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An l1-graph is one in which the vertices can be labeled by binary vectors such that the

Hamming distance between two binary addresses is, to scale, the distance in the graph

between the corresponding vertices. This study was designed to determine whether the

gate-sum operation can inherit the l1-embeddability. The subgraph H of a graph G is

called a gate subgraph if, for every vertex v ∈ V (G), there exists a vertex x ∈ V (H) such

that for every vertex u of H, x lies on a shortest path from v to u. The graph G is defined

as the gate-sum of two graphs G1 and G2 with respect to H if H is a gate subgraph of

at least one of G1 and G2, such that G1 ∪ G2 = G, G1 ∩ G2 = H, and both G1 and G2

are isometric subgraphs of G. In this article, we have shown that the gate-sum graph of

two l1-graphs is also an l1-graph.

Keywords: hypercube, l1-embeddability, gate subgraph, gate-sum, convex cuts

1. INTRODUCTION

A computer network is a group of computer systems and other computing hardware devices
that are linked together through communication channels to facilitate communication and
resource-sharing among a wide range of users. Networks are usually visualized as a graph, with the
computers or devices being represented by vertices and the connections between vertices shown as
edges. Graham and Pollak [1] were concerned with message switching in interconnected loops of
computers, and they studied the problem of addressing graphs with a ternary alphabet {0, 1, δ} such
that any graphmay be addressed with an edge distance of unity for some address length n. Blake and
Gilchrist [2] restricted attention to the binary alphabet. They formulated a routing algorithm for
message switching in computer networks that simplifies the computation of the minimum-length
path between any two vertices. An l1-graph is one in which the vertices can be labeled by binary
vectors such that the Hamming distance between two binary addresses is, to scale, the distance in
the graph of corresponding vertices [3]. The graph operation can construct a new graph from a
given graph, and some properties can be inherited under these operations. Our motivation for this
study was to determine which operations can inherit the l1-embeddability. Thus, the purpose of
this work is to determine the l1-embeddability of the gate-sum graph of two l1-graphs.

Let G = (V ,E) be a connected simple graph. The distance between two vertices u and v of G,
denoted by dG(u, v), is the length of a shortest u–v path in G. Then [V(G), dG] is a graphic metric
space associated with G [3]. A subgraph H of G is an isometric subgraph if dH(u, v) = dG(u, v) for
any u, v ∈ H. A subgraph of G is convex if, for any two vertices, it includes all of the shortest paths
between them. Obviously, a convex subgraph of G is an isometric subgraph. Let S ⊂ V(G) be any
subset of vertices ofG. The induced subgraph G[S] is the graph that has the vertex set S and the edge
set consisting of all edges in E for which both ends are in S [4].

Bandelt and Chepoi [5] introduced the definition of a gate subgraph. A subgraphH of a graph G
is a gate subgraph if, for every vertex v ∈ V(G), there exists a unique vertex x ∈ V(H) such that x lies
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FIGURE 1 | Examples of a convex subgraph (A) and a gate subgraph (B).

on the shortest path between v and any vertex u ∈ V(H); x
is called the gate of v. Hammack et al. [6] showed that a gate
subgraph is convex, but that a convex subgraph may not be a
gate subgraph. For example, each subgraph induced by the black
vertices in Figures 1A,B is a convex subgraph in each graph. The
subgraph shown in Figure 1A is a gate subgraph, whereas that in
Figure 1B is not.

If u and v are two vertices of a path, the subsequence of this
path starting with u and ending with v is the segment of this path
from u to v. The shortest path Pxy is the path connecting x to y
that has the fewest edges. Clearly, the segment of a shortest path
is still a shortest path [7].

The l1-space is the metric space of sequences whose series is
absolutely convergent, denoted by (X, d1). Thus, X is the set of
all real sequences x = (x1, x2, . . .) such that

∑∞
k=1 |xk| < ∞,

and the distance function is defined as d1(x, y) =
∑∞

k=1 |xk − yk|
for any x, y ∈ X. A graph G is an l1-graph if (V(G), dG) is
isometrically embeddable into some l1-space. That is, there is
a distance-preserving mapping ϕ from V(G) into X such that
dG(x, y) = d1(ϕ(x),ϕ(y)).

The n-dimensional hypercube Qn is the graph whose vertices
are ordered n-tuples of 0s and 1s, two vertices being joined if and
only if they differ in exactly one coordinate.

Assouad and Deza [8] showed that a graph G is an l1-graph if
and only if G is scale-λ-embeddable into a hypercubeQn for some
positive integers λ and n, meaning that there exists a mapping
φ :V(G) → V(Qn) such that

λ · dG(x, y) = dQn (φ(x),φ(y))
for any x, y ∈ V(G). The integer λ is the scale of G. The smallest
such integer λ is called the minimum scale of G. According to
Shpectorov [9], the minimum scale λ of G is equal to 1 or is even.
In particular, if λ = 1, G is an isometric subgraph of Qn, also
called a partial cube.

Shpectorov [9] and Deza and Grishukhin [10] showed that a
graph G is an l1-graph if and only if it is an isometric subgraph
of the Cartesian product of cocktail party graphs and half-cubes.
The cocktail party graph Kn×2 is a complete multipartite graph
with n parts, each of cardinality 2, which is equivalent to a
complete graph K2n deleting a perfect matching, as shown in
Figure 2. The hypercubeQn is a bipartite graph, and the half-cube
1
2Qn is the graph defined on one of two parts of this hypercube,
with two vertices being joined if the distance between them inQn

is 2.

FIGURE 2 | The complete graph K4 and the cocktail graph K4×2.

An l1-rigid graph is an l1-graph that essentially admits a
unique l1-embedding. Shpectorov [9] showed that every l1-rigid
graph G is an isometric subgraph of a half-cube. He also proved
that every l1-rigid graph has scale 1 or 2. Deza and Laurent [11]
proved that the complete graphKn (n ≥ 4) and the cocktail graph
Kn×2 (n ≥ 4) are not l1-rigid, where the variety of l1-embeddings
of Kn×2 all come from that of the complete graph Kn. The half-
cube graph 1

2Qn (n = 3, 4) is l1-rigid. Hence, they claim that, if
G is not l1-rigid, the variety of its l1-embeddings arises from that
of the complete graph. Deza and Tuma [12] and Chepoi et al.
[13] studied the forbidden subgraphs of an l1-rigid graph. They
determined that an l1-graph is l1-rigid if and only if it is K4-free.

Deza and Laurent [11] proved that the graph obtained by
identifying single vertices from two l1-graphs is also an l1-graph.
Wang and Zhang [14] proved that the graph obtained by gluing
two l1-graphs along an edge is also an l1-graph if at least one of
the original graphs is bipartite. However, for two non-bipartite
graphs, this is not always the case. They also determined that
even for two bipartite l1-graphs, gluing a convex subgraph cannot
guarantee the l1-embeddability of the obtained graph. Naturally,
we wondered if this result could be generalized.

