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This paper studies the stability of stock networks after crashes based on the entropy

method. By measuring network stability using the entropy calculated with the degree

distribution, we find that the entropy of a stock network is close to that of the

Erdös-Rényi and Watts-Strogatz networks. We further introduce government rescue

policies as a natural experiment and use the entropy measurement to study the influence

of rescue policies after crashes on the network stability, finding that rescue policies

only have short-term effects. Analysis of the relation between stock degrees and

government purchasing behavior further confirms the effects of rescue policies on stock

network stability.
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1. INTRODUCTION

The stability of networks after random failures or attacks is a central issue in the study of complex
networks [1–7]. A large amount of research has been devoted to this issue for various complex
networks, such as biological, physical, social and financial networks, and has successfully revealed
the relationship between network structure and stability after external attacks [8–11].

Stock markets are complex systems, which can be well-abstracted and described by complex
networks. In research on stock networks, the network stability after stock market crashes
has attracted much attention [11, 12]. Studies on network stability elucidate the topological
reconfigurations of stock networks after crashes and help to improve our understanding of financial
crises. However, these studies cannot be directly used to guide the government in stabilizing the
market after crashes.

In recent years, an increasing body of work has concentrated on the question of how rescue
policies, which are government policies aimed at stabilizing the stock market at times of crises,
influence market stability after crashes [13, 14]. This question has been studied by measuring the
market stability in terms of volatility, and it has been found that rescue policies can improve
the stability of the stock market after crashes. The complex network method can reduce the
immense complexity of financial markets to facilitate investigation while retaining the market’s
core information, and some researchers have studied market stability after crashes by using the
network method [11, 12, 15]. Motivated by the studies mentioned above, we investigate the
influence of rescue policies on the stability of stock markets after crashes from the perspective of
complex networks.

In network research, most researchers measure the network stability based on network
robustness with respect to random node removal or targeted attacks [11, 16, 17]. In this paper, we
introduce the network entropy to measure the stability of complex networks. The network entropy
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calculated with the degree distribution can provide an average
measure of network heterogeneity, which is a simple but essential
characteristic of complex networks and has a direct relationship
with the network’s resilience to both random failures and attacks
[18–21]. To the best of our knowledge, this work is the first
attempt to examine the influence of government rescue policies
on stock market stability after crashes from the perspective of
network stability.

2. DATASETS

The first dataset records the closing prices of all constituent
stocks of the SSE 180 index, a benchmark index for the Shanghai
market, at the end of every minute between 9:30 and 11:30 a.m.
and between 1:00 and 3:00 p.m. on 717 consecutive trading days
from 16 December 2013 to 22 November 2016. The dataset
was obtained from Wind Information (http://www.wind.com.
cn/) and contains ∼43,440 records per day on average, with a
total size of 31,146,480.

The second dataset records closing prices of the Hang
Seng Index (HSI) and all its constituent stocks trading in the
Hong Kong Exchange at the end of every minute between
9:30 a.m. and 12:00 p.m. and between 1:00 and 4:00 p.m. on
422 consecutive trading days from 20 October 2014 to 5
July 2016, also from Wind Information. This dataset contains
approximately 23,240 records per day on average, and the total
size is 9,807,280.

The third dataset, from SinaFinance (http://finance.sina.com.
cn/), records 45 news items on rescue policies for the stock
market released by the Chinese government for the period from
16 December 2013 to 22 November 2016, with 34 of these news
items released in the 2 months after 19 June 2016 during which
more than 1,000 A-shares in the Chinese stock market hit the
daily downward price fluctuation limit. To take into account
the specific government rescue measures for stock market
crashes, this dataset also includes information from Eastmoney
(http://eastmoney.com/) on the list of stocks purchased by the
government between 30 June 2015 and 30 September 2015.

3. METHODOLOGY

3.1. Crashes and Identification of
Sub-periods
In this paper, crashes are identified by looking for large price
changes within different time windows [22–24]. On 19 June 2015,
more than 1,000 A-shares in the Chinese stock market hit the
daily downward price fluctuation limit, and the SSE 180 index fell
by 4.61%. On 7 January 2016, the circuit breakers mechanismwas
suspended, and the SSE 180 index dropped by more than 5%. By
calculating the price changes in the SSE 180 index, we find that
during the sampling period the price changes on these 2 days are
the largest. Therefore, we identify these two large price changes
in the Shanghai stock market as crashes. For the universality test,
we also identify one crash occurring on 10 March 2015 in the
Hong Kong stock market in a similar way.

