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Quantum Monte Carlo methods are powerful numerical tools to accurately solve the

Schrödinger equation for nuclear systems, a necessary step to describe the structure

and reactions of nuclei and nucleonic matter starting from realistic interactions and

currents. These ab-initio methods have been used to accurately compute properties

of light nuclei—including their spectra, moments, and transitions—and the equation of

state of neutron and nuclear matter. In this work we review selected results obtained by

combining quantum Monte Carlo methods and recent Hamiltonians constructed within

chiral effective field theory.
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1. INTRODUCTION

The study of nuclear properties as they emerge from the individual interactions among protons and
neutrons is a fascinating long-standing problem, subject of both theoretically and experimentally
research activities. From a theoretical point of view, a truly ab-initio description of nuclei is still very
challenging at present. The underlying theory of strong interactions, Quantum Chromodynamics
(QCD), that describes how quarks and gluons interact to form nucleons and nuclei, in the low-
energy regime is non-perturbative in its coupling constant. Despite remarkable progresses [1, 2],
realistic computations of many-body nuclear systems in terms of the fundamental degrees of
freedom of QCD—quarks and gluons—are still extremely challenging.

A more feasible approach to the problem consists in assuming that at the energy regime relevant
to the description of atomic nuclei, quarks, and gluons are confined within hadrons. The latter
are the active degrees of freedom at soft scales, and they interact among themselves through
non-relativistic effective potentials that are consistent with the symmetries of QCD. The solution
of nuclear many-body problems requires two main ingredients: an Hamiltonian that accurately
models the interactions among the nucleons, and reliable numerical many-body methods to solve
the corresponding Schrödinger equation.

Microscopic nuclear Hamiltonians, capable of reproducing nucleon-nucleon scattering data
and the properties of few-body systems, have been successfully used to describe light nuclei.
For example, the highly-realistic Argonne v18 two-body potential [3] combined with the
phenomenological Illinois-7 three-body force have been employed to predict several properties of
nuclei up to A = 12 with great accuracy [4]. Several calculations of energies, rms radii, transitions,
and densities turn out to be in excellent agreement with experimental data. The main limitation
of these phenomenological Hamiltonians is that it is not clear how they can be systematically
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improved, and how to quantify theoretical, i.e., systematic,
uncertainties related to the specific interaction model. Another
approach that became very popular in the last two decades consist
in deriving nuclear interactions within the framework of chiral
Effective Field Theory (χEFT). The advantage of this approach
is that it provides the necessary tools to systematically improve
the interaction models, to estimate uncertainties related to the
truncation of the chiral expansion, and to consistently derive
electroweak currents.

Several many-body methods have been developed to
numerical solve the many-body Schrödinger equation. Most
of them rely on basis expansions, for example the coupled
cluster method [5, 6], the no core shell model [7], the similarity
renormalization group [8], and the self consistent Green’s
function [9]. Each of these methods has distinct advantages,
and many are able to treat a wider variety of nuclear interaction
models. These many-body techniques are very effective and
achieve a good convergence only when relatively soft potentials
are used.

Quantum Monte Carlo (QMC) methods are ideally suited
to study strongly correlated many-body systems, and have no
difficulties in treating “stiff” nuclear interactions, but are limited
to nearly local nuclear potentials. For this reason, until fairly
recently, the applicability of QMC methods was limited to
phenomenological interactions, as χEFT Hamiltonians were
typically written inmomentum space. Over the past few years, the
situation has drastically changed with the development of local
χEFT potentials, both with [10, 11] and without explicit delta
degrees of freedom [12, 13], that have provided a way to combine
an EFT-based description of nuclear dynamics with precise QMC
techniques. In this work we will review selected results of nuclei
obtained using QMCmethods and chiral Hamiltonians.

2. NUCLEAR INTERACTIONS

The microscopic model of nuclear theory assumes that nuclear
systems can be described as point-like nucleons, whose dynamics
is characterized by a non-relativistic Hamiltonian

H =
∑

i

Ti +
∑

i<j

vij +
∑

i<j<k

Vijk + · · · , (1)

where Ti is the one-body kinetic energy operator, vij is the
nucleon-nucleon (NN) interaction between particles i and j, Vijk

is the three-nucleon (3N) interaction between particles i, j, and k,
and the ellipsis indicate interactions involving more than three
particles. There are indications that four-nucleon interactions
may contribute at the level of only ∼ 100 keV in 4He [14] or
pure neutron matter [15], and therefore are negligible compared
to NN and 3N components. Hence, current formulations of
the microscopic model do not typically include them (see, for
example, reference [4]).

The NN interaction term in the nuclear Hamiltonian is
the most studied of all, with thousands of experimental data
points at laboratory energies (Elab) from essentially zero to
hundreds of MeV. It consists of a long-range component, for
inter-nucleon separation r & 2 fm, due to one-pion exchange

(OPE) [16], and intermediate- and short-range components, for,
respectively, 1 fm . r . 2 fm and r . 1 fm, derived,
up to the mid 1990’s, almost exclusively from meson-exchange
phenomenology [3, 17, 18]. These models fit the large amount of
empirical information about NN scattering data contained in the
Nijmegen database [19], available at the time, with a χ2/datum ≃
1 for Elab up to pion-production threshold. Two well-known and
still widely used examples in this class of NN interactions are the
CD-Bonn [18] and the Argonne v18 (AV18) [3] potentials.

The AV18 interaction is a local, configuration-space NN
potential that has been extensively and successfully used in
a number of QMC calculations. It is expressed as a sum
of electromagnetic and OPE terms and phenomenological
intermediate- and short-range parts:

vij = v
γ
ij + vπij + vIij + vSij . (2)

The electromagnetic term v
γ
ij has one- and two-photon exchange

Coulomb interaction, vacuum polarization, Darwin-Foldy, and
magnetic moment terms, with appropriate form factors that keep
terms finite at r = 0 (see reference [3] for more details). The
OPE part includes the charge-dependent (CD) terms due to the
difference in neutral (mπ0) and charged pion (mπ± ) masses, and
in coordinate-space it reads

vπij =
[

vπστ (r) σ i · σ j + vπtτ (r) Sij
]

τ i · τ j +
[

vπσT(r) σ i · σ j + vπtT(r) Sij
]

Tij ,

(3)

where σ adn τ are the Pauli matrices that operate over the spin
and isospin of particles, and Sij = 3 σ i · r̂ij σ j · r̂ij − σ i · σ j and
Tij = 3 τizτjz − τ i · τ j are the tensor and isotensor operators,
respectively. The functions, vπστ (r), v

π
tτ (r), v

π ,
σT(r), and vπtT(r) are

defined as

vπστ (r) =
Y0(r)+ 2Y+(r)

3
, vπtτ (r) =

T0(r)+ 2T+(r)

3
,

vπσT(r) =
Y0(q)− Y+(r)

3
, vπtT(r) =

T0(r)− T+(r)

3
, (4)

where Yα(r) and Tα(r) are the Yukawa and tensor functions
given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα
, Tα(r) = Yα(r)

(

1+ 3

xα
+ 3

x2α

)

,

(5)

with xα = mπα r, and gA = 1.267, fπ = 92.4MeV being the
axial-vector coupling constant of the nucleon and the pion decay
constant, respectively.

The intermediate-range region, vIij, is parametrized in terms of

two-pion exchange (TPE), based on, but not consistently derived
from, a field-theory analysis of box diagrams with intermediate
nucleons and 1 isobars [20]. The short-range region, vSij, is

instead represented by spin-isospin and momentum-dependent
operators multiplied by Woods-Saxon radial functions [3].

Frontiers in Physics | www.frontiersin.org 2 April 2020 | Volume 8 | Article 117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gandolfi et al. Nuclei: QMC and χEFT Interactions

The AV18 model can be written as an overall sum of eighteen
operators (N = 18)

vij =
N
∑

p=1

vp(rij)O
p
ij , (6)

where the first eight are given by

O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j

]

, (7)

with the spin-orbit contribution expressed in terms of the relative
angular momentum L = 1

2i (ri − rj) × (∇i − ∇j) and the total

spin S = 1
2 (σ i + σ j) of the pair. There are six additional charge-

independent operators corresponding to p = 9 − 14 that are
quadratic in L

O
p=9−14
ij =

[

L2, L2 σ i · σ j, (L · S)2
]

⊗
[

1, τ i · τ j

]

, (8)

while the p = 15− 18 are charge-independence breaking terms

O
p=15−18
ij =

[

Tij,Tij σ i · σ j,Tij Sij, τi,z + τj,z
]

. (9)

The AV18 model has a total of 42 independent parameters.
A simplex routine [21] was used to make an initial fit to the
phase shifts of the Nijmegen partial-wave analysis (PWA) [19],
followed by a final fit direct to the database, which contains 1,787
pp and 2,514 np observables for Elab up to 350MeV. The nn
scattering length and deuteron binding energy were also fit. The
final χ2/datum = 1.1 [3]. While the fit was made up to 350MeV,
the phase shifts are qualitatively good up to much larger energies,
E ≤ 600MeV [22].