Suppose that Hi is a subgraph of Gi, i = 1, 2. If H1

is isomorphic to H2, their vertices can be identified under
some isomorphism as a new graph H such that the incidence
relationship between vertices and edges remains. The resulting
graph is called the H-sum of G1 and G2, denoted by G1 ∪H G2.
In particular, if H is a single vertex v or an edge e = uv, the H-
sum is called the 1-sum or the 2-sum, denoted by G1 ∪v G2 and
G1 ∪uv G2, respectively. Additionally, if G1 and G2 are isometric
in G1 ∪H G2, and H is a gate subgraph of at least one of G1 and
G2, then G1 ∪H G2 is called a gate-sum of G1 and G2, denoted by
G1 ∪g

H G2. Both G1 and G2 are isometric subgraphs of G1 ∪H G2

if and only if dG1 (x, y) = dG2 (x, y) for any x, y ∈ H.
For example, see the graph in Figure 3, where the marked

K4 is an isomorphic subgraph of G1 and G2. The K4-sum graph
G1 ∪K4 G2, shown in Figure 3C, is obtained by identifying these
two marked K4 as the same subgraph. In particular, in Figure 3B,
the marked K4 is a gate subgraph of G2. Obviously, both G1 and
G2 are isometric subgraphs ofG1∪K4G2. Therefore, it can be seen
as a gate-sum graph G1 ∪g

K4
G2 of G1 and G2 with respect to K4.

In this paper, we have shown that the gate-sum graph of two l1-
graphsG1 andG2 is also an l1-graph. The remainder of this article
is organized as follows. In section 2, we have introduced the
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FIGURE 3 | The gate-sum graph G1 ∪g
K4
G2 of G1 and G2 with respect to K4.

concept of convex cuts of graphs, which are used to characterize
the l1-graphs. We have proven that the collection of convex cuts
of the gate-sum graph G1 ∪g

H G2 can be expanded by those of G1

and G2. We have then proven the main theorem. For the sake
of brevity, we obtained the main result by omitting the proofs of
certain lemmas. In section 3, we have presented detailed proofs of
those lemmas that were not proved in section 2. Finally, we have
presented our conclusions to this study in section 4.

2. CONVEX CUTS AND MAIN RESULTS

Deza and Tuma [12] introduced the concept of convex cuts,
which can be used to characterize l1-graphs. A cut {A,B} of G
is a partition of V(G) into two nonempty parts. If both A and B
are convex sets, then the cut {A,B} is a convex cut. A cut {A,B} of
G cuts an edge uv if u ∈ A and v ∈ B. An edge cut of G is a subset
of E(G) of the form [S, S], where S is a nonempty proper subset
of V(G), S = V\S, and [S, S] is the set of edges with one end in S
and the other in S. Similarly, we say that a cut {A,B} of G cuts a
subgraph H if [A ∩ V(H),B ∩ V(H)] is an edge cut of H.

Deza and Tuma [12] and Deza et al. [15] proved the
following theorem.

Theorem 2.1. ([12, 15]) A graph G is scale-λ-embeddable into
a hypercube if and only if there exists a collection C(G) of (not
necessarily distinct) convex cuts of G such that every edge of G is
cut by exactly λ cuts from C(G).

For example, in the graph K4 in Figure 4, the cuts
{{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, {{d}, {a, b, c}} are
convex cuts. Every edge of K4 is cut by exactly 2 cuts of
{{a}, {b, c, d}}, {{b}, {a, c, d}}, {{c}, {a, b, d}}, and {{d}, {a, b, c}}. By
Theorem 2.1, the graph K4 is scale-2-embeddable into the
hypercube Q4.

Furthermore, Wang and Zhang [14] showed that the scale of
an l1-graph can be proportionally amplified.

Lemma 2.2. ([14]) If a graph G is scale-λ-embeddable into
a hypercube, then, for any positive integer r, G is scale-rλ-
embeddable into a hypercube.

Let G1 and G2 be two l1-graphs and G1 ∪g
H G2 be a gate-

sum graph of G1 and G2. Without loss of generality, suppose
that G1 is scale-λ-embeddable into some hypercube and G2 is

FIGURE 4 | Convex cuts and binary address of K4.

scale-η-embeddable into some hypercube. By Theorem 2.1, there
are two collections C(G1) and C(G2) such that every edge of G1

and G2 is cut by exactly λ and η cuts, respectively. According
to Theorem 2.1 and Lemma 2.2, to prove G1 ∪g

H G2 is an l1-
graph, it is sufficient to construct a collection C(G1 ∪g

H G2) of
convex cuts of G1 ∪g

H G2 such that every edge of G1 ∪g
H G2 is

cut by exactly the same number of cuts. Now, we construct a
collection of convex cuts of G1 ∪g

H G2 from the convex cuts of
C(G1) and C(G2).

We now define the expansion of convex cuts. Suppose that H
is a subgraph of G and {A,B} is a convex cut of H. If G has a
convex cut {A′,B′} such that A ⊆ A′ and B ⊆ B′, then we say that
the convex cut {A,B} of H expands the convex cut {A′,B′} of G.
We say that the collection C(H) expands a collection C(G) if every
convex cut of C(H) can expand a convex cut ofG. We also say that
the collection C(H) is the restriction of C(G) on the subgraph H.

To enhance the readability of this paper, we list the following
three lemmas without proofs. Their proofs have been given
in section 3.

Lemma 2.3. Suppose that G1 ∪g
H G2 is a gate-sum graph of two

l1-graphs G1 and G2. Then, a convex cut of G1 (or G2) not cutting
H can expand a convex cut of G1 ∪g

H G2.

Next, we will prove that two convex cuts of G1 and G2 can
expand a convex cut of G1 ∪g

H G2 if they cut the same edges of
H. Suppose that the convex cut {A1,B1} of G1 is cutting H and
that the cut {A2,B2} is that of G2. Then, {A1,B1} and {A2,B2} cut
the same edges of H. If A1 ∩ A2 6= ∅, then A1 ∩ B2 = ∅. If not,
A1 ∩ A2 6= ∅ and A1 ∩ B2 6= ∅, which contradicts the assertion
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that {A1,B1} and {A2,B2} cut the same edges of H. Similarly, we
have B1 ∩ B2 6= ∅ and B1 ∩ A2 = ∅. Because Ai ∪ Bi = V(Gi)
(i = 1, 2) andV(G1)∩V(G2) = V(H), we know thatA1∩V(H) =
A1 ∩ (A1 ∪B1)∩ (A2 ∪B2) = A1 ∩A2 and A2 ∩V(H) = A1 ∩A2.
Similarly, B1 ∩ V(H) = B1 ∩ B2 = B2 ∩ V(H). Furthermore, we
have that V(H) = V(G1) ∩ V(G2) = (A1 ∪ B1) ∩ (A2 ∪ B2) =
[A1 ∩ (A2 ∪ B2)] ∪ [B1 ∩ (A2 ∪ B2)] = [A1 ∩ A2] ∪ [B1 ∩ B2].
We denote V(HA) = A1 ∩ A2 and V(HB) = B1 ∩ B2. Then,
V(HA) ∪ V(HB) = V(H), and we have the following lemma.