Next, for the purpose of analyzing network stability during
periods with and without rescue policies, we divide the sampling
periods for the Shanghai and Hong Kong stock markets into
different sub-periods. For the Shanghai stock market, sub-
periods are determined by using the news of rescue policies
recorded by SinaFinance. First, after the crash on 19 June 2015,
most rescue policies were enacted by the government within the
subsequent 2 months. These include: on 27 June, China’s central
bank, People’s Bank of China, cut interest rates by 0.25%; and on 6
July, China Financial Futures Exchange (CFFEX) restricted index
futures trading. In contrast, no rescue policies were put in place
for months after the crash on 7 January 2016. To compare the
stability of the stock network in the period after a crash and in a
period when the market is stable, we also identify sub-periods of
stable states. We find that the volatility of the SSE 180 index was
low and stable from mid-June to early October of 2014 and over
the second half of the year 2016. Therefore, for the Shanghai stock
market, we divide the sampling period into four sub-periods: a
sub-period with government rescue policies after a crash, a sub-
period without government rescue policies after a crash, and two
stable-state sub-periods. Considering that the impact of a crash
would not be obvious when the sub-period is too short, and there
may be external noise when the sub-period is too long, we choose
the sub-period length to be 60 trading days. Note that sub-period
lengths of 50 or 70 trading days give similar results.

For the Hong Kong stock market, for which there had been
no rescue policies, we separate the sampling period into three
sub-periods. The 60-day period following the crash on 10 March
2015 is the sub-period without government rescue policies. In
analogy to the stable-state periods in the Shanghai stock market,
we identify the 60-day periods following 22 December 2014 and
5 March 2016 as stable-state sub-periods in the Hong Kong
stock market.

3.2. Construction of the Stock Network
The most common method of constructing a stock network is
based on correlations of the stock price return. This method
calculates the correlation coefficient of the stock price return and
converts the coefficient matrix into a distance matrix [25].

Let Pi(t) be the closing price of stock i at time t, and let Ri(t)
be the return of stock i at time t, given by

Ri(t) = ln Pi(t)− ln Pi(t − 1). (1)

Then the Pearson correlation coefficient ρi,j between stocks i and
j can be calculated as

ρi,j =
〈RiRj〉 − 〈Ri〉〈Rj〉

√

〈R2i − 〈Ri〉
2〉〈R2j − 〈Rj〉

2〉

, (2)

where 〈 · 〉 refers to the time average over the period analyzed.
Following the idea behind the construction of a complex
network, we next transform the correlationmatrix into a distance
matrix D with elements di,j, where the distance between the two
stocks i and j is defined as Mantegna [26]

di,j =
√

2(1− ρi,j). (3)
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Treating stocks as network nodes, we now construct the stock
network with the planar maximally filtered graph (PMFG)
method [27, 28], in which network links are added according
to the distance between nodes. The PMFG method is used to
construct planar graphs and has the algorithmic advantage that
planarity tests are relatively simple to perform; planar graphs also
provide more information than minimum spanning tree graphs
on the internal structure of a stock market. The PMFG procedure
is carried out as follows. First, rank the distance elements between
all pairs of nodes in ascending order. Second, add a link between
the two nearest nodes, i.e., the pair with the smallest distance, if
and only if the resulting graph after such a link insertion can still
be embedded in a plane without crossing any links. Third, repeat
the previous step until no more links can be added. The resulting
PMFG contains 3N − 6 links, where N is the number of nodes.
The average degree is 〈k〉 = 2(3N− 6)/N, which is roughly equal
to 6 when N is large enough.