Simplified versions of these interactions, including only a
subset of the operators in Equation (7), are available. For instance,
the Argonne v′8 (AV8′) contains a charge-independent eight-

operator projection,O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j

]

,

of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
Urbana IX (UIX) [27] and Illinois 7 (IL7) [28] models. The
UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
constrained on the low-lying spectra of nuclei in the mass
range A = 3− 10.

Despite their success in predicting a wide range of nuclear
properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (1-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the 1 isobar (1-full χEFT),
because the1-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale 3b ∼ GeV, Q = p/3b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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order (NLO) for ν = 2, next-to-next-to-leading order (N2LO)
for ν = 3 and so on. Similarly as for nuclear interactions,
such a scheme can also be developed for electroweak currents.
Therefore, χEFT provides a rigorous scheme to systematically
construct many-body forces and consistent electroweak currents,
and tools to estimate their uncertainties [43–48].

Chiral nuclear forces are comprised of both pion-exchange
contributions and contact terms. Pion-exchange contributions
represent the long-range part of nuclear interactions and some of
the pion-nucleon (πN) couplings entering sub-leading diagrams
can consistently be obtained from low-energy πN scattering
data [49–54, 54–56]. On the other end, contact terms encode the
short-range physics, and their strength is specified by unknown
low-energy constants (LECs), obtained by fitting experimental
data. Similarly to the phenomenological interactions, the LECs
entering theNN component are obtained by fittingNN scattering
data up to 300MeV lab energies, while the LECs involved in
the 3N terms are fixed by reproducing properties of light-nuclei.
This optimization procedure involves separate fit of the NN and
3N terms. Recently, a different strategy has been introduced
by Ekström et al. [57]. This new approach is based on a
simultaneous fit of the NN and 3N forces to low-energy NN data,
deuteron binding energy, and binding energies and charge radii
of hydrogen, helium, carbon, and oxygen isotopes.

Within χEFT,many studies have been carried out dealing with
the construction and optimization ofNN and 3N interactions [34,
42, 44, 49, 57–81] and accompanying isospin-symmetry-breaking
corrections [82–84]. These interactions are typically formulated
in momentum space, and include cutoff functions to regularize
their behavior at large momenta. This makes them strongly
non-local when Fourier-transformed in configuration space, and
therefore unsuitable for use with QMC methods. In this context,
an interaction is local if it depends solely on the momentum
transfer q = p − p′ (p and p′ are the initial and final relative
momenta of the two nucleons), which, upon Fourier transform,
leads to dependencies solely on r. However, interactions in
momentum-space can also depend on the momentum scale k =
(p′ + p)/2, whose Fourier transform introduces derivatives in
coordinate space. These k dependencies, and thus non-localities,
come about because of (i) the specific functional choice made to
regularize the momentum space potentials in terms of the two
momentum scales p and p′, and (ii) contact interactions that
explicitly depend on k.

In recent years, local configuration-space chiral NN
interactions have been derived by two groups. On the one
side, the authors of references [12, 85] constructed NN local
chiral potentials within 1-less χEFT by including one- and
two-pion exchange contributions and contact terms up to N2LO
in the chiral expansion. The contact terms are regularized
in coordinate space by a cutoff function depending only
on the relative distance between the two nucleons, and use
Fierz identities [86] to remove completely the dependence
on the relative momentum of the two nucleons, by selecting
appropriate combinations of contact operators. Their strength is
characterized by 11 LECs, fixed by performing order by order χ2

fit to NN phase shifts from the Nijmegen PWA up to 150MeV
lab energy. The fitting procedure is carried out for different
values of the cutoff R0 in the range of R0 = 1.0 − 1.2 fm. The

motivations why the authors of references [12, 85] truncated the
chiral expansion of these local potentials at N2LO is because at
this order it is (i) possible to have a fully local representation of
the NN chiral interactions and (ii) the inclusion of consistent 3N
force is straightforward. In their models, the unknown 3N LECs
are obtained by reproducing the binding energy of 4He as well as
the P-wave n− α elastic scattering phase shifts. In addition, they
explore different parametrization for the 3N, force accordingly
to Fierz identities [87–89]. In the present work, we are referring
to a set of these local chiral interactions, specifically the (D2,Eτ )
model with R0 = 1.0 fm of reference [89], as GT+Eτ -1.0.

On the other side, the authors of references [10, 90]
developed a different set of NN local chiral interactions by
(i) including diagrams with the virtual excitation of 1-isobars
in the TPE contributions up to N2LO (1-full χEFT), ii)
retaining contact terms up to N3LO. The LECs entering the
NN contact interactions in this model are constrained to
reproduce NN scattering data from the most recent and up-
to-date database collected by the Granada group [91–93]. The
contact terms are implemented via a Gaussian representation of
the three-dimensional delta function with RS as the Gaussian
parameter [10, 90, 94]. The pion-range operators are regularized
at high-value of momentum transfer via a special radial function
characterized by the cutoff RL [10, 90, 94]. There are two classes
of these potentials. Class I (II) are fit to data up to 125MeV
(200MeV). For each class, two combinations of short- and long-
range regulators have been used, namely (RS,RL) = (0.8, 1.2) fm
(models NV2-Ia and NV2-IIa) and (RS,RL) = (0.7, 1.0) fm
(models NV2-Ib and NV2-IIb). Class I (II) fits about 2,700
(3,700) data points with a χ2/datum . 1.1 (. 1.4) [10, 90].
In conjunction with these models, two distinct sets of 1-full
3N interactions have also been constructed up to N2LO. In the
first, the 3N unknown LECs were determined by simultaneously
reproducing the experimental trinucleon ground-state energies
and neutron-deuteron (nd) doublet scattering length for each
of the NN models considered, namely NV2-Ia/b and NV2-
IIa/b [11, 95]. In the second set, these LECs were constrained by
fitting, in addition to the trinucleon energies, the empirical value
of the Gamow-Teller matrix element in tritium β-decay [94].
The resulting Hamiltonians were labeled as NV2+3-Ia/b and
NV2+3-IIa/b (or Ia/b and IIa/b for short) in the first case, and
as NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗ (or Ia∗/b∗ and IIa∗/b∗) in
the second.

The interactions between external electroweak probes—
electrons and neutrinos—and interacting nuclear systems is
described by a set of effective nuclear currents and charge
operators. Analogously to the nuclear interactions, electroweak
currents can also be expressed as an expansion in many-body
operators that act on nucleonic degrees of freedom. Electroweak
currents have been developed in both meson-exchange and
χEFT approaches. We refrain to discuss them in this work,
redirecting the interested reader to dedicated reviews [4, 96–98]
and references therein.

3. QUANTUM MONTE CARLO METHODS

The χEFT Hamiltonians and the consistent electroweak
currents discussed in the previous section are the main
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input of sophisticated many-body methods aimed at solving
with controlled approximations the nuclear many-body
Schrödinger equation

H|9n〉 = En|9n〉 . (10)

This is a highly non-trivial problem, mainly because of the non-
perturbative nature and the strong spin-isospin dependence of
realistic nuclear forces. In this work, we will focus on QMC
techniques, namely the variational Monte Carlo (VMC), the
Green’s function Monte Carlo (GFMC), and the auxiliary-field
diffusion Monte Carlo (AFDMC) methods.

