243 ×10−5 7.34471 ×10−4 2.68103 ×10−11

(0.5,0.1) 2.99162 ×10−4 1.46569 ×10−5 1.46569 ×10−5 2.01559 ×10−13

(0.5,0.3) 2.83001 ×10−4 4.40448 ×10−5 4.40448 ×10−5 5.44208 ×10−12

(0.5,0.5) 2.67868 ×10−4 7.35317 ×10−5 7.06678 ×10−4 2.51949 ×10−11

TABLE 6 | Second-order DJ solution for v(x, t) in comparison with second-order ADM, VIM, and OHAM solutions at α = 1 for ALW equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 4.81902 ×10−4 8.29712 ×10−6 8.29711 ×10−6 6.71962 ×10−14

(0.1,0.3) 4.50818 ×10−4 2.49346 ×10−5 2.49345 ×10−5 1.81427 ×10−12

(0.1,0.5) 4.22221 ×10−4 4.16299 ×10−5 4.16298 ×10−5 8.39947 ×10−12

(0.2,0.1) 9.76644 ×10−4 8.04063 ×10−6 8.04063 ×10−6 6.30876 ×10−14

(0.2,0.3) 9.13502 ×10−4 2.41634 ×10−5 2.41634 ×10−5 1.70328 ×10−12

(0.2,0.5) 8.55426 ×10−4 4.03419 ×10−5 4.03418 ×10−5 7.88563 ×10−12

(0.3,0.1) 1.48482 ×10−3 7.79401 ×10−6 7.79400 ×10−6 5.92521 ×10−14

(0.3,0.3) 1.38858 ×10−3 2.34220 ×10−5 2.34219 ×10−5 1.59992 ×10−12

(0.3,0.5) 1.30009 ×10−3 3.91034 ×10−5 3.91034 ×10−5 7.40708 ×10−12

(0.4,0.1) 2.00705 ×10−3 7.55675 ×10−6 7.55675 ×10−6 5.56907 ×10−14

(0.4,0.3) 1.87661 ×10−3 2.27087 ×10−5 2.27087 ×10−5 1.50359 ×10−12

(0.4,0.5) 1.75670 ×10−3 3.79121 ×10−5 3.79121 ×10−5 6.96112 ×10−12

(0.5,0.1) 2.54396 ×10−3 7.32847 ×10−6 7.32846 ×10−6 5.23618 ×10−14

(0.5,0.3) 2.37815 ×10−3 2.20224 ×10−5 2.20224 ×10−5 1.41377 ×10−12

(0.5,0.5) 2.22578 ×10−3 3.67658 ×10−5 3.67658 ×10−5 6.54527 ×10−12
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u2 =
1

(Ŵ(1+ α))2Ŵ(1+ 2α)Ŵ(1+ 3α)
(2Bk3t2α coth(k(x+ c)) csc h4

(k(x+ c))(4Bk2t
α
λ2(Ŵ(1+ 2α))2 + (−20(a+ b2 − B2)k2 + λ2 −

(4(a+ b2 − B2)k2 + λ2) cos h(2k(x+ c)))(Ŵ(1+ α))2Ŵ(1+ 3α))),

(21)

v2 = Bk4t2α csc h6(k(x+ c))

[
1

√
πŴ(1+ α)Ŵ(1+ 3α)

23+2αBk2tαλ csc h(k(x+ c))

Ŵ(
1

2
+ α)(16(a+ b2 − B2)k cosh(k(x+ c))

+2(a+ b2 − B2)k cosh(3k(x+ c))

+(b+ B)λ(2 sinh(k(c+ x))+ sinh(3k(x+ c))))

−
1

Ŵ(1+ 2α)
(12(11b− 5B)(a+ b2 − B2)k2 (22)

−3(b+ B)λ2 + 2(4(13b− 7B)(a+ b2 − B2)k2

+(b+ B)λ2) cosh(2k(x+ c))+ (4(b− B)(a+ b2 − B2)k2

+(b+ B)λ2) cosh(4k(x+ c))

+4(a+ b2 − B2)kλ(10 sinh(2k(x+ c))+ sinh(4k(x+ c))))].

Three terms approximate the solution for equation (14):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (23)

We take k = 0.1, λ = 0.005, a = b = 1.5 and c = 10 in the
above problem.