3.3. Network Entropy
Based on the theory of large deviations, Demetrius et al. [29]
derived a fluctuation theorem, which states that network entropy
and stability, as measured by the fluctuation decay rate after
random perturbations, are positively correlated. By invoking
this theorem, Demetrius and Manke [30] showed that the
network entropy can quantitatively describe the homeostatic
network properties under perturbations, a generic term for
robustness. Meanwhile, Wang et al. [20] showed that the network
heterogeneity, a simple but essential characteristic of a complex
network, is in direct relationship with the network’s resilience to
both random failures and attacks, and that the heterogeneity can
bemeasured by network entropy. This implies that the greater the
entropy, the more stable and heterogeneous the network is. We
therefore introduce the network entropy to study the stability of
stock networks.

Following the definition of entropy introduced in Wang et al.
[20], we define the stock network entropy as the entropy of the
degree distribution, which is given by

H = −

N−1
∑

k=1

P(k) log P(k), (4)

where N is the total number of nodes in the network and P(k)
is the degree distribution, which gives the probability of having a
node with k links.

4. RESULTS AND DISCUSSION

4.1. Entropy of the Stock Network
To find out which kind of network structure the stock network
is close to, we compare the entropy of the stock network to the
entropies of several classes of networks, including the Erdös-
Rényi (ER) random, Barabási-Albert (BA) scale-free and Watts-
Strogatz (WS) small-world networks. Note that the average
degree of the network of 180 stocks constructed by the PMFG
method is approximately 6. Therefore, to make the entropies
of the stock network and of the ER, BA and WS networks
comparable, we calculate the entropy of the latter three networks

TABLE 1 | Statistical description of the ER random, BA scale-free, and WS

small-world networks and the stock network.

ER random BA scale-free WS small-world Stock network

N 180 180 180 180

E 537 531 540 534

C 0.03 0.10 0.17 0.73

〈l〉 3 2.80 3.50 3.58

〈k〉 6 6 6 5.93

〈s〉 6 6 6 1.63

〈Ew〉 1 1 1 0.28

N represents the number of nodes, E the number of links, C the clustering coefficient,

〈l〉 the average shortest path length, 〈k〉 the average node degree, 〈s〉 the average node

strength, and 〈Ew〉 the average link weight. The weights for the links in the ER random,

BA scale-free and WS small-world networks are equal to 1. In the stock network, each

link weight is defined as the correlation coefficient ρi,j for stocks i and j [31].

with the same number of nodes, N = 180, and present the
statistical characteristics of these networks in Table 1.

First, we calculate the entropy of the ER random network as
follows. For the ER network with N nodes and link probability p
between each pair of nodes, the degree distribution P(k) is given
by the Poisson distribution [32],

P(k) =
e−Np(Np)k

k!
, (5)

and the average degree 〈k〉 is Np. The entropy of the ER network
with average degree 〈k〉 = 6 for various N from 20 to 180 is
plotted in Figure 1A.

Next, for the BA scale-free network with N nodes, minimal
connectivitym, and scaling exponent α of the degree distribution,
the entropy of the network can be expressed as Wang et al. [20]

H =

(

log(α − 1)+
α

1− α

)

1− N

N
+

α

1− α

logN

N
, (6)

and the average degree of the network is given by 〈k〉 =
(α−1)
(2−α)

m(N(2−α)/(α−1) − 1). The entropy of the BA network with

N = 180 and m = 1 for various α from 1.5 to 2.5 is shown
in Figure 1B.

For the WS small-world network first proposed in Watts and
Strogatz [33], which starts with a ring lattice of N nodes where
every node is connected to its first K neighbors and then has
each edge of the lattice randomly rewired with probability p such
that self-connections and duplicate edges are excluded, the degree
distribution is given by Albert and Barabási [34]

P(k) =
∑

Cn
K/2(1− p)np

K
2 −n (

pK
2 )k−

K
2 −n

(k− K
2 − n)!

e−pK/2, (7)

and the average degree of the network is 〈k〉 = K. We plot
the entropy of the WS small-world network with average degree
〈k〉 = K = 6 andN = 180 for various p from 0 to 1 in Figure 1C.

Using the network construction method and the definition of
network entropy proposed in this paper, we present in Figure 1D
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FIGURE 1 | Entropy of (A) the ER random network with Np = 6 for various N; (B) the BA scale-free network for N = 180, m = 1 and various α; (C) the WS

small-world network for K = 6, N = 180 and various p; and (D) the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the

Shanghai stock market.

the entropy of the stock network during the sampling period
from 16 December 2013 to 22 November 2016. Note that the
stock network is constructed with the intraday stock returns
for every trading day. We next compare the entropy of the
stock network to that of the ER random, BA scale-free and WS
small-world networks with the same average degree and number
of nodes.