3.1. Variational Monte Carlo
The variational Monte Carlo method is routinely used to
obtain approximate solutions to the many-body Schrödinger
equation for a wide range of strongly interacting nuclear systems,
including few-body nuclei, light closed-shell nuclei, and nuclear
and neutron matter [4]. The VMC algorithm relies on the
Rayleigh-Ritz variational principle

〈9T |H|9T〉
〈9T |9T〉

= ET ≥ E0 (11)

to find the optimal set of variational parameters defining the trial
wave function 9T . As far as the nuclear many-body problem is
concerned, it is customary to assume that the trial state factorizes
into long- and short-range components

|9T〉 =
(

1−
∑

i<j<k

Fijk

)(

S
∏

i<j

Fij

)

|8J〉 , (12)

where Fij and Fijk are two- and three-body correlations,
respectively. The symbol S indicates a symmetrized product
over nucleon pairs since, in general, the Fij do not commute.
VMC calculations explicitly account for the underlying strong
alpha-cluster structure of light nuclei. For instance, the totally
antisymmetric Jastrow wave function of p-shell nuclei is
constructed from a sum over independent-particle terms, 8A,
each having four nucleons in an α-like core and the remaining
(A− 4) nucleons in p-shell orbitals [99]:

|8J〉 =A





∏

i<j<k

f cijk

∏

i<j≤4

fss(rij)
∏

k≤4<l≤A

fsp(rkl)

×
∑

LS[n]

(

βLS[n]
∏

4<l<m≤A

f
[n]
pp (rlm) |8A(LS[n]JJzTz)1234 : 5...A〉

)



 .

(13)

The operatorA stands for an antisymmetric sum over all possible
(A
4

)

partitions of the A particles into four s-shell and (A − 4)
p-shell states. As suggested by standard shell-model studies, the
independent-particle wave function |8A(LS[n]JJzTz)1234 : 5...A〉
with the desired JM value of a given nuclear state is obtained
using LS coupling, which is most efficient for nuclei with up to
A = 12. The symbol [n] is the Young pattern that indicates
the spatial symmetry of the angular momentum coupling of

the p-shell nucleons [25]. Note that |8A(LS[n]JJzTz)1234 : 5...A〉 is
chosen to be independent of the center of mass as it is expressed
in terms of the intrinsic coordinates

ri → ri − RCM , RCM = 1

A

A
∑

i=1

ri . (14)

The pair correlation for particles within the s-shell, fss, arises
from the structure of the α particle. The fsp is similar to the
fss at short range, but with a long-range tail that goes to unity
at large distances, allowing the wave function to develop a
cluster structure. Finally, fpp is set to give the appropriate cluster
structure outside the α core. The three-body central correlations,
induced by the two-body potential has the following operator
independent form

f cijk = 1− qc1(rij · rik)(rij · rjk)(rik · rjk)e−qc2(rij+rik+rjk) , (15)

where qc1 and q
c
2 are variational parameters. In addition the scalar

correlations of Equation (13), VMC trial wave functions include
spin-dependent nuclear correlations, whose operator structure
reflects the one of the NN potential of Equation (6)

Fij =
(

1+ Uij

)

=
(

1+
6

∑

p=2

up(rij)O
p
ij

)

. (16)

More sophisticated trial wave functions can be constructed
by explicitly accounting for spin-orbit correlations, as, for
instance, in the cluster variational Monte Carlo calculations
of reference [100]. However, the computational cost of these
additional terms is significant, while the gain in the variational
energy is relatively small [101]. The radial functions up(rij) are
generated by minimizing the two-body cluster energy of the
interaction v̄− λ, with

v̄− λ =
18

∑

p=1

(

αpv
p(rij)O

p
ij − λp(rij)

)

. (17)

The variational parameters αp simulate the quenching of spin-
isospin interactions between particles i and j due to interactions
of these particles with others in the system. The Lagrange
multipliers λp(rij) account for short-range screening effects, and
are fixed at large distances by the asymptotic behavior of the
correlation functions, which is encoded by an additional set of
variational parameters. The quality of the trial wave function
is improved by reducing the strength of the spin- and isospin-
dependent correlation functions up(rij) when a particle k comes
close to the pair ij [102]

up(rij) →





∏

k 6=i6=j

f
p

ijk
(rij, rik)



 up(rij) , (18)

where the three-body operator-dependent correlation induced by
the NN interaction is usually expressed as

f
p

ijk
(rij, rik) = 1− q

p
1(1− r̂ik · r̂jk)e−q

p
2(rij+rik+rjk) , (19)
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with q
p
1 and q

p
2 being variational parameters [25]. The three-body

correlation operator Fijk turns out to be particularly relevant for
when 3N interactions are present in the nuclear Hamiltonian. In
this case, its form is suggested by perturbation theory

Fijk =
∑

q

ǫqV
q

ijk
(yqrij, yqrik, yqrjk) , (20)

where yq is a scaling parameter, and ǫq a small, constant. The
superscript q indicates the various terms of the 3N force. It has
been shown that the vast majority of the 3N correlations can
be recovered by omitting the commutator term ǫCV

C
ijk
, provided

that the strength of the anticommutator term ǫA is opportunely
adjusted. This allows to save a significant amount of computing
time, since anticommutators involving pairs ij and jk can be
expressed as a generalized tensor operators involving the spins
of nucleons i and k only. Hence, the computing time scales as the
number of pairs rather than the number of triplets [25].

The expectation values of the form of Equation (11) contain
multi-dimensional integrals over all particle positions

〈O〉 =
∫

dR9†
T(R)O9T(R)

∫

dR9†
T(R)9T(R)

. (21)

A deterministic integration of the above integral is
computationally prohibitive, therefore Metropolis Monte
Carlo techniques are employed to stochastically evaluate it. The
order of operators in the symmetrized product of Equation
(12), denoted by p and q for the left and right hand side wave
functions, respectively, is also sampled. The 3A-dimensional
integration is facilitated by introducing a probability distribution,
Wpq(R), such that

〈O〉 =
∑

p,q

∫

dR
9

†
T,p(R)O9T,q(R)

Wpq(R)
Wpq(R)

∑

p,q

∫

dR
9

†
T,p(R)9T,q(R)

Wpq(R)
Wpq(R)

. (22)

In standard VMC calculations, one usually takes Wpq(R) =
|Re(9†

T,p(R)9T,q(R))|, even though simpler choices might

be used to reduce the computational cost. The Metropolis
algorithm is used to stochastically sample the probability
distribution Wpq(R) and obtain a collection of uncorrelated or
independent configurations.

Since the nuclear interaction is spin-isospin dependent, the
trial state is a sum of complex amplitudes for each spin-isospin
state of the system

|9T〉 =
∑

is≤ns ,it≤nt

a(is, it;R)|χis χit 〉 . (23)

The ns = 2A many-body spin states can be written as

|χ1〉 = | ↓1,↓2, . . . ,↓A〉
|χ2〉 = | ↑1,↓2, . . . ,↓A〉
|χ3〉 = | ↓1,↑2, . . . ,↓A〉
. . .

|χns〉 = | ↑1,↑2, . . . ,↑A〉 (24)

and the isospin ones can be recovered by replacing↓with n and↑
with p. Note that, because of charge conservation, the number of
isospin states reduces to nt =

(A
Z

)

. To construct the trial state, one
starts from themean-field component |8A(LS[n]JJzTz)1234 : 5...A〉.
For fixed spatial coordinates R, the spin-isospin independent
correlations needed to retrieve |8J〉 are simple multiplicative
factors, common to all spin amplitudes. The symmetrized
product of pair correlation operators is evaluated by successive
operations for each pair, sampling their ordering as alluded to
earlier. As an example, consider the application of the operator
σ 1 · σ 2 on a three-body spin state (for simplicity we neglect the
isospin components). Noting that σ i ·σ j = 2Pσij −1, where 2Pσij
exchanges the spin of particles i and j, we obtain:

σ 1 · σ 2

























a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↑↓
a↓↓↑
a↓↓↓

























=

























a↑↑↑
a↑↑↓

2a↓↑↑ − a↑↓↑
2a↓↑↓ − a↑↓↓
2a↑↓↑ − a↓↑↑
2a↑↓↓ − a↓↑↓

a↓↓↑
a↓↓↓

























. (25)

Hence, the many-body spin-isospin basis is closed under the
action of the operators contained in the nuclear Hamiltonian.

Most of the computing time is spent on spin-isospin
operations like the one just described. They amount to an
iterative sequence of large sparse complex matrix multiplications
that are performed on-the-fly using explicitly coded subroutines,
which mainly rely on three useful matrices. The first matrix
m(i, is) gives the z-component of the spin of particle i associated
to the many-body spin-state is. A second useful matrix is
nexch(kij, is), that provides the number of the many-body spin
state obtained by exchanging the spins of particles i and j,
belonging to the pair labeled kij in the state is. The matrix
nflip(i, is) yields the number of the spin state obtained by flipping
the spin of particle i in the spin state. The action of the operator
σ 1 · σ 2 can then be expressed as

σ 1 · σ 2

∑

is ,it

a(is, it;R)|χis χit 〉

=
∑

is ,it

[

2a(is, it;R)− a(nexch(kij, is), it;R)
]

|χis χit 〉 . (26)

By utilizing this representation, we only need to evaluate 2A

operations for each pair, instead of the 2A × 2A operations that
are required using a simple matrix representation in spin space.
The tensor operator is slightly more complicated to evaluate and
requires both matrices m(i, is) and nflip(i, is) [103]. Analogous
matrices are employed to perform operations in the isospin space,
as the two representations are practically identical.