Lemma 2.4. Suppose that G1 ∪g
H G2 is a gate-sum graph of two l1-

graphs G1 and G2. Assume that {A1,B1} is a convex cut of G1 and
{A2,B2} is that of G2. If H is l1-rigid, {A1,B1} and {A2,B2} cut the
same edges of H. Then, {A1,B1} and {A2,B2} can together expand
a convex cut {A1 ∪V(HA) A2,B1 ∪V(HB) B2} of G1 ∪g

H G2.

IfH is not l1-rigid, then it has more than one kind of collection
of convex cuts. Any two collections C(G1) and C(G2) may not be
equal on H. Therefore, the convex cuts of C(G1) and C(G2) may
not cut the same edges of H.

To solve this problem, we have proven that any kind of
collection of convex cuts of H can expand two new collections
of convex cuts ofG1 andG2, respectively, such that they are equal
on H.

Lemma 2.5. Let H be an isometric subgraph of an l1-graph G. If
H is not l1-rigid, each collection C(H) of H can expand a collection
C(G) of G.

We will now prove the main theorem of this work.

Theorem 2.6. Suppose that G1 ∪g
H G2 is a gate-sum graph of G1

and G2. If G1 and G2 are l1-embeddable, then G1 ∪g
H G2 is also

l1-embeddable.

Proof: Without loss of generality, suppose that H is a gate
subgraph of G1. Because a gate subgraph is a convex subgraph,H
is a convex subgraph of G1. Then, H is an l1-graph. Suppose that
G1 is scale-λ-embeddable into some hypercube andG2 is scale-η-
embeddable into some hypercube. By Theorem 2.1, there are two
collections C(G1) and C(G2) such that every edge of G1 and G2 is
cut by exactly λ and η cuts, respectively.

If H is l1-rigid, H has only one kind of collection of convex
cuts. Then, C(G1) and C(G2) have the same restriction on H
(which means that λ = η).

If H is not l1-rigid, the restriction on H of C(G1) is not equal
to that of C(G2). Suppose that λ 6= η. By Lemma 2.2, G2 is scale-
λη-embeddable into some hypercube. Then, G2 has a collection
C
′(G2) such that every edge of G2 is cut by exactly λη cuts. By

Lemma 2.5, every C(H) can expand a collection C(G1). Obviously,
the restriction on H of C′(G2) is a kind of C(H). Thus, it can
expand a new collection C

′(G1) of G1 such that every edge of G1

is cut by exactly λη cuts.
Hence, there always are two collections C′(G1) and C

′(G2) for
which the restrictions of them on H are equal, and every edge of
G1 and G2 is cut by exactly λη cuts.

As C
′(G1) and C

′(G2) are equal on H, there are the
same number of convex cuts of C

′(G1) and C
′(G2) cutting

H. Denote the convex cuts of C
′(G1) that are cutting H as

{A1,B1}, ..., {Ah,Bh} and those of C′(G2) as {A′
1,B

′
1}, ..., {A′

h
,B′

h
}.

Because the restrictions on H of C′(G1) and C
′(G2) are equal,

each convex cut of {A1,B1}, ..., {Ah,Bh} must equal one of
{A′

1,B
′
1}, ..., {A′

h
,B′

h
} on H. Without loss of generality, we assume

that each pair of {Ai,Bi} and {A′
i,B

′
i} cut the same edges of H

(1 ≤ i ≤ h). By Lemma 2.4, each pair of convex cuts {Ai,Bi}
and {A′

i,B
′
i} can together expand a convex cut {Ai ∪ A′

i,Bi ∪ B′i}
of G1 ∪g

H G2 (1 ≤ i ≤ h). Then, every edge of H is cut by
{Ai ∪ A′

i,Bi ∪ B′i} to give exactly λη cuts (1 ≤ i ≤ h).
By Lemma 2.3, the convex cuts of C′(G1) and C

′(G2) that do
not cut H can expand the convex cuts of G1 ∪g

H G2 that do not
cut H.

Now, the convex cuts {Ai ∪A′
i,Bi ∪B′i} for 1 ≤ i ≤ h, together

with the convex cuts of C′(G1) and C
′(G2) that do not cutH, form

a collection of convex cuts of G1 ∪g
H G2, such that every edge of

G1 ∪g
H G2 is cut by λη convex cuts. Therefore, by Theorem 2.1,

the graph G1 ∪g
H G2 is scale-λη-embedded into some hypercube.

This completes the proof.

Note that, for any graph, a single vertex is a gate subgraph. A
cycle is a closed path that originates and terminates at the same
vertex. A graph is bipartite if and only if it contains no odd cycles
[4]. Therefore, for any edge e = uv of a bipartite graph, there is no
vertex a such that d(u, a) = d(v, a). The subgraph induced by an
edge is then a gate subgraph in a bipartite graph. Obviously, both
G1 and G2 are isometric subgraphs of the graphs G1 ∪v G2 and
G1∪uvG2. The following corollaries can be immediately obtained
from Theorem 2.6.

Corollary 2.7. ([11]). Let G1 and G2 be two l1-graphs. G1 ∪v G2

is an l1-graph.

Corollary 2.8. ([14]). Let G1 and G2 be two l1-graphs. If at least
one of them is bipartite, G1 ∪uv G2 is an l1-graph.

3. PROOFS OF LEMMAS 2.3–2.5

3.1. Proof of Lemma 2.3
First, we need the following lemma.

Lemma 3.1. Suppose that G1∪g
HG2 is a gate-sum graph of G1 and

G2. If H is a gate subgraph of G1, then G2 is a convex subgraph of
G1 ∪g

H G2.

Proof: If G2 is not a convex subgraph of G1 ∪g
H G2, there are two

vertices x1 and x2 lying in G2 such that the shortest path Px1x2
passes through a vertex v3 of G1. As this shortest path must pass
through the vertices of the gate subgraph H of G1, there are two
vertices x′1 and x

′
2 ofH on the x1, v3-path and x2, v3-path of Px1x2 ,

respectively. Note that both G1 and G2 are isometric subgraphs
of G1 ∪g

H G2. It is clear that the segment from x′1 to x′2 of Px1x2 is
a shortest path Px′1x

′
2
. Then, we have Px′1x

′
2
= Px′1v3 + Pv3x′2 .