For the ER network with average degree 〈k〉 = 6, the entropy
is approximately 3.2 when N = 180, as shown in Figure 1A.
For the BA network with 〈k〉 = 6 and N = 180, the entropy
is approximately 2 when α ≈ 1.9484, as shown in Figure 1B. As
can be observed in Figure 1C, the entropy of the WS network
with 〈k〉 = 6 and N = 180 is always smaller than 2.7 for different
values of p. From Figure 1D, one can see that the entropy H of
the stock network satisfies 2.7 < H < 3.2 during the sampling
period, which is much larger than the entropy of the BA network
but smaller than that of the ER network and a little bigger
than that of the WS small-world network. This suggests that the
topological structure of the stock network is closer to that of the
ER and WS networks.

To reveal the influence of crashes on the stability of the stock
network, we next analyze the network entropy in the four sub-
periods, i.e., the two stable-state sub-periods and the sub-periods
with and without rescue policies after a crash. First, the mean
values of the entropy for the sub-periods with and without rescue
policies after a crash are 2.9203 and 2.8992, respectively, and the
mean values of the entropy for the sub-periods of stable states
I and II are 3.0602 and 3.0487, respectively. This result suggests
that in the periods after a crash the stock network is less stable
and heterogeneous than during the stable-state periods, since the

TABLE 2 | Results of t-test for testing the significance of the difference between

the entropies of the stock network for different sub-periods in the Shanghai stock

market.

Stable

state I

Stable

state II

With rescue

policies

Without rescue

policies

Stable state I 0.0000

Stable state II −0.9159 0.0000

With rescue

policies

9.4892*** 8.4878*** 0.0000

Without rescue

policies

12.3273*** 11.0788*** −1.3552 0.0000

This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,

5, and 10% levels, respectively.

entropy measures the network stability and heterogeneity. We
also conduct a t-test for the significance of the difference between
the entropies of the stock network for different sub-periods,
as shown in Table 2; the test finds no significant difference
between the mean entropies of the sub-periods with and without
rescue policies.

4.2. Entropy Evolution of the Stock
Network
To examine how the effects of rescue policies on stock network
stability change over time, we now analyze the evolution of the
entropy of the stock network after a shock during sub-periods
with and without rescue policies. One might imagine that these
shocks are similar to after shocks following an earthquake.
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FIGURE 2 | Entropy evolution of the stock network during sub-periods with

and without rescue policies after crashes in the Shanghai stock market.

A shock is defined here as a time at which the volatility V(t) =
|R(t)| exceeds a given threshold value Rth = Sδ, where R(t) is the
logarithmic price return, δ is the mean volatility over the stable-
state period, and the threshold S is positive [35]. Using the same
method of shock identification, 43 and 30 shocks are identified
with the threshold S = 2 during the sub-periods in the Shanghai
stockmarket with andwithout rescue policies, respectively. Then,
the entropy evolution is defined as the change in the entropy
averaged over the shock after its occurrence in the sub-period.
We present the entropy evolution of the stock network for these
two sub-periods in Figure 2.

Figure 2 shows that the entropy evolution of the stock
network for the sub-period with rescue policies after a crash
increases rapidly at the early stage, then decreases and rises again
slowly at later times. For the sub-period without rescue policies,
the entropy increases slowly throughout the whole period. These
results suggest that rescue policies can improve the heterogeneity
and stability of the network only for a short time at the initial
stage, whereas the heterogeneity and stability of the network
will increase slowly over the period after a crash even without
rescue policies.

4.3. Further Analysis of Stock Degree
In this section, we study the degrees of all stocks in the
stock network over different sub-periods, with the aim of
identifying the cause of the effect of rescue policies on the stock
network entropy.

In Table 3 we present the average degree of all stocks of
conventional industries in the SSE 180 index during the four sub-
periods, i.e., the two stable-state sub-periods and the sub-periods
with and without rescue policies. Table 4 presents industry
information on constituent stocks in the SSE 180 index, including
the industry codes, industry names, and number of stocks
belonging to each industry.