The expectation values of Equation (21) are evaluated by
having the operators act entirely on the right hand side of the
trial wave function. Thematrix machinery used to apply the spin-
dependent correlation operators is also used to evaluateO|9T,p〉.
A simple scalar product of this quantity with 〈9T,q|, provides the
numerator of the local estimate 9†

T,q(R)O9T,p(R)/Wpq(R) and
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Wpq(R) is computed in a similar fashion. The first and second
derivatives of the wave function are numerically computed by
means of the two- and three-point stencil, respectively. Hence,
to determine the kinetic energy, 6A + 1 evaluations of 9T(R)
are needed. Finally, using the trick described in reference [104],
we can evaluate the action of the angular momentum dependent
terms in the potential evaluating 9T(R) an additional 3A(A −
1)/2 times.

Not only does the size of the wave vector grows exponentially
with the number of nucleons, but so does the number of
evaluations necessary to calculate the energy, limiting the
applicability of the VMC method to A ≤ 12 nuclei. Sampling
the spin-isospin state and evaluating the trial wave function’s
amplitude for that sampled state still requires a number of
operations exponential in the particle number, bringing little
savings in terms of computing time. Extending VMC calculations
to larger nuclear systems requires devising trial wave functions
that can capture most of physics of the system while requiring
computational time that scales polynomially with A.

3.2. Green’s Function Monte Carlo
Green’s functionMonte Carlo overcomes the limitations intrinsic
to the variational ansatz by using an imaginary-time projection
technique to enhance the true ground-state component of a
starting trial wave function

|90〉 ∝ lim
τ→∞

e−(H−ET )τ |9T〉 . (27)

In the above equation, τ is the imaginary time, and ET is a
parameter used to control the normalization. In addition to
ground-states properties, excited states can be computed within
GFMC. The imaginary-time diffusion yields the lowest-energy
eigenstate with the same quantum numbers as |9T〉. Thus, to
obtain an excited state with distinct quantum numbers from the
ground state, one only needs to construct a trial wave function
with the appropriate quantum numbers. If the excited-state
quantum numbers coincide with those of the ground state, more
care is needed, but precise results for such states can still be
obtained [105].

Except for some specific cases, the direct computation of the
propagator e−Hτ for arbitrary values of τ is typically not possible.
For small imaginary times δτ = τ/N withN large, the calculation
is tractable, and the full propagation to large imaginary times τ
can be recovered through the following path integral

9(τ ,RN) =
∫ N−1

∏

i=0

dRi

〈

RN

∣

∣

∣
e−(H−ET )δτ

∣

∣

∣
RN−1

〉

· · ·
〈

R1

∣

∣

∣e−(H−ET )δτ
∣

∣

∣R0

〉

〈R0〉9T . (28)

The GFMCwave function at imaginary time τ+δτ can be written
in an integral form

9(τ + δτ ,Ri+1) =
∫

dRiGδτ (Ri+1,Ri)9(τ ,Ri) , (29)

where we defined the short-time propagator, or Green’s function,

Gδτ (Ri+1,Ri) =
〈

Ri+1

∣

∣e−Hδτ
∣

∣Ri

〉

. (30)

Monte Carlo techniques are used to sample the paths
by simultaneously evolving a set of configurations—dubbed
walkers—in imaginary time, until the distribution converges
to the ground-state wave function [106]. To avoid the large
statistical errors arising from configurations that diffuse into
regions where they make very little contribution to the
ground-state wave function, the diffusion process is guided by
introducing an importance-sampling function 9I(R), which has
the same quantum numbers as the ground-state. The importance
function is typically taken to coincide with the variational wave
function, but different choices are possible. Multiplying Equation

(29) on the left by9†
I (Ri+1) yields

9
†
I (Ri+1)9(τ + δτ ,Ri+1)

=
∫

dRi

[

9
†
I (Ri+1)Gδτ (Ri+1,Ri)

1

9
†
I (Ri)

]

9
†
I (Ri)9(τ ,Ri) .

(31)

The quantity within squared brackets is the importance-sampled
propagator GI

δτ (Ri+1,Ri). Note that a set of walkers can be

sampled from9
†
I (Ri)9(τ + δτ ,Ri) only if this density is positive

definite. In this case, the latter can be interpreted as a probability
density distribution and its integral determines the size of the
population, i.e., the number of walkers. In Fermion systems,

however, the positiveness of9†
I (Ri)9(τ + δτ ,Ri) is only granted

for exact importance-sampling functions. In general, the nodal
surface of the ground state can be different from that of 9I . We
will return to this point later on. The importance function can be
expanded in terms of eigenstates of the Hamiltonian as

9I(Ri) =
∑

n

cn9n(R) . (32)

The Green’s function can also be expressed in terms of the
same eigenstates:

Gδτ (Ri+1,Ri) =
∑

n

9n(Ri+1)e
−(En−ET )δτ9†

n(R) . (33)

Inserting the last two relations into Equation (29) and integrating
over Ri+1, we get

∑

n

c∗n

∫

dRi+19
†
n(Ri+1)9(τ + δτ ,Ri+1)

=
∑

n

c∗n

∫

dRi9
†
n(Ri) e

−(En−ET )δτ9(τ ,Ri) . (34)

If the importance-sampling function closely resembles the
ground-state wave function, then c∗n ≃ δn0 and ET ≃
E0, implying

∫

dRi+19
†
0 (Ri+1)9(τ + δτ ,Ri+1) ≃

∫

dRi9
†
0 (Ri)9(τ ,Ri) .

(35)
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Therefore, having accurate importance function reduces the
fluctuations in the population size from one time step to the next,
thereby reducing the statistical errors in the calculation.

A common approximation for the short-time propagator is
based upon the Trotter-Suzuki expansion

Gδτ (Ri+1,Ri) = e−V(Ri+1)δτ/2〈Ri+1|e−Tδτ |Ri〉e−V(Ri)δτ/2+ o(δτ 3).

(36)

Here, T is the kinetic energy giving rise to the free-particle
propagator that, for non-relativistic systems, can be expressed as
a simple Gaussian in configuration space

〈Ri+1|e−Tδτ |Ri〉 = G0
δτ (Ri+1,Ri) =

[

1

λ3π3/2

]A

e−(Ri+1−Ri)
2/λ2 ,

(37)

with λ2 = 4 h̄2

2mδτ . The exponentials of the two-body potentials
can be approximated to first order by turning the sums over pairs
in the exponent into a symmetrized product of exponentials of
the individual pair potentials. The first six terms of the potential
can be easily exponentiated, while momentum dependent terms
cannot be treated this way. A simple way to include them consists
in expanding the exponential of the momentum dependent
terms to first order in δτ and use integration by parts to let
the derivatives act on the free-particle Green’s function. This
approach can only be successfully applied to the terms in the
potential that are linear in momentum, such as L ·S and (L ·S) τ i ·
τ j [107]. On the other hand, contributions to the potential that
are quadratic in the momentum cannot be evaluated to first order
in this manner. For this reason we use approximations to the full
NN potentials, such as the AV8′ interaction, that only contain the
first eight operators. The difference between AV18 and AV8′ is
treated in perturbation theory.

More sophisticated alternatives of reducing the time-step
error exist and are routinely used in GFMC calculations. The
most common one consists in building the Green’s function
operator as a product of exact two-body propagators

Gδτ (Ri+1,Ri) =



S
∏

j<k

gjk(rjk, i, rjk, i+1)

g0
jk
(rjk, i, rjk, i+1)



G0
δτ (Ri+1,Ri) , (38)

where gjk(rjk, i, rjk, i+1) is the exact two-body propagator and

g0
jk
(rjk, i, rjk, i+1) is the two-body free- particle propagator [108].