As H is a gate subgraph of G1, there exists a unique gate a3 of
v3 inH such that Px′1v3 = Px′1a3 +Pa3v3 and Px′2v3 = Px′2a3 +Pa3v3 .
Then, we have that Px′1x

′
2
= Px′1v3+Pv3x′2 = Px′1a3+Pa3v3+Px′2a3+

Pa3v3 > Px′1a3+Pa3x′2 , which contradicts the assertion that Px
′
1x

′
2
is

a shortest path. Thus, G2 is a convex subgraph of G1 ∪g
H G2.
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Proof of Lemma 2.3.Without loss of generality, suppose that
H is a gate subgraph of G1. We need only prove that a convex
cut of G1 or G2 that does not cut H can expand a convex cut of
G1 ∪g

H G2.
Case 1. A convex cut of G1 that does not cut H can expand

that of G1 ∪g
H G2.

Suppose {A,B} is a convex cut of G1 that does not cut H.
Without loss of generality, we assume that V(H) ⊆ B. We now
prove that {A,B ∪V(H) V(G2)} is a convex cut of G1 ∪g

H G2 that
does not cut H and is expanded by {A,B}.

If A is not a convex set of G1 ∪g
H G2, there are two vertices v1

and v2 belonging to A such that Pv1v2 of G1 ∪g
H G2 passes through

a vertex v3 of G[B] ∪H G2. Therefore, Pv1v2 = Pv1v3 + Pv3v2 . If all
vertices of Pv1v2 lie entirely in G1, A cannot be a convex set of G1.
Without loss of generality, suppose that v3 lies in G2. Note that
H is a gate subgraph of G1. There are two gates x1 of v1 and x2
of v2 in H, and these two gates lie in Pv1v3 and Pv3v2 , respectively.
Then, we have that Pv1v2 = Pv1x1 + Px1v3 + Pv3x2 + Px2v2 . As G1

is an isometric subgraph of G1 ∪g
H G2, there is some Px1x2 that

lies entirely in G1, and its length equals that of Px1x2 of G2. Then,
Pv1v2 = Pv1x1+Px1x2+Px2v2 , and Pv1v2 lies entirely inG1. As Pv1v2
passes through the vertices ofH, andH belongs to B, A cannot be
a convex set of G1. Therefore, A is a convex set of G1 ∪g

H G2.
If B ∪V(H) V(G2) is not a convex set of G1 ∪g

H G2, there are
two vertices v4 and v5 belonging to B ∪V(H) V(G2) such that
Pv4v5 passes through a vertex v6 in A and Pv4v5 = Pv4v6 + Pv6v5 .
Obviously, the path Pv4v6 does not intersect with Pv6v5 at any
internal vertices. The segment of a shortest path is still a shortest
path. This means that v6 has two internally disjoint paths Pv6v4
and Pv6v5 that connect with the vertices inH. Thus, v6 has at least
two gates, which contradicts the statement that the gate is unique.

Both A and B ∪V(H) V(G2) are convex sets of G1 ∪g
H G2, and

they contain all vertices of G1 ∪g
H G2. Thus, {A,B ∪V(H) V(G2)}

is a convex cut of G1 ∪g
H G2. Furthermore, note that A = A and

B ⊆ B ∪V(H) V(G2), and so the convex cut {A,B ∪V(H) V(G2)} is
expanded by the convex cut {A,B} of G1.

Case 2. A convex cut of G2 that does not cut H can expand
that of G1 ∪g

H G2.
Suppose that {C,D} is a convex cut of G2 that does not cut H.

Without loss of generality, we assume thatH ⊆ D. We now prove
that the cut {C,D ∪V(H) V(G1)} is a convex cut of G1 ∪g

H G2 and
is expanded by {C,D}.

By Lemma 3.1, it is obvious that C is a convex set of G1 ∪g
H G2

because C is a convex set of G2 and G2 a convex subgraph of
G1 ∪g

H G2.
Suppose that the vertex set D ∪V(H) V(G1) is not a convex set

of G1 ∪g
H G2. There will be two vertices v1, v2 of D ∪V(H) V(G1)

such that the shortest path Pv1v2 passes through a vertex v3 of C.
Let Pv1v3 and Pv3v2 denote the two segments of Pv1v2 divided by
v3. Because the vertices v1, v2 belong to D ∪V(H) V(G1), we can
find two vertices v′1, v

′
2 of D such that v′1 ∈ Pv1v3 and v′2 ∈ Pv3v2 .

Note that both G1 and G2 are isometric subgraphs of G1 ∪g
H G2.

It is clear that the segment from v′1 to v′2 of the path Pv1v2 is a
shortest path, and it passes through the vertex v3 of C, which
contradicts the assertion that D is a convex set of G2. Therefore,
D ∪V(H) V(G1) is a convex set of G.

As C and D ∪V(H) V(G1) are convex sets of G1 ∪g
H G2,

{C,D ∪V(H) V(G1)} is a convex cut of G and its two convex
sets contain C and D, respectively. It follows that the convex
cut {C,D} of G2 that does not cut H expands the convex cut
{C,D ∪V(H) V(G1)} of G1 ∪g

H G2. This completes the proof.
�

3.2. Proof of Lemma 2.4
Proof: Let G1 and G2 be two l1-graphs and G1 ∪g

H G2 be the
gate-sum graph of G1 and G2. By Theorem 2.1, there are two
collections C(G1) and C(G2) such that every edge of G1 and G2

is cut by exactly λ and η cuts, respectively, as H is l1-rigid, C(G1)
and C(G2) must be equal on H. For any convex cut {A1,B1} of
C(G1), we can find a convex cut {A2,B2} of C(G2) that cuts the
same edge of H.

Without loss of generality, suppose that H is a gate subgraph
of an l1-graph G1. Suppose that x1 of V(H) is the gate of v1 in G1.
If v1 and x1 belong to different convex sets, assume that v1 lies
in A1 and x1 belongs to B1 ∩ V(H). There will be a vertex u in
A1∩V(H) such that the shortest path Pv1u must pass through the
vertices of B1, which contradicts the assertion that A1 is a convex
set. Then, both v1 and x1 belong to the same convex set A1 or B1.

Without loss of generality, suppose that v1 and x1 belong to
A1. We now show that {A1 ∪V(HA) A2,B1 ∪V(HB) B2} is a convex
cut of G1 ∪g

H G2. First, we prove that A1 ∪V(HA) A2 is a convex

set of G1 ∪g
H G2. Consider two vertices v1 and v2 that belong to

A1 ∪V(HA) A2.
Case 1. Both v1 and v2 lie in A2.
As A2 is a convex subset of G2 and G2 is a convex subgraph of

G1∪g
H G2, A2 is a convex subset ofG1∪g

H G2. Obviously, Pv1v2 lies
entirely in A2.