As seen in Table 2, the average degree of stocks in the Finance
& Insurance industry is large during the two stable-state sub-
periods and the sub-period without rescue policies, but relatively
small during the sub-period with rescue policies. On the other
hand, the average degree of stocks in the Construction industry is

TABLE 3 | Average degrees of constituent stocks in the SSE180 index for each

industry during two stable-state sub-periods and sub-periods with and without

rescue policies.

Industry code Stable

state I

Stable

state II

With rescue

policies

Without rescue

policies

A 5.5000 4.6167 4.6083 4.6917

B 5.7904 4.8030 5.0698 3.8398

C0 6.0500 5.7750 4.6000 3.3000

C4 5.4833 5.1167 5.2833 5.4567

C5 5.6278 5.3000 4.5667 5.0111

C6 6.9296 4.9479 5.8924 4.5700

C7 5.9214 5.4549 6.9706 6.8395

C8 5.8955 5.0963 4.6000 4.9537

D 4.6738 3.9033 4.3938 4.4050

E 3.7333 6.5021 8.3833 5.5519

F 4.6833 4.8375 5.2800 4.1530

G 6.2574 7.4639 6.3600 6.9667

H 5.0133 5.2521 3.1583 4.9528

I 7.1528 7.1635 5.1672 7.0186

J 5.0265 5.3250 4.7605 4.8358

K 5.2250 5.4600 3.7750 5.7583

L 3.7905 5.0500 4.9643 5.7167

M 4.7222 4.8875 7.3542 10.596

TABLE 4 | Industry information on constituent stocks in the SSE180 index.

Industry

code

Industry Number

of stocks

Industry

code

Industry Number

of stocks

A Agriculture 5 E Construction 9

B Mining 14 F Transportation 9

C0 Food &

Beverage

6 G Information

Technology

8

C4 Pharmaceuticals 8 H Wholesale

& Retail

Trade

8

C5 Electronics 4 I Finance &

Insurance

31

C6 Metals &

Non-metals

11 J Real Estate 19

C7 Machinery 24 K Social

Services

3

C8 Pharmaceuticals 10 L Communication

& Cultural

4

D Utilities 8 M Comprehensive 3

The conventional industries are grouped based on the China Securities Regulatory

Commission (CSRC) industry code. The basic information includes the industry code, the

full name of the industry, and the number of chosen stocks belonging to each industry.

large during the sub-period with rescue policies, and relatively
small during the stable-state sub-periods and the sub-period
without rescue policies. This suggests that the degrees of both the
Finance & Insurance and the Construction industries are greatly
influenced by government rescue policies, which ultimately lead
to the change in network entropy during the sub-period with
rescue policies.
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TABLE 5 | Top 10 stocks purchased by the government from 30 June 2015 to 30

September 2015 in the Shanghai stock market.

Code Industry Code Industry

601669 Construction 600765 Machinery

600958 Finance & Insurance 600111 Metals & Non-metals

600023 Utilities 600118 Information Technology

600418 Machinery 600068 Construction

600518 Pharmaceuticals 600415 Comprehensive

To elucidate the relation between rescue policies and
the degrees of stocks, we compare stocks purchased by the
government and stocks with large degrees in the stock network.

Table 5 lists the top 10 stocks purchased by the government
during the period from 30 June 2015 to 30 September 2015,
which closely coincides with the period in which rescue policies
were enacted. Table 5 shows that the top stocks purchased by the
government belong to the Construction industry during the sub-
period with rescue policies, which is consistent with the results in
Table 3. In Table 6 we present the top 10 stocks with the highest
mean value of stock degrees in the stock network for the two
stable-state sub-periods (I and II) and the sub-periods with and
without rescue policies.

From Table 6 one observes that during the stable-state sub-
periods, more than half of the top 10 stocks with the highest
mean degree belong to the Finance & Insurance industry, which
is consistent with the results in Table 3. Furthermore, no stock
belongs to the Finance & Insurance industry in the sub-period
with rescue policies, whereas more than half of the top 10 stocks
belong to the Finance & Insurance industry in the sub-period
without rescue policies; this is also consistent with the results
in Table 3.