At variance with the propagator of Equation (36), terms quadratic
in the angular momentum can in principle be accounted for
into the exact pair propagator. However, the inclusion of these
terms requires the sampled distribution to have the same locality
structure to keep statistical errors under control. Thus, simplified
AV8′ potentials are also used in the pair propagator, even though
in this case no approximations in treating L · S and (L · S) τ i · τ j

terms are necessary.
Since the matrix V is the spin/isospin-dependent interaction,

the propagator is in turn a matrix in spin-isospin space. To deal
with it, first a scalar approximation to the importance sampled

Green’s function, denoted as G̃I
δτ (Ri+1,Ri), is introduced.

Recalling the form of the importance sampled Green’s function

GI
δτ (Ri+1,Ri) =

9
†
I (Ri+1)

9
†
I (Ri)

Gδτ (Ri+1,Ri) , (39)

constructing its scalar counterpart requires defining a scalar
approximation for the importance-sampling function, which can

be taken to be 9̃I(R) =
√

9
†
J (R)9J(R). As for the potential,

we can use the average of the central parts in the 1S0 and 3S1
channels, thus

G̃I
δτ (Ri+1,Ri) =

9̃I(Ri+1)

9̃I(Ri)
e−[V10(Ri+1)+V01(Ri+1)]δτ/4G0

δτ

(Ri+1,Ri)e
−[V10(Ri)+V01(Ri]δτ/4 . (40)

At each time-step, the walkers are propagated with G0
δτ (Ri+1,Ri)

by sampling a 3A-dimensional vector from a gaussian
distribution to shift the spatial coordinates. To remove the
linear terms coming from the exponential of Equation (37), we
use two mirror points Ri+1 = Ri ± δR and we consider the
corresponding two weights

w± = 9̃I(Ri ± δR)
9̃I(Ri)

e−[V10(Ri±δR)+V01(Ri±δR)+V10(Ri)+V01(Ri]δτ/4eETδτ .

(41)

One of the two walkers is kept in the propagation according
to a heat-bath sampling among the two normalized weights
w±/(

∑

± w±) and the average weight
∑

± w±/2 is associated to
the propagated configuration.

In terms of the scalar Green’s function, the propagation of
Equation (29) reads

9(τ + δτ ,Ri+1) =
∫

dRi

[

Gδτ (Ri+1,Ri)

G̃I
δτ (Ri+1,Ri)

]

G̃I
δτ (Ri+1,Ri)9(τ ,Ri) .

(42)

Since the new positions are sampled according to G̃I
δτ (Ri+1,Ri),

we can conveniently define

9(τ + δτ ,Ri+1) =
Gδτ (Ri+1,Ri)

G̃I
δτ (Ri+1,Ri)

9(τ ,Ri) . (43)

The imaginary-time evolution of the walker density is given by

9
†
I (Ri+1)9(τ + δτ ,Ri+1) =

∫

dRi

[

9
†
I (Ri+1)Gδτ (Ri+1,Ri)9(τ ,Ri)

9
†
I (Ri)G̃

I
δτ (Ri+1,Ri)9(τ ,Ri)

]

G̃I
δτ

(Ri+1,Ri)9
†
I (Ri)9(τ ,Ri) . (44)
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Iterations of Equation (44) amount to multiple
matrix multiplications

9(τ ,RN) =
[

Gδτ (RN ,RN−1)

G̃I
δτ (RN ,RN−1)

][

Gδτ (RN−1,RN−2)

G̃I
δτ (RN−1,RN−2)

]

· · ·
[

Gδτ (R1,R0)

G̃I
δτ (R1,R0)

]

9T(R0) , (45)

that are performed using the same matrices used to construct
|9T〉. It has to be stressed that 9(τ ,RN) is not the ground-
state wave function. It rather represents a spin-isospin set of
amplitudes that, when taken in product with the Hermitian
conjugate of the importance function, gives an overlap for each
component of the wave function. Are the changes in these
overlaps that drive the distribution of walkers toward that of the
true ground state.

To avoid sign fluctuations in 9†
I (Ri)9(τ ,Ri), we sample the

walkers from the positive-definite density distribution

I(Ri) =

∣

∣

∣

∣

∣

∣

∑

is ,it

〈9I(Ri)|χis χit 〉〈χis χit |9(τ ,Ri)〉

∣

∣

∣

∣

∣

∣

+ ǫ
∑

is ,it

∣

∣

∣〈9I(Ri)|χis χit 〉〈χis χit |9(τ ,Ri)〉
∣

∣

∣ . (46)

The first term simply measures the magnitude of the overlap of
the wave functions, while the second, with a small coefficient
ǫ ≃ 0.01, ensures a positive definite importance function
to allow diffusion across nodal surfaces. This choice for the
sampling distribution is monitored by checking how much this
estimate of the population size deviates from the actual number
of configurations. Since the configurations are distributed
according to I(Ri) defined in Equation (46), the expectation
values of observables that commute with the Hamiltonian are
estimated as

〈O(τ )〉 = 〈9T |O|9(τ )〉
〈9T |9(τ )〉 =

∑

Ri
〈9T(Ri)|O|9(τ ,Ri)〉/I(Ri)

∑

Ri
〈9T(Ri)|9(τ ,Ri)〉/I(Ri)

.

(47)

For all other observables, we compute the mixed estimates

〈O(τ )〉 ≃ 2
〈9T |O|9(τ )〉
〈9T |9(τ )〉 − 〈9T |O|9T〉

〈9T |9T〉
, (48)

where the first and the second term correspond to the DMC and
VMC expectation value, respectively.

As in standard Fermion diffusion Monte Carlo algorithms,
the GFMC method suffers from the Fermion sign problem
that arises from stochastically evaluating the matrix elements
in Equation (47). The imaginary-time propagator is a local
operator, while antisymmetry is a global property of the system.
As a consequence, |9(τ )〉 can contain bosonic components
that have much lower energy than the Fermionic ones and
are exponentially amplified during the propagation. When the
dot product with the antisymmetric 9T is taken, the desired

Fermionic component is projected out in the expectation
values, but the variance—and hence the statistical error—grows
exponentially with τ . Because the number of pairs that can
be exchanged grows with A, the sign problem also grows
exponentially with the number of nucleons. Already for A =
8, the statistical errors grow so fast that convergence cannot
be achieved.

To control the sign problem, we adopt the so-called
“contrained-path” method [101], originally developed to study
condensed matter systems [109]. This method is based on
discarding those configurations that in future generations will
contribute only noise to expectations values. If we knew the exact
ground state, we could discard any walker for which

9
†
0 (Ri)9(τ ,Ri) = 0 , (49)

where a sum over spin-isospin states is implied. The sum of these
discarded configurations can be written as a state |9d〉, which has
zero overlap with the ground state. Disregarding |9d〉 is justified
because it only contains excited-states components and should
decay away as τ → ∞. However, in general, the exact ground
state is not known, and the constraint is approximately imposed
using9T in place of90:

〈9T |9d〉 = 0 . (50)

The GFMC wave function evolves smoothly in imaginary time
and changes can bemade arbitrarily small by reducing δτ . Hence,
if the wave function is purely scalar, any configuration which
yields a negative overlap must first pass through a point at
which 9T—and hence the overlap—is zero. Discarding these
configurations is then sufficient to stabilize the simulation and
produce “fixed-node” variational solutions, to the many-Fermion
problem. However, the GFMC trial wave function is a vector
in spin-isospin space, and there are no coordinates for which
all the spin-isospin amplitudes vanish. In addition, the overlap

9
†
T, p(Ri)9(τ ,Ri) is complex and depends on the particular

sampled order p. As a consequence, it does not evolve smoothly
and can pass through zero. The constraint of Equation (50)
cannot be satisfied for individual configurations, but rather
only on average for the sum of discarded configurations. To
circumvent these difficulties, we define the overlap

OT, p = ℜ[9†
T, p(Ri)9(τ ,Ri)] . (51)

We can then introduce a probability for discarding a
configuration in terms of the ratio OT, p/IT, p where IT, p
corresponds to choosing the ordering p in 9I as defined in
Equation (46)

P[9†
T, p(Ri),9(τ ,Ri)] =







0 O/I > αc
αC−O/I
αc−βc αc > O/I > βc

1 O/I < βc

The constants αc and βc are adjusted such that the average of the
overlap OT, p/IT, P is zero within statistical errors.
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In a few cases the constrained propagation converges to
the wrong energy (either above or below the correct energy).
Therefore, a small number, nu = 10–80, of unconstrained
steps are made before evaluating expectation values. These few
unconstrained steps appear to be sufficient to remove the bias
introduced by the constraint but do not greatly increase the
statistical error.