Case 2. The vertex v1 lies in A1 and v2 lies in A2.
Because v1 lies in A1 and v2 lies in A2, the gate x1 of v1 belongs

to A1 ∩ V(H). As {A1,B1} and {A2,B2} cut the same edges of H,
we have that A1 ∩ V(H) = A2 ∩ V(H) and x1 also belongs to A2.
Therefore, the shortest path Pv1v2 must pass through the vertices
of H.

If Pv1v2 passes through the gate x1 of v1, we have that Pv1v2 =
Pv1x1 + Px1v2 . Note that both G1 and G2 are isometric subgraphs
of G1 ∪g

H G2. As both v1 and x1 belong to A1 and A1 is a convex
set, the path Pv1x1 lies entirely in A1. Similarly, v2 and x1 belong
toA2, which is a convex set. Hence, Pv2x1 lies entirely inA2. Thus,
the shortest path Pv1v2 lies entirely in A1 ∪V(HA) A2.

If there is a shortest path Pv1v2 that does not pass through the
gate x1 of v1, Pv1v2 will pass through a vertex x3 of V(H), which is
not the gate of v1, and Pv1v2 = Pv1x3 + Px3v2 .

We now prove that x3 belongs to A1 ∩ V(H). If this is not the
case, then x3 lies in B1 ∩ V(H), and so Pv1x3 = Pv1x1 + Px1x3 and
Px1v2 < Px1x3+Px3v2 . Furthermore, Pv1x3+Px3v2 = Pv1x1+Px1x3+
Px3v2 > Pv1x1 + Px1v2 , which contradicts the assertion that Pv1v2
passes through x3, but does not pass through the gate x1.

As v1 and x3 belong to A1, and x3 and v2 belong to A2, we
have that Pv1x3 lies entirely in A1 and Px3v2 lies entirely in A2.
Therefore, Pv1v2 = Pv1x3 + Px3v2 lies entirely in A1 ∪V(HA) A2.

Hence, for any vertex v1 of A1 and any vertex v2 of A2, Pv1v2
lies entirely in A1 ∪V(HA) A2. This proves case 2.
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Case 3. Both v1 and v2 lie in A1.
If Pv1v2 does not pass through the vertices ofG2, then Pv1v2 lies

in G1. Note that A1 is a convex subgraph of G1, and Pv1v2 lies in
A1. If Pv1v2 passes through the vertices ofG2, it must pass through
a vertex v3 of A2. From case 2, we know that both Pv1v3 and Pv3v2
lie in A1 ∪V(HA) A2 and that Pv1v2 lies entirely in A1 ∪V(HA) A2.

Summarizing the above three cases, for any two vertices v1 and
v2 ofA1∪V(HA)A2, we have that the shortest path Pv1v2 lies entirely
in A1 ∪V(HA) A2. It follows that A1 ∪V(HA) A2 is a convex set of

G1 ∪g
H G2.

A similar proof shows that the set B1∪V(HB)B2 is also a convex

set of G1 ∪g
H G2. Then, {A1 ∪V(HA) A2,B1 ∪V(HB) B2} is a convex

cut ofG1∪g
HG2, and its two convex sets contain vertex setsA1,A2

and B1,B2, respectively. Thus, {A1,B1} of G1 and {A2,B2} of G2

together expand the convex cut {A1 ∪V(HA) A2,B1 ∪V(HB) B2} of
G1 ∪g

H G2.

3.3. Proof of Lemma 2.5
To study the expansion of the collection of convex cuts, we have
introduced a new characteristic of l1-graphs. Shpectorov [9] and
Deza and Grishukhin [10] characterized l1-graphs as follows:

Theorem 3.2. ([9, 10]) A graph G is an l1-graph if and only if it
is an isometric subgraph of the Cartesian product of cocktail party
graphs and half-cubes.

Suppose that H is an isometric subgraph of an l1-graph G; H
is also an l1-graph. By Theorem 3.2, H is an isometric subgraph
of the Cartesian product of some cocktail party graphs and half-
cubes, and G is that of larger cocktail party graphs and larger
half-cubes. To expand the collection of convex cuts of H to G,
we need only expand the collection of convex cuts of the cocktail
party graph and half-cube to a larger cocktail party graph and a
larger half-cube, respectively. As the half-cube is l1-rigid, it has
a unique collection of convex cuts. Note that 1

2Qm is a subgraph

of 1
2Qn. Thus, we have that any collection C( 12Qm) of

1
2Qm can

expand a collection C( 12Qn) of 1
2Qn (m ≤ n). We need only

examine whether any collection C(Km×2) can expand a collection
C(Kn×2) (m ≤ n).

We require the definition of a vertex-transitive graph. An
automorphism of a (simple) graph G is a permutation π of V(G)
that has the property that (u, v) is an edge of G if and only if
(π(u),π(v)) is an edge of G. The set of all automorphisms of G,
with the composition operation, is a group. This group is called
the automorphism group of G. A graph G is vertex-transitive if the
automorphism group of G acts transitively on V(G) [16, 17].

In other words, a vertex-transitive graph is a graph G such
that, given any two vertices v1 and v2 of G, there is some
automorphism f :V(G) → V(G) such that f (v1) = v2.

For a complete graph Kn, we constructed its collection of
convex cuts. Without loss of generality, assume that V(Kn) =
{v1, ..., vn}. From Theorem 3.2, Kn is an l1-graph. Suppose that
Kn is scale-λ-embeddable into a hypercube. Theorem 2.1 implies
that there is a collection C(Kn) such that every edge uv is cut
by λ cuts (u, v belong to Kn and λ is even). We assume that
{S1,V(Kn) − S1} is a convex cut of C(Kn), and that both S1 and

V(Kn)− S1 are convex sets of V(Kn) (|S1| = q). As the complete
graph is vertex-transitive, each Si constructs a convex cut of Kn of
the form Si ⊆ V(Kn), |Si| = q (1 ≤ i ≤

(n
q

)

). Then, we have that

all convex cuts {Si,V(Kn) − Si}, |Si| = q (1 ≤ i ≤
(n
q

)

), form a

collection of convex cuts of Kn such that every edge of Kn is cut
by the same cuts.

Obviously, there are
(n
q

)

different convex cuts, and each convex

cut acts on q(n − q) edges. Note that the complete graph Kn

has n(n−1)
2 edges and is vertex-transitive. Thus, we have that

λ =
(n
q

)

q(n−q)

n(n−1)
2

= 2
(n−2
q−1

)

.

For m ≤ n, we can now prove that the collection C(Km×2) of
Km×2 can expand a collection C(Kn×2) of Kn×2.