Finally, from Table 6, more than half of the top 10 stocks
purchased by the government have large degrees in the sub-
period with rescue policies, while only a few stocks purchased
by the government have large degrees in the sub-period without
rescue policies. All these observations imply that government
purchasing behavior greatly affects the degrees of individual
stocks and thus changes the entropy of the stock network during
the sub-period with rescue policies.

4.4. Universality and Robustness Tests
4.4.1. Universality Test

To test the universality of the empirical results for the Shanghai
stock market, we calculate the entropy evolution for the stock
network constructed with constituent stocks of the HSI index
during the period following the crash on 10 March 2015 in
the Hong Kong stock market, for which no government rescue
policies existed.

In Figure 3, the entropy evolution of the stock network for the
Hong Kong stock market increases slowly throughout the whole
period, with a trend similar to the entropy evolution during
the period without government rescue policies post-crash in the
Shanghai stock market. This implies that the network stability

TABLE 6 | Top 10 stocks with the highest mean value of degrees in the stock

network for the two stable-state sub-periods and the sub-periods with and

without rescue policies in the Shanghai stock market.

Stable state I Stable state II

Code Industry Code Industry

600109 Finance & Insurance 601198 Finance & Insurance

601318 Finance & Insurance 600485 Information Technology

600030 Finance & Insurance 601555 Finance & Insurance

600111 Metals & Non-metals 600570 Information Technology

600999 Finance & Insurance 600061 Finance & Insurance

600837 Finance & Insurance 600150 Machinery

601088 Mining 600446 Information Technology

601601 Finance & Insurance 600030 Finance & Insurance

600036 Finance & Insurance 601688 Finance & Insurance

600739 Wholesale & Retail Trade 600109 Finance & Insurance

With rescue policies Without rescue policies

Code Industry Code Industry

601727 Machinery 600118 Information Technology

600118 Information Technology 600895 Comprehensive

600031 Machinery 601211 Finance & Insurance

600150 Machinery 600150 Machinery

600111 Metals & non-metals 600739 Wholesale & Retail Trade

601669 Construction 601198 Finance & Insurance

600068 Construction 600958 Finance & Insurance

601390 Construction 601788 Finance & Insurance

600415 Comprehensive 600109 Finance & Insurance

600804 Information Technology 601099 Finance & Insurance

The stocks in this table are arranged from top to bottom in order of decreasing value of

stock degree. The boldfaced stock codes in this table are also in the list of top 10 stocks

purchased by the government during the sub-period with rescue policies.

FIGURE 3 | Entropy evolution of the stock network during the 60-day period

following the crash on 10 March 2015 in the Hong Kong stock market.

also increases slowly in the Hong Kong stock market, where there
were no government rescue policies.

In analogy to the analysis of stock degrees in the Shanghai
stock market, we present in Table 7 the top 10 stocks with the
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TABLE 7 | Top 10 stocks with the highest mean value of degrees in the stock network for the two stable-state sub-periods and the sub-period without rescue policies in

the Hong Kong stock market.

Stable state I Stable state II Without rescue policies

Code Industry Code Industry Code Industry

2318 Financials 0883 Energy 0883 Energy

0857 Energy 0941 Telecommunications 0941 Telecommunications

3968 Financials 2318 Financials 2628 Financials

0005 Financials 0005 Financials 2318 Financials

0941 Telecommunications 0700 Information Technology 0857 Energy

2628 Financials 2328 Financials 0388 Financials

0700 Information Technology 6030 Financials 3968 Financials

1336 Financials 0388 Financials 0005 Financials

6837 Financials 2601 Financials 1088 Energy

2601 Financials 1299 Financials 0386 Energy

The stocks in this table are arranged from top to bottom in order of decreasing value of stock degree. The conventional industries are based on the Hang Seng Industry Classification

system (HSICS).

FIGURE 4 | Relative entropy of the stock network for the sampling period from 16 December 2013 to 22 November 2016 in the Shanghai stock market.

highest mean value of degrees in the stock network for the
two stable-state sub-periods and the sub-period without rescue
polices in the Hong Kong stock market.

In Table 7, more than half of the stocks belong to the
Financials industry during the stable-state sub-periods and the
sub-period without rescue policies following the crash that
occurred on 10 March 2015 in the Hong Kong stock market,
which is consistent with the results on stock degrees during
the stable-state sub-periods and the sub-period without rescue
policies in the Shanghai stock market.