3.3. Auxiliary Field Diffusion Monte Carlo
Over the last two decades, the auxiliary field diffusion Monte
Carlo method [110] has become a mainstay for studying atomic
nuclei [89, 111–113] and infinite neutron matter [13, 87, 114].
The AFDMC overcomes the exponential scaling with the number
of nucleons of the GFMC by using a spin-isospin basis given by
the outer product of single-nucleon spinors

|χis χit 〉 → |S〉 ≡ |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sA〉 , (52)

where

|si〉 = ai,↑p| ↑ p〉 + ai,↓p| ↓ p〉 + ai,↑n| ↑ n〉 + ai,↓n| ↓ n〉 . (53)

The state vector is fully specified by a set of 4A complex
coefficients. As opposed to the many-body spin-isospin basis
defined in Equation (23), the single-particle one is not closed
under the action of two-body operators. To see this, lets apply
again the operator σ 1 · σ 2 on a three-body spin state

σ 1 · σ 2

[

(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗
(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

= 2
[

(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗
(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

−
[

(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗
(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

. (54)

In general, the action of all pairwise spin/isospin operators
needed to construct the trial state defined in Equation (12)
generates all the 2A

(A
Z

)

amplitudes of the many-body spin-isospin
basis. For this reason, the trial wave function typically used in
AFDMC calculations [89, 115] is simpler than the one of the
GFMC and takes the form

|9T〉 =
(

1−
∑

i<j

Fij −
∑

i<j<k

Fijk

)

|8J〉 , (55)

where Fij and Fijk are defined in Equations (16) and (20),
respectively. Since it contains a linearized version of spin/isospin-
dependent two-body correlations, this wave function is
significantly cheaper to evaluate than the one used in GFMC,
as it scales polynomially with the number of nucleons rather
than exponentially. However, because only pairs of nucleons are
correlated at a time, the cluster property is violated. Nevertheless,
the use of these linearized spin-dependent correlations has
enabled a number of remarkably accurate AFDMC calculations,
in which properties of atomic nuclei up to A = 16 [89, 111, 112]

have been investigated utilizing the local χEFT interactions
of references [12, 87]. Very recently, the AFDMC trial wave
function has been improved by including quadratic pair
correlations [89, 116].

The Jastrow component of |9T〉 is also simpler than the one
of Equation (13),

|8J〉 =
∏

i<j

f cij

∏

i<j<k

f cijk|8A(J
π , Jz ,Tz)〉 , (56)

where the two-body scalar correlation are obtained consistently
with the up(rij) minimizing the two-body cluster energy. The
three-body scalar correlation is the one defined in Equation
(15). The mean-field component is modeled by a sum of
Slater determinants,

〈X|8(Jπ , Jz ,Tz)〉 =
∑

n

cn





∑

JJz

CJJzA
[

φα1 (x1) . . . φαA (xA)
]





JJz

.

(57)

In the above equation we have introduced X = {x1, . . . , xA},
where the generalized coordinate xi ≡ {ri, si} represents both the
position R = r1, . . . , rA and the spin-isospin coordinates S =
s1, . . . , sA of the A nucleons. The determinants are coupled with
Clebsch-Gordan coefficients CJJz in order to reproduce the total
angular momentum, total isospin, and parity. The single-particle
orbitals are given by

φα(xi) = Rnl(ri)Yllz (r̂i)χssz (σ )χttz (τ ), (58)

where Rnl(r) is the radial function, Yllz is the spherical harmonic,
and χssz (σ ) and χttz (τ ) are the complex spinors describing the
spin and isospin of the single-particle state.

The AFDMC imaginary-time propagation can be broken up in
small time steps similarly to what is done in Equation (28) for the
GFMC method. This time however, the generalized coordinate
X is used instead of R and the spin-isospin degrees of freedom
are also sampled. The AFDMC wave function at imaginary time
τ + δτ can be written in an integral form analogous to the one of
Equation (29)

9(τ + δτ ,Xi+1) =
∑

Si

∫

dRiGδτ (Xi+1,Xi)9(τ ,Xi) . (59)

Using the Trotter decomposition of Equation (36), the short-time
Green’s function factorizes as

Gδτ (Xi+1,Xi) = G0
δτ (Ri+1,Ri)〈Si+1|e−(V(Ri+1)/2+V(Ri)/2−ET )δτ |Si〉

+ o(δτ 3) . (60)

Quadratic spin-isospin operators contained in the nuclear
potential can connect a single spin-isospin state |Si〉 to all
possible |Si+1〉 states. In order to preserve the single-particle
representation, the short-time propagator is linearized utilizing
the Hubbard-Stratonovich transformation

e−λO
2δτ/2 = 1√

2π

∫ ∞

−∞
dx e−x2/2 ex

√
−λδτ O , (61)
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where x are the auxiliary fields and the operators O are obtained
as follows. The first six terms defining the NN potential can
be conveniently separated in a spin/isospin-dependent VSD and
spin/isospin-independent VSI contributions. To see this in more
details, lets consider purely neutron systems, where τ i · τ j = 1,
since the extension to isospin-dependent terms is trivial [89]. In
this case, VSD can be cast in the form

VSD = 1

2

∑

iαjβ

Aiα,jβ σ
α
i σ

β
j = 1

2

3A
∑

n=1

O
2
n λn , (62)

where the operatorsOn are defined as

On =
∑

i,α

σ αi ψ
n
iα . (63)

In the above equations λn and ψn
iα are the eigenvalues and

eigenvectors of the matrix A. Hence, applying the exponential
of the spin-dependent terms of the NN interaction amounts to
rotating the spin-isospin states of nucleons

e−V(Ri)δτ/2|Si〉 =
∏

n

1√
2π

∫

dxne
−x2n/2exn

√
−λδτ On |Si〉 , (64)

and the imaginary-time propagation is performed by sampling
the auxiliary fields x̄n from the Gaussian probability distribution

|Si+1〉 =
∏

n

ex̄n
√
−λδτ On |Si〉 . (65)

The spin-orbit term of theNN potential—p = 7 in Equation (6)—
is implemented in the propagator as described in reference [117],
and appropriate counter terms are included to remove the
spurious contributions of order δτ . Presently, the isospin-
dependent spin-orbit term of the NN potential, corresponding
to p = 8 in Equation (6), cannot be properly treated within
the AFDMC algorithm, as its counter term contains cubic spin-
isospin operators, preventing the straightforward use of the
Hubbard-Stratonovich transformation.

Importance sampling techniques are also routinely
implemented in the AFDMC method—in both the spatial
coordinates and spin-isospin configurations—to drastically
improve the efficiency of the algorithm. To this aim, the
propagator of Equation (60) is modified as

GI
δτ (Xi+1,Xi) = Gδτ (Xi+1,Xi)

9I(Xi+1)

9I(Xi)
, (66)

and we typically take 9I(X) = 9T(X). At each time step,
each walker is propagated sampling a 3A-dimensional vector to
shift the spatial coordinates and a set of auxiliary fields X from
Gaussian distributions. To remove the linear terms coming from
the exponential of both Equations (37) and (64), in analogy to
the GFMC method, we consider four weights, corresponding
to separately flipping the sign of the spatial moves and spin-
isospin rotations

wi =
9I(±Ri+1, Si+1(±X ))

9I(Ri, Si)
. (67)

In the same spirit as the GFMC algorithm, only one of the four
configurations is kept according to a heat-bath sampling among
the four normalized weights wi/W, with W =

∑4
i=1 wi/4 being

the cumulative weight. The latter is then rescaled by

W → We−[VSI (Ri)/2+VSI (Ri+1)/2−ET ]δτ , (68)

and associated to this new configuration for branching and
computing observables. This “plus and minus” procedure,
first implemented in the AFDMC method in reference [115]
significantly reduces the dependence of the results on δτ .