Problem 3.2: Time Fractional MB Equation

Dα
t u+ uux + vx = 0,

Dα
t v+ (uv)x + uxxx = 0, (24)

Subject to ICs

u(x, 0) = λ − 2k coth(kξ ),

v(x, 0) = −2k2 csc h2(kξ ). (25)

where ξ = x+ c and k, λ, c are arbitrary constants.
For α = 1, the exact solution of the system is as follows:

u(x, t) = λ − 2k coth(k(ξ − λt)),

v(x, t) = −2k2 csc h2(k(ξ − λt)). (26)

According to the DJ method described in the Fundamental
Theory of Proposed Method section, we have:

u(x, t) = u(x, 0)+ L−1[
1

Sα
L[−

(

u(x, t)ux(x, t)+ vx(x, t)
)

]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−

(

(u(x, t)v(x, t))x + uxxx(x, t)
)

]],

(27)

so that

u0 = λ − 2k coth(k(x+ c)),

v0 = −2k2 csc h2(k(x+ c)), (28)

u1 = −
2k2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (29)

v1 = −
4k3tαλ coth(k(x+ c)) csc h2(k(x+ c))

Ŵ(1+ α)
, (30)

u2 =
2k3t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{
4k2tα coth(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)

− sinh(2k(x+ c))}, (31)

v2 =
4k4t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{−2− cosh(2k(x+ c))+

2k2tα(3+ 2 cosh(2k(x+ c))) csc h2(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)
}.(32)

Three terms approximate the solution for equation (25):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (33)

Problem 3.3: Time Fractional ALW Equation

Dα
t u+ uux +

1

2
uxx + vx = 0,

Dα
t v+ (uv)x −

1

2
vxx = 0, (34)

subject to Ics

u(x, 0) = λ − k coth(kξ ),

v(x, 0) = −k2 csc h2(kξ ). (35)

where ξ = x+ c and λ, c, k are arbitrary constants.
For α = 1, the exact solution of the system is as follows:
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FIGURE 1 | (A) Coupled surface for WBK equation, (B) for MB equation, (C) for ALW equation at α = 1.

FIGURE 2 | 2D curves for u(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.
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u(x, t) = λ − k coth(k(ξ − λt)),

v(x, t) = −k2 csc h2(k(ξ − λt)). (36)

According to the DJ method described in the Fundamental
Theory of Proposed Method section, we have:

u(x, t) = u(x, 0)

+L−1[
1

Sα
L[−(u(x, t)ux(x, t)+ vx(x, t)+

1

2
uxx(x, t))]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−((u(x, t)v(x, t))x −

1

2
vxx(x, t))]].

(37)

So that

u0 = λ − k coth(k(x+ c)),

v0 = −k2 csc h2(k(x+ c)), (38)

u1 = −
k2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (39)

v1 = −
2k3tαλ coth(k(x+ c)) csc h2(k(x+ c))

Ŵ(1+ α)
, (40)

u2 =
1

Ŵ(1+ 2α)
k3t2αλ2 csc h4(k(x+ c))

{
2k2tα coth(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)
− sinh(2k(c+ x))},(41)

v2 =
2k4t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{−2− cosh(2k(x+ c))

+
1

(Ŵ(1+ α))2Ŵ(1+ 3α)
(k2tα

(3+ 2 cosh(2k(x+ c))) csc h2(k(x+ c))(Ŵ(1+ 2α))2)}.
(42)

Three terms approximate the solution for equation (26):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (43)

Values of the parameters are taken to be same as problem 3.1.

RESULTS AND DISCUSSION

The DJ method is experienced upon the fractional WBK,
MB, and ALW equations. Mathematical 7 have been used for
most computations.

Tables 1–3 show the estimation of absolute errors of the
second-order DJ solution with ADM, VIM, and second-
order OHAM solutions for u(x, t) of fractional WBK, MB,
and ALW equations at α = 1, respectively. Tables 4–6
shows the estimation of absolute errors of second-order DJ
solution with ADM, VIM, and second-order OHAM solutions
for v(x, t) of fractional WBK, MB, and ALW equations at
α = 1, respectively. The tabulated results show that the
second-order approximate solutions by the DJ method are

FIGURE 3 | 2D curves for v(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.
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FIGURE 4 | Absolute error curves for coupled (A) WBK equation, (B) MB equation, (C) ALW equation at x = 50.

closer to exact solutions than those of ADM, VIM, and
OHAM solutions.

Figures 1A–C show the coupled surface of the second-
order approximate solution by NIM for u(x, t) and v(x, t),
part of WBK, MB, and ALW equations at α = 1,
respectively. Figures 2, 3 show the 2D plots of the second-
order approximate solution by NIM for u(x, t) and v(x, t) of
WBK, MB, and ALW equations at x = 1 and different
values of α, respectively. Figures 4A–C show the absolute
error graph for the coupled WBK, MB, and ALW equation
at x = 50.

It is clear from 2D figures that as the value of α increases to 1,
the approximate solutions tend closer to the exact solution.

CONCLUSION

The DJ method converges rapidly to the exact solution
at lower order of approximations for the WBK system.
The results obtained by the proposed method are very
encouraging in assessment with ADM, VIM, and OHAM.
As a result, it would be more appealing for researchers to
apply this method for solving systems of non-linear PDEs
in different fields of science especially in fluid dynamics
and physics. The accurateness of the technique can more
be improved by taking higher-order estimation of the
proposed method.
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