4.4.2. Robustness Test

To ensure that the previous findings are robust for the network
stability measured by entropy calculated with the node degree
distribution, here we use another quantity, the relative entropy,
to examine the relation between government rescue policies and
network stability.

The relative entropy, which is also called the Kullback-Leibler
(KL) divergence, is a measure of how a probability distribution
differs from another probability distribution [36]. This is useful
when we want to compare the degree distributions of, for
example, the stable periods and the periods with and without

rescue policies after crashes. For complex networks, the relative
entropy between two node degree distributions can be defined as

Hr = −

N−1
∑

k=1

P(k) log
P(k)

Q(k)
, (8)

where Q(k) is the node degree distribution during the stable-
state period.

Figure 4 presents the relative entropy of the stock network
during the sampling period from 16 December 2013 to 22
November 2016 in the Shanghai stock market.

As in the analysis of the entropy of the stock network,
we find that the mean values of the relative entropy for the
sub-periods with and without rescue policies after a crash
are 0.0176 and 0.0178, respectively, larger than the mean
values of the relative entropy for the stable states I and II
(0.0068 and 0.0065, respectively). We also give, in Table 8,
the results of a t-test for the significance of the differences
between the relative entropies of the stock network during the
four sub-periods.
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TABLE 8 | Results of t-test for testing the significance of the difference between

the entropies of the stock network for different sub-periods in the Shanghai stock

market.

Stable state

I

Stable state

II

With rescue

policies

Without rescue

policies

Stable state I 0.0000

Stable state II 0.5183 0.0000

With rescue

policies

−12.8112*** −12.9207*** 0.0000

Without

rescue

policies

−14.0500*** −14.2572*** 0.2393 0.0000

This table reports t-statistics from the t-test. The symbols *** denote significance at the 1,

5, and 10% levels, respectively.

FIGURE 5 | Relative entropy evolution of the stock network during sub-periods

with and without rescue policies after crashes in the Shanghai stock market.

Table 8 shows no significant difference between the relative
entropies of the stock network for the stable-state sub-periods
and the sub-periods with and without rescue policies. These
results indicate that the stock network is less heterogeneous and
stable during the sub-periods with and without rescue policies,
which is consistent with the results obtained from the entropy of
the stock network presented above.

Finally, we show in Figure 5 the relative entropy evolution
of the stock network for the sub-periods with and without
rescue policies. Consistent with the entropy evolution results
in Figure 2, the relative entropy evolution of the stock
network for the sub-period with rescue policies decreases
rapidly at first and much more slowly at later times.
For the sub-period without rescue policies, the relative
entropy evolution decreases slowly over the whole period.
This implies that the rescue policies have only short-term
influences on the stock market, and can only increase
the heterogeneity and stability of the stock network for a
short time. For the sub-period without rescue policies, the
heterogeneity and stability of the stock network can also
increase slowly.

5. CONCLUSION

In this paper, we have studied the influence of government
rescue policies on the stability of stock networks after crashes
in the Shanghai and Hong Kong stock markets based on the
entropy method.

By analyzing the entropy of the stock network in different
sub-periods, i.e., stable-state sub-periods and sub-periods with
and without rescue policies after a crash, we find that rescue
policies have only a short-term influence on the stability
of the stock network after a crash, and can improve the
network stability for only a short time. Over a longer time,
the network stability during a sub-period with rescue policies
could increase even more slowly than a sub-period without
rescue policies. Further analysis of the relation between stock
degrees and government purchasing behavior indicates that
government purchasing can lead to significant changes in the
degrees of specific stocks during the sub-period with rescue
policies, and thus ultimately improve the stability of the
stock network.

Our study focuses on the influence of government
interventions on network stability measured using entropy.
It is of theoretical interest for understanding the relation
between external interventions and network topological
structure, and further has practical significance for regulators
and policymakers who are attempting to stabilize stock markets
after crashes.

One can extend the present study to a microscopic analysis
by looking at the effects of individual node strengths and link
weights on the stability of the stock network after a crash. This
can be done by using methods similar to that of Bellingeri et al.
[37], for example, and is a topic for future research.
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