Expectation values are estimated during the imaginary-time
propagation in a similar fashion as for the GFMC

〈O(τ )〉 = 〈9T |O|9(τ )〉
〈9T |9(τ )〉 =

∑

Xi
〈9T(Xi)|O|9(τ ,Xi)〉/9I(Xi)

∑

Xi
〈9T(Xi)|9(τ ,Xi)〉/9I(Xi)

,

(69)

To alleviate the sign problem, as in reference [118], we
implement an algorithm similar to the constrained-path
approximation [119], but applicable to complex wave functions
and propagators. The weights wi of Equation (67) are
evaluated with

9I(Xi+1)

9I(Xi)
→ Re

{

9I(Xi+1)

9I(Xi)

}

, (70)

and they are set to zero if the ratio is negative. Unlike the fixed-
node approximation, which is applicable for scalar potentials
and for cases in which a real wave function can be used, the
solution obtained from the constrained propagation is not a
rigorous upper-bound to the true ground-state energy [101].
To remove the bias associated with this procedure, the
configurations obtained from a constrained propagation are
further evolved using the following positive-definite importance
sampling function [89, 120]

9I(X) =
∣

∣Re{9T(X)}
∣

∣ + α
∣

∣Im{9T(X)}
∣

∣ , (71)

where we typically take 0.1 < α < 0.5. Along this unconstrained
propagation, the expectation value of the energy is estimated
according to Equation (69). The asymptotic value is found
by fitting the imaginary-time behavior of the unconstrained
energy with a single-exponential function, as in reference [25].
Unconstrained propagations have been performed in the latest
AFDMC studies of atomic nuclei [89, 111] and infinite nucleonic
matter [116, 121]. An example of unconstrained propagation in
6Li for the GT+Eτ -1.0 local chiral Hamiltonian is reported in
Figure 1, where the blue dots with error bars are the AFDMC
unconstrained energies, the red curve is the exponential fit,
and the green band represents the final result including the
uncertainty coming from the fitting procedure.

In summary, the VMC method is used to find the best
possible guess for the wave function for a given nucleus, i.e.,
it is used to optimize the wave function variational parameters.
VMC energies are usually above the ones coming from GFMC
and AFDMC calculations, while other observables, such as
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FIGURE 1 | Unconstrained evolution in 6Li for the GT+Eτ -1.0 local chiral

Hamiltonian. Blue dots with error bars bands are AFDMC energies. The red

curve is a single-exponential function fit to the AFDMC results. The green band

represents the final energy result including the uncertainty coming from the

fitting procedure.

radii and density distributions are in closer agreement. The
variationally optimized wave function is then used as input for
the (statistically) exact GFMC and AFDMC algorithms. The
difference between these twomethods relies in their accuracy and
limitations. The GFMC method is very accurate in predicting
several observables with very small statistical error bars, but its
applicability is limited up to 12 nucleons. The AFDMC method
can tackle larger systems, but its precision is somewhat reduced
and it is currently limited to somewhat simplified interactions [4].

4. NUCLEAR STRUCTURE RESULTS

GFMC and AFDMC are complimentary methods that have been
extensively used in the past to accurately calculate ground-state
properties of light nuclei (A . 16). In the following we will
present results obtained using the GFMC method for 1-full
χEFT potentials, and using the AFDMC method for 1-less
χEFT interactions. In Figure 2 we show the binding energies
of nuclei up to 16O as calculated with GFMC for the NV2+3-Ia
potential (red, left) [11], and with AFDMC for the GT+Eτ -1.0
interaction (blue, right) [89, 111]. The central green bars are
the experimental data. GFMC results only carry Monte Carlo
statistical uncertainties, while for AFDMC results, theoretical
uncertainties coming from the truncation of the chiral expansion
are also included. For an observable X(i) at order i = 0, 2, 3, . . .,
the theoretical uncertainty δX(i) is estimated according to the
prescription of Epelbaum et al. [74]:

δX(0) = Q2
∣

∣X(0)
∣

∣,

δX(i) = max
2≤j≤i

(

Qi+1
∣

∣X(0)
∣

∣, Qi+1−j
∣

∣1X(j)
∣

∣

)

for i ≥ 2,

δX(i) ≥ max
(

∣

∣X(j≥i) − X(k≥i)
∣

∣

)

, (72)

where

1X(2) ≡ X(2) − X(0),

1X(i) ≡ X(i) − X(i−1) for i ≥ 3. (73)

For the local chiral interaction GT+Eτ -1.0, results are presented
at N2LO (i = 3) considering Q = mπ/3b, with mπ ≈ 140MeV
and3b = 600MeV [89, 111].

The NV2+3-Ia interaction provides an overall good
description of the ground-state energy of light nuclei, including
neutron-rich systems with isospin asymmetry as large as 0.6
(10He). This can be appreciated even more by looking at
Figure 3, where the ratio between QMC results and experimental
data is shown. Above A = 8, the NV2+3-Ia description
of binding energies looks slightly less accurate, with some
nuclei slightly underbound (10He, 11B) and some other sightly
overbound (9Be, 10B, 12C). However, the difference with the
experimental values is always< 0.2MeV/A, discrepancy that we
expect to be fully covered by the uncertainty coming from the
truncation of the chiral expansion (i.e., theoretical uncertainty
from the interaction model), currently not available for the
NV2+3-Ia potential.

The binding energy of very light nuclei is also well-reproduced
by the GT+Eτ -1.0 interaction, with 8He slightly underbound
(0.37MeV/A difference compared to the experimental value),
but compatible with observations within the estimated statistical
plus systematic uncertainties (see Figure 3). Differently from
GFMC calculations, AFDMC results for 8 ≤ A ≤ 11 open-shell
nuclei are currently not available. The ground-state energy of
heavier closed-shell systems, such as 12C and 16O, for the GT+Eτ -
1.0 potential is higher than the expected result. However, the
binding energy of 16O is still compatible with the experimental
value within the fully uncertainty estimate. As discussed in
reference [89], the discrepancy found for 12C is due to the
somewhat too simplistic A = 12 AFDMC wave function, that
only includes couplings in the p-shells, rather than a deficiency
of the interaction itself. It has to be noted that AFDMC results
for the GT+Eτ -1.0 interaction carry larger overall uncertainties
compared to GFMC results for the NV2+3-Ia potential. This is
because the full uncertainty evaluation includes both statistical
and theoretical errors. Both QMC methods imply statistical
uncertainties of the order of few percent. For the 1-less
potential, the theoretical errors coming from the truncation of
the chiral expansion dominate compared to the statistical errors.
Considering the next order in the chiral expansion should reduce
theoretical uncertainties, and work is currently being done in
developing such potentials.

Figure 4 shows the charge radii of A ≤ 16 nuclei for
the NV2+3-Ia and GT+Eτ -1.0 potentials, with respect to the
available experimental data. The expectation value of the charge
radius is derived from the point-proton radius rpt using
the relation

〈

r2ch
〉

=
〈

r2pt

〉

+
〈

R2p

〉

+ A− Z

Z

〈

R2n
〉

+ 3h̄2

4M2
pc

2
+

〈

r2so
〉

, (74)
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FIGURE 2 | Ground-state energies in A ≤ 16 nuclei. For each nucleus, experimental results [122] are shown in green at the center. GFMC (AFDMC) results for the

NV2+3-Ia [11] (GT+Eτ -1.0 [89]) potential are shown in red (blue) to the left (right) of the experimental values. For the NV2+3-Ia (GT+Eτ -1.0) potential, the colored

bands include statistical (statistical plus systematic) uncertainties.

FIGURE 3 | Energy ratio between the calculated binding energies and the experimental data. The color scheme is the same as Figure 2.

where
〈

R2p

〉

= 0.770(9) fm2 is the proton radius [127],
〈

R2n
〉

=
−0.116(2) fm2 is the neutron radius [127], (3h̄2)/(4M2

pc
2) ≈

0.033 fm2 is the Darwin-Foldy correction [128], and
〈

r2so
〉

is a
spin-orbit correction due to the anomalous magnetic moment in

halo nuclei [129]. The point-nucleon radius rpt is calculated as

〈

r2N
〉

= 1

N

〈

9
∣

∣

∑

i

PNi |ri|2
∣

∣9
〉

, (75)
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FIGURE 4 | Same as Figure 2 but for charge radii. Experimental data are from references [123–126].

FIGURE 5 | Proton density in 12C. Black triangles are GFMC results for the

AV18+IL7 potential [130]. Blue dots are AFDMC results for the GT+Eτ -1.0

interaction [89]. The green band corresponds to the experimental results,

unfolded from electron scattering data (see text for details).

where ri is the intrinsic coordinate of Equation (14), N is the
number of protons or neutrons, and

PNi =
1± τzi

2
(76)

is the projector operator onto protons (+) or neutrons (−). The
charge radius is a mixed expectation value, and it requires the
calculation of both VMC andDMCpoint-proton radii, according

FIGURE 6 | Same as Figure 5 but for 16O. Black triangles are cluster VMC

results for the AV18+UIX potential [100]. Blue dots are AFDMC results for the

GT+Eτ -1.0 interaction [89].

to Equation (48). Even though mixed expectation values typically
depend on the quality of the employed trial wave functions, for
the highly-accurate wave functions employed in the GFMC and
AFDMCmethods, the extrapolation of the mixed estimate

〈

r2
ch

〉

is
always small.