Theorem 3.3. Let Kn×2 be a cocktail party graph and Km×2 be a
cocktail party subgraph of Kn×2. Every collection C(Km×2) of Km×2

can expand a collection C(Kn×2) of Kn×2.

Proof: Obviously, the cocktail party graph Kn×2 has a
complete subgraph Kn. Without loss of generality, assume
that V(Kn) = {v1, ..., vn}, V(K ′

n) = {v′1, ..., v′n}, and
V(Kn×2) = {v1, ..., vn, v′1, ..., v′n} such that dKn×2 (vj, v

′
j) = 2

(1 ≤ j ≤ n), dKn×2 (vi, vj) = dKn×2 (vi, v
′
j) = 1 (i 6= j). If the vertex

set S is a subset of V(Kn×2), then the vertex set S′ = {x′|x ∈ S} is
a subset of V(K ′

n×2).
First, we prove that every convex cut of Kn×2 has only two

forms: {S ∪ (V(K ′
n)− S′), S′ ∪ (V(Kn)− S)} and {V(Kn),V(K

′
n)}.

Suppose that {A,B} is a convex cut of Kn×2. If x belongs to
A, x′ will belong to B. If not, both x and x′ belong to A, and A
is a convex subset of V(Kn×2); all vertices of V(Kn×2) will then
belong to A. Furthermore, B is an empty set, which contradicts
both A and B being nonempty. We now have that the vertex sets
S and S′ belong to different convex sets of {A,B}. Without loss of
generality, suppose that S ⊆ A and S′ ⊆ B. IfV(Kn)−S ⊆ A, then
V(K ′

n) − S′ ⊆ B and {A,B} = {V(Kn),V(K
′
n)}. If V(Kn) − S ⊆

B, then V(K ′
n) − S′ ⊆ A and {A,B} = {S ∪ (V(K ′

n) − S′),
S′ ∪ (V(Kn)− S)}.

Thus, the convex cut ofKn×2 has only two forms, {S∪(V(K ′
n)−

S′), S′ ∪ (V(Kn)− S)} and {V(Kn),V(K
′
n)}.

Second, we prove that the collection of convex cuts {Si ∪
(V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)}, |Si| = q (1 ≤ i ≤

(n
q

)

),

together with some {V(Kn),V(K
′
n)}make the cocktail graphKn×2

embeddable into some cubes.
For every edge uv in Kn, uv is cut by the convex cut {Si ∪

(V(K ′
n)−S′i), S

′
i∪ (V(Kn)−Si)}. We have that u ∈ (Si∪ (V(K ′

n)−
S′i))∩V(Kn) = Si and v ∈ (S′i∪(V(Kn)−Si))∩V(Kn) = V(Kn)−Si,
or u ∈ V(Kn)− Si and v ∈ Si. Note that |Si| = q and V(Kn) has n
vertices, so the number of convex cuts that cut edge uv is 2

(n−2
q−1

)

.

This is similar to each edge u′v′ of K ′
n.

If u ∈ Kn and v′ ∈ K ′
n, uv

′ is cut by the convex cut {Si ∪
(V(K ′

n)−S′i), S
′
i∪ (V(Kn)−Si)}. We have that u ∈ (Si∪ (V(K ′

n)−
S′i))∩V(Kn) = Si, v

′ ∈ (S′i ∪ {V(Kn)− Si})∩V(K ′
n) = S′i, u

′ ∈ S′i,
and v ∈ Si, or u ∈ (S′i ∪ {V(Kn) − Si}) ∩ V(Kn) = V(Kn) − Si,
v′ ∈ (Si ∪ (V(K ′

n)− S′i))∩V(K ′
n) = V(K ′

n)− S′i, u
′ ∈ V(K ′

n)− S′i,
and v ∈ V(Kn)− Si. Note that |Si| = |S′i| = q and |V(Kn)− Si| =
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|V(K ′
n)− S′i| = n− q, so the number of convex cuts that cut edge

uv′ is
(n−2
q−2

)

+
( n−2
n−q−2

)

=
(n−2
q−2

)

+
(n−2

q

)

.

As
n−√

n
2 ≤ q ≤ n+√

n
2 , 2

(n−2
q−1

)

≥
(n−2
q−2

)

+
(n−2

q

)

. If 2
(n−2
q−1

)

=
(n−2
q−2

)

+
(n−2

q

)

, every edge of Kn×2 is cut by 2
(n−2
q−1

)

cuts.

If 2
(n−2
q−1

)

>
(n−2
q−2

)

+
(n−2

q

)

, then
n−√

n
2 < q <

n+√
n

2 .

Obviously, {V(Kn),V(K
′
n)} is a convex cut of Kn×2, which only

cuts the edges with one end vertex in Kn and the other one in
K ′
n. Then, the collection {Si ∪ (V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)}

(1 ≤ i ≤
(n
q

)

) together with {V(Kn),V(K
′
n)} form a new collection

C
′(Kn×2) such that every edge of Kn×2 is cut by 2

(n−2
q−1

)

cuts.

Let 2
(n−2
q−1

)

<
(n−2
q−2

)

+
(n−2

q

)

. If n is even, choose Ti ⊆ V(Kn)

such that |Ti| = n
2 (1 ≤ i ≤

(n
n
2

)

). If n is odd, choose

Ti ⊆ V(Kn) such that |Ti| = n+1
2 (1 ≤ i ≤

( n
n+1
2

)

). Then,

{Ti ∪ (V(K ′
n) − T′

i ),T
′
i ∪ (V(Kn) − Ti)} is a convex cut of Kn×2.

Obviously, the number of edges with both vertices in V(Kn) (or
V(K ′

n)) that are cut by {Ti ∪ (V(K ′
n) − T′

i ),T
′
i ∪ (V(Kn) − Ti)}

is greater than the number of edges that are cut by the same cut
with one end vertex in Kn and the other vertex in K ′

n. Thus, the
collection {Si ∪ (V(K ′

n) − S′i), S
′
i ∪ (V(Kn) − Si)} (1 ≤ i ≤

(n
q

)

)

together with {Ti∪ (V(K ′
n)−T′

i ), T
′
i ∪ (V(Kn)−Ti)} (1 ≤ i ≤

(n
n
2

)

(or
( n
n+1
2

)

)) and {V(Kn),V(K
′
n)} form a new collection C

′(Kn×2)

such that every edge of Kn×2 is cut by 2
(n−2
q−1

)

+ 2a
(n−2
n
2−1

)

cuts. The

constant a is the minimal number such that 2
(n−2
q−1

)

+ 2a
(n−2
n
2−1

)

≥
(n−2
q−2

)

+
(n−2

q

)

+ a(
(n−2
n
2−2

)

+
(n−2

n
2

)

).

Third, we prove that every collection of convex cuts of Km×2

can expand that of Kn×2 (m ≤ n).
Similarly, each convex cut of Km×2 has only two forms: {A ∪

(V(K ′
m)− A′),A′ ∪ (V(Km)− A)}, and {V(Km),V(K

′
m)}.