Both chiral interactions nicely reproduce the charge radius
of helium isotopes. The NV2+3-Ia potential also reproduces
the radius of lithium, beryllium, and boron isotopes, with
new predictions for 8Be and 10Be. The charge radius of
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9Li is underpredicted, whereas that of 12C is overestimated.
The GT+Eτ -1.0 potential works remarkably well in predicting
the charge radius of 12C and 16O, even though theoretical
uncertainties, that dominate over the statistical one, are large. As
discussed in the previous paragraphs, going to the next order in
the chiral expansion will reduce such theoretical uncertainties.
For the GT+Eτ -1.0 interaction, the charge radius of 6Li turns
out to be smaller compared to the experimental value. Once
again, this is not a feature of the employed interaction, rather
a deficiency of the AFDMC wave function. In fact, differently
fromGFMC, the current AFDMCwave function does not include
dedicated α-deuteron-like correlations, necessary to capture the
structural properties of 6Li.

In QMCmethods, single-nucleon densities are calculated as

ρN(r) =
1

4πr2

〈

9
∣

∣

∑

i

PNiδ(r − |ri|)
∣

∣9
〉

, (77)

where PNi is the projector operator of Equation (76) and ρN
integrates to the number of nucleons. In Figures 5, 6 we show
the QMC proton density in 12C and 16O for the available
phenomenological (black) and chiral EFT (blue) potentials. Error
bars correspond to statistical uncertainties only. The green bands
are the experimental single-nucleon densities, obtained from
the “sum-of-Gaussians” parametrization of the charge densities
given in reference [132] by unfolding the nucleon form factors
and subtracting the small contribution of the neutrons. As can
be seen, both phenomenological and chiral EFT interactions
provide a good description of the proton density in 12C. The
small discrepancy with the experimental curve at short distance
is due to two-body meson exchange currents, not included in the
proton density presented here. As shown in reference [130], such

FIGURE 7 | Longitudinal elastic form factor in 6Li for different nuclear

potentials. For the NV2+3-Ia (solid red line) and AV18+UIX (black triangles)

potentials, errors correspond to statistical Monte Carlo uncertainties. The blue

band for the GT+Eτ -1.0 potential also includes the uncertainties coming from

the truncation of the chiral expansion. Green stars are the experimental

values [131]. Adapted from reference [89].

currents have little effect on the single-nucleon density for A ≥
12, slightly reducing its value at small r. The phenomenological
AV18+UIX potential underestimates the proton density a short
distance in 16O. As indicated by the cluster VMC analysis
of reference [100], the three-body potential UIX introduces
repulsion in the system, pushing nucleons far away from the
nucleus center of mass, and thus resulting in larger radius
and smaller central density. The 16O AFDMC density for the
GT+Eτ -1.0 potential is instead in better agreement with the
experimental curve.

As opposed to the charge radius, densities are not observables
themselves. However, the single-nucleon density can be related
to the longitudinal elastic (charge) form factor, physical quantity
experimentally accessible via electron-nucleon scattering

FIGURE 8 | Same as Figure 7 but for 12C. Experimental data are taken from

reference [132]. Adapted from reference [89].

FIGURE 9 | Same as Figure 7 but for 16O. Experimental data are from Sick,

based on references [136–138]. Adapted from reference [89].

Frontiers in Physics | www.frontiersin.org 15 April 2020 | Volume 8 | Article 117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gandolfi et al. Nuclei: QMC and χEFT Interactions

processes. In fact, the charge form factor can be expressed as
the ground-state expectation value of the one-body charge
operator [133], which, ignoring small spin-orbit contributions in
the one-body current, results in the following expression:

FL(q) =
1

Z

G
p
E(Q

2
el
) ρ̃p(q)+ Gn

E(Q
2
el
) ρ̃n(q)

√

1+ Q2
el
/(4m2

N)
, (78)

where ρ̃N(q) is the Fourier transform of the single-nucleon
density defined in Equation (77), and Q2

el
= q2 − ω2

el
is the

four-momentum squared, with ωel =
√

q2 +m2
A − mA the

energy transfer corresponding to the electron scattering elastic
peak, mA being the mass of the target nucleus. GN

E (Q
2) are

the nucleon electric form factors, for which we adopt Kelly’s
parametrization [134].

In Figures 7–9 we show the charge form factor in 6Li, 12C,
and 16O. Lines with bands correspond to chiral interactions, solid
red for NV2+3-Ia from GFMC calculations and dotted blue for
GT+Eτ -1.0 from AFDMC calculations. The black triangles are
the results for the phenomenological potentials: AV18+UIX in
6Li from VMC calculations [135], AV18+IL7 in 12C from GFMC
calculations [130], and AV18+UIX in 16O from cluster VMC
calculations [100]. Green stars are the available experimental
results [131, 132, 136–138]. Note that for all QMC calculations
of the charge form factor only one-body charge operators
are considered, i.e., no two-body electromagnetic currents are
included. However, as shown in references [130, 135, 139], such
operators give a non-negligible contribution only for q > 2 fm−1,
as they basically include relativistic corrections.

In 6Li all interactions provide a consistent description of the
charge form factor, with NV2+3-Ia and AV18+UIX compatible
with the experimental results up to q ≈ 2 fm−1, where two-
body currents start playing a role. In the same range, the
GT+Eτ -1.0 results are slightly higher, as already indicated by
the too small charge radius (see Figure 4). Interestingly, only
the phenomenological potential is capable of reproducing the
kink in the experimental data, while chiral interactions predict
a smooth charge form factor also above q ≈ 3 fm−1. The
inclusion of two-body currents could improve the description
of the charge form factor at high momentum. However, this is
a momentum range roughly corresponding to the characteristic
cut-off of chiral potentials, hence their description of observables
in such regime is not supposed to hold. Similar conclusions can
be drawn for the charge form factor in 12C and 16O, where chiral
forces produce results compatible with the experimental data,
in particular for the position of the first diffraction peak. This
is slightly underestimated for 12C with the NV2+3-Ia potential,
but we expect it to be consistent with the experimental results
once the uncertainties coming from the truncation of the chiral
expansion are taken into consideration.

Note that the “zero” in the form factor is due to the presence
of a term like sin2(qR), where R is related to the nucleus charge
radius. The zero is obtained when qR = π . Therefore, a smaller
(larger) q value for the zero compared to the experimental data
suggests a larger (smaller) R value, i.e., a larger (smaller) rch value.
This is indeed verified by QMC calculations. For instance, in

Figure 8, the NV2+3-Ia potential predicts a smaller q value for
the zero of the charge form factor in 12C, hence a larger value for
the charge radius, as confirmed by Figure 4.

5. CONCLUSIONS

In this work we have reviewed recent advancements in the
development of realistic nuclear interactions and of ab-initio
many-body methods for nuclear physics. In particular, we have
discussed the recent integration of nearly-local interactions
derived within chiral effective field theory, both with and without
the inclusion of 1 degrees of freedom, in quantum Monte Carlo
methods, namely variational Monte Carlo, Green’s function
Monte Carlo, and auxiliary field diffusion Monte Carlo. Such a
successful combination lead to accurate and realistic calculations
of ground- and excited-state properties of nuclei, that include but
is not limited to spectra, charge radii, and longitudinal elastic
form factors. Even though the chiral interactions discussed in this
work have been constructed using few-body observables only,
nucleon-nucleon scattering data and properties of nuclei up to
A = 5, they provide a remarkable description of the physics of
nuclei up to, at least, A = 16, with excellent agreement with
experimental data.

The same techniques and nuclear potentials reviewed here
have also been used to calculate the equation of state of infinite
nuclear and neutron matter [116, 121], and to infer properties
of neutron stars, with results compatible with astrophysical
observations including constraints extracted from gravitational
waves of the neutron-star merger GW170817 by the LIGO-Virgo
detection [140].

Future efforts will be dedicated to i) further improve the
employed local chiral interactions, by extending to higher order
in the chiral expansion, ii) calculate electroweak properties in
nuclear systems, by consistently deriving electroweak currents,
and iii) extend the calculations to heavier nuclei, by improving
the AFDMC variational wave functions and the scaling of
the algorithm.
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