Obviously, (V(Km) − A) ⊆ (V(Kn) − A) and (V(K ′
m) −

A′) ⊆ (V(K ′
n) − A′). Then, each convex cut {A ∪ (V(K ′

m) −
A′),A′ ∪ (V(Km) − A)} of C(Km×2) can expand a convex cut
{A ∪ (V(K ′

n)− A′),A′ ∪ (V(Kn)− A)} of C(Kn×2). Similarly, the
convex cut {V(Km),V(K

′
m)} expands the cut {V(Kn),V(K

′
n)}.

Assume that |Ai| = |Aj| is true for all convex cuts of C(Km×2)
except the convex cut {V(Km),V(K

′
m)}. This means that {Ai ∪

(V(K ′
m)−A′

i),A
′
i∪(V(Km)−Ai)}, |Ai| = q (1 ≤ i ≤

(m
q

)

). Then, all

of the cuts together with {V(Km),V(K
′
m)} expand a collection of

convex cuts ofKn×2, in the form {Ai∪(V(K ′
n)−A′

i),A
′
i∪(V(Kn)−

Ai)}, |Ai| = q (1 ≤ i ≤
(n
q

)

), together with {V(Kn),V(K
′
n)}. By

the second part, {Ai ∪ (V(K ′
n)−A′

i),A
′
i ∪ (V(Kn)−Ai)}, |Ai| = q

(1 ≤ i ≤
(n
q

)

), together with {V(Kn),V(K
′
n)} ensure that every

edge of the graph Kn×2 is cut by the same cuts.
Let |Ai| 6= |Aj| for some i and j of the convex cuts of C(Km×2).

Without loss of generality, suppose that C(Km×2) has three kinds
of convex cuts, formed as {Ai ∪ (V(K ′

n)−A′
i),A

′
i ∪ (V(Kn)−Ai)},

|Ai| = q (1 ≤ i ≤
(n
q

)

), and {Bi∪ (V(K ′
n)−B′i),B

′
i∪ (V(Kn)−Bi)},

|Bi| = p (1 ≤ i ≤
(n
p

)

), together with {V(Kn),V(K
′
n)}. By

the above discussion, all of the convex cuts {Ai ∪ (V(K ′
n) −

A′
i),A

′
i ∪ (V(Kn) − Ai)}, |Ai| = q (1 ≤ i ≤

(n
q

)

), together

with {V(Kn),V(K
′
n)} expand a collection C1(Kn×2) of convex cuts

of Kn×2 such that every edge of Kn×2 is cut by the same cuts.
Similarly, all of the convex cuts {Bi ∪ (V(K ′

n)−B′i),B
′
i ∪ (V(Kn)−

Bi)}, |Bi| = p (1 ≤ i ≤
(n
p

)

), together with {V(Kn),V(K
′
n)} expand

a collection C2(Kn×2) of convex cuts of Kn×2 such that every edge
of Kn×2 is cut by the same cuts.

Obviously, the collection C1(Kn×2) together with the
collection C2(Kn×2) is still a collection of convex cuts of Kn×2

such that every edge of Kn×2 is cut by the same cuts.
Therefore, every collection C(Km×2) of Km×2 can expand a

collection C(Kn×2) such that every edge ofKn×2 is cut by the same
number of cuts.

We have that, for each cocktail party graph and half-cube,
the collection C( 12Qm) can expand a collection C( 12Qn), and the
collection C(Km×2) can expand a collection C(Kn×2) (m ≤ n). By
Theorem 3.2, we can prove that the collection of convex cuts of
an l1-graph can expand that of a larger l1-graph.

Hammack et al. [6] introduced the Cartesian product G2H of
two graphsG andH as the graph whose vertex set is the Cartesian
productV(G)×V(H). Two vertices (u, v) and (u′, v′) are adjacent
inG2H if and only if u = u′ and v is adjacent to v′ inH, or v = v′

and u is adjacent to u′ in G. Thus,
V(G2H) = {(u, v)|u ∈ V(G) and v ∈ V(H)}
E(G2H) = {(u, v)(u′, v′)|u = u′, vv′ ∈ E(H), or uu′ ∈
E(G), u = u′}

The graphs G and H are called factors of the product G2H.
Hammack et al. proved the following lemmas.

Lemma 3.4. ([6]) A subgraph W of G = G1� · · ·�Gn is convex
if and only if W = W1� · · ·�Wn, where each Wi is convex in Gi.

Lemma 3.5. ([6]) If G = G1� · · ·�Gn and x, y ∈ V(G), then

dG(x, y) =
n
∑

i=1
dGi (pi(x), pi(y))

For any index 1 ≤ i ≤ n, pi is a projection map
pi :G1� · · ·�Gn → Gi, defined as pi(x1, x2, ..., xn) = xi.

We can now prove that the convex cut of a Cartesian product
can be represented by the convex cuts of all factors.

Theorem 3.6. The cut {A,B} is a convex cut of a graph G =
G1� · · ·�Gn if and only if {A,B} has the form {V(G1) × · · · ×
V(Gi−1)×Ai×V(Gi+1)×· · ·×V(Gn),V(G1)×· · ·×V(Gi−1)×
Bi × V(Gi+1) × · · · × V(Gn)} in which {Ai,Bi} is a convex cut of
Gi for 1 ≤ i ≤ n.

Proof: ⇐H Suppose that G = G1� · · ·�Gn. If {Ai,Bi}
is a convex cut of Gi, then Gi[Ai] and Gi[Bi] are convex
subgraphs of Gi (1 ≤ i ≤ n). By Lemma 3.4, G[Ai] =
G1� · · ·�Gi−1�Gi[Ai]�Gi+1� · · ·�Gn is a convex subgraph of
G. Similarly, G[Bi] = G1� · · ·�Gi−1�Gi[Bi]�Gi+1� · · ·�Gn is
also a convex subgraph of G.

Without loss of generality, suppose that

V(G) = {(x1, ..., xi, ..., xn)|xi ∈ V(Gi)}
V(G[Ai]) = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj
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∈ V(Gj), j 6= i, yi ∈ Ai}
= {V(G1)× · · · × V(Gi−1)× Ai × V(Gi+1)

× · · · × V(Gn)}
V(G[Bi]) = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj

∈ V(Gj), j 6= i, yi ∈ Bi}
= {V(G1)× · · · × V(Gi−1)× Bi

×V(Gi+1)× · · · × V(Gn)}.

As {Ai,Bi} is a convex cut of Gi and the vertex yi belongs to either
Ai or Bi, we have that the cut {V(G[Ai]),V(G[Bi])} = {A,B} is a
partition of V(G), and {A,B} is a convex cut of G.

H⇒ Suppose that {A,B} is a convex cut of G. Then, both G[A]
and G[B] are convex subgraphs of G, and B = Ā = V(G) − A.
By Lemma 3.4, G[A] = G1[A1]� · · ·�Gn[An] and each Gi[Ai] is
a convex subgraph of Gi (1 ≤ i ≤ n).

We now prove that only one Ai is a proper subset of V(Gi). If
there are two proper subsets, without loss of generality, suppose
that A1 is a proper subset of V(G1), A2 is that of V(G2), and
Ai = Gi (3 ≤ i ≤ n), V(Gj) − Aj = Bj (1 ≤ j ≤ n). Then,
we have that

A = {(x1, x2, ..., xn)|xi ∈ V(Gi), i 6= 1, 2, x1 ∈ A1, x2 ∈ A2}
= {A1 × A2 × V(G3)× · · · × V(Gn)}

and

Ā = B ={(x1, x2, ..., xn)|xi ∈ V(Gi), i 6= 1, 2, x1 /∈ A1, x2 ∈ A2,

or x1 ∈ A1, x2 /∈ A2, or x1 /∈ A1, x2 /∈ A2}
={[(B1 × A2) ∪ (A1 × B2) ∪ (B1 × B2)]× V(G3)

× · · · × V(Gn)}.

Suppose that x1 ∈ A1, x2 ∈ A2, y1 ∈ B1, y2 ∈ B2, and
xi ∈ Gi (3 ≤ i ≤ n). We have two vertices (y1, x2, x3, x4, ..., xn) ∈
B1 × A2 × V(G3) × · · · × V(Gn) and (x1, y2, x3, x4, ..., xn) ∈
A1 × B2 × V(G3) × · · · × V(Gn). By Lemma 3.5, the distance
between them is

dG((y1, x2, x3, x4, ..., xn), (x1, y2, x3, x4, ..., xn)) = dG1 (y1, x1)

+ dG2 (x2, y2)

= dG((y1, x2, x3, x4, ..., xn), (x1, x2, x3, x4, ..., xn))

+ dG((x1, x2, x3, x4, ..., xn), (x1, y2, x3, x4, ..., xn)).

However, vertex (x1, x2, x3, x4, ..., xn) belongs to A1 × A2 ×
V(G3) × · · · × V(Gn), which means that there are two vertices
in B and a shortest path between them through a vertex in A.
Therefore, B is not a convex subset of V(G), which contradicts
the assertion that {A,B} is a convex cut of G.

Thus, only one Ai is a proper subset of V(Gi), and we
have that

A = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj ∈ V(Gj), j 6= i, yi ∈ Ai}
= {V(G1)× · · · × V(Gi−1)× Ai × V(Gi+1)× · · · × V(Gn)}.

Similarly, note that V(Gj)− Aj = Bj (1 ≤ j ≤ n), and so

B = {(x1, ..., xi−1, yi, xi+1, ..., xn)|xj ∈ V(Gj), j 6= i, yi /∈ Ai}
= {V(G1)× · · · × V(Gi−1)× Bi × V(Gi+1)× · · · × V(Gn)}.

AsG[A] andG[B] are convex subgraphs ofG, by Lemma 3.4, both
Gi[Ai] and Gi[Bi] are convex subgraphs of Gi. Then, Ai and Bi
are convex subsets of V(Gi), and {Ai,Bi} is a convex cut of Gi

(1 ≤ i ≤ n).

Proof of Lemma 2.5. Let G be an l1-graph and H be an
isometric subgraph of G. By Theorem 2.1, there is a collection
C(G) such that every edge of G is cut by exactly λ cuts.

As H is not l1-rigid, H has another l1-embedding. By
Theorem 3.2, G is an isometric subgraph of the Cartesian
product of cocktail party graphs and half-cubes. Let Ĝ =
Km1×2� · · ·�Kmp×2�

1
2Qn1� · · ·� 1

2Qnq be a Cartesian product
that contains G as an isometric subgraph, such that each factor of
Ĝ is minimal and the number of factors is minimal. Without loss
of generality, we assume thatmi ≤ mj and ni ≤ nj (i < j).

Because H is an isometric subgraph of G and G is an l1-graph,
H is an l1-graph. By Theorem 3.2, H has a minimal Cartesian
product Ĥ = Km′

1×2� · · ·�Km′
s×2�

1
2Qn′1

� · · ·� 1
2Qn′t

.
As H is an isometric subgraph of G and G is an isometric

subgraph of Ĝ, H is an isometric subgraph of Ĝ. Because Ĥ may
not be equal to Ĝ, we have that s ≤ p, t ≤ q, andm′

i ≤ mi, n
′
j ≤ nj

(1 ≤ i ≤ s, 1 ≤ j ≤ t).
It is obvious that 1

2Qn′i
is a convex subgraph of 1

2Qni (1 ≤ i ≤
t) and Km′

i×2 is an isometric subgraph of Kmi×2 (1 ≤ i ≤ s).

As 1
2Qn is l1-rigid, the collection C( 12Qn′i

) can expand a

collection C( 12Qni ) for 1 ≤ i ≤ t.
By Theorem 3.3, every collection C(Km′

i×2) can expand a

collection C(Kmi×2) (1 ≤ i ≤ s).
Without loss of generality, suppose that every collection

of C(Kmj×2) (1 ≤ j ≤ s) and C( 12Qnk ) (1 ≤ k ≤ t)

cuts the edges of the corresponding factors Kmj×2 and 1
2Qnk

exactly λ1, λ2, ..., λs+t times, respectively. Take the least common
multiple λ = [λ1, λ2, ..., λs+t]. By Lemma 2.2, we have a list of
collections C′(Kmj×2) (1 ≤ j ≤ s) and C

′( 12Qnk ) (1 ≤ k ≤ t) such

that every edge of factors Kmj×2 and
1
2Qnk is cut by exactly λ cuts.

By Theorem 3.6, each convex cut {Aji ,Bji} of C
′(Kmj×2)

(1 ≤ j ≤ s) can expand a convex cut {A,B} of G such that
{pj(A), pj(B)} = {Aji ,Bji}. This is similar to any convex cut

{Aki ,Bki} of C′( 12Qnk ) (1 ≤ k ≤ t).
All such {A,B} expanded by {Aji ,Bji} of C′(Kmj×2) (1 ≤ j ≤ s)

and {Aki ,Bki} of C′( 12Qnk ) (1 ≤ k ≤ t) form a collection C(G) and
every edge of G is cut by exactly λ cuts of C(G). This completes
the proof. �

4. CONCLUSION

In this study, we investigated the l1-embeddability of the gate-
sum graph of two l1-graphs. We have shown that the gate-sum
graph of two l1-graphs G1 and G2 is still an l1-graph.
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