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We review several recent results on lattice simulations by the Nuclear Lattice Effective

Field Theory Collaboration. In the first part we discuss the implementation of nuclear

forces on the lattice using chiral effective field theory. The new development we highlight

is the use of non-local lattice operators to achieve a simpler spin channel decomposition,

in contrast with previous studies that considered only local interactions. In the second

part, we present evidence that nuclear physics is close to a quantum phase transition.

This development is also linked to the study of the differences between local and

non-local interactions. In the final part we further explore the link between the nuclear

forces and nuclear structure. We consider the simplest possible nuclear interaction

which can accurately reproduce the ground state energies of neutron matter, light nuclei,

and medium-mass nuclei. We discuss what these recent developments say about the

emergence of nuclear structure from nuclear forces and the road ahead for nuclear

lattice simulations.

Keywords: nuclear structure, nuclear forces, lattice effective field theory, nuclear lattice simulations, quantum

phase transition

1. INTRODUCTION

In this article we review several recent advances by the Nuclear Lattice Effective Field Theory
Collaboration that combine of chiral effective field theory with lattice methods, an approach that
we call nuclear lattice effective field theory. See Epelbaum et al. [1] and Machleidt and Entem [2]
for reviews of chiral effective field theory (EFT) and Lee [3] and Lähde and Meißner [4] for reviews
of nuclear lattice EFT. We begin the article by presenting some technical developments regarding
the nuclear lattice interactions. The new technology that makes this possible is the use of non-local
smearing for the operator interactions. These are important for producing interactions that can
give accurate reproductions of the empirical nucleon-nucleon phase shifts.

In the second part of the article we consider the features of the nuclear interactions which are
responsible for the bulk binding properties of atomic nuclei. From ab initio lattice simulations we
present numerical data showing that nature sits near a quantum phase transition. It turns out that
the differences between local and non-local interactions will again be important. In the last part
of the review we continue with our first principles investigations of nuclear forces and nuclear
structure. This time we discuss a simple nuclear interaction which gives the correct ground state
energies of neutron matter, light nuclei, and medium-mass nuclei with no more than a few percent
error. We then conclude by discussing the connection between nuclear structure and nuclear forces
and some possible future directions for nuclear lattice simulations.
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2. IMPROVED LATTICE INTERACTIONS

Simulations using lattice chiral EFT have been applied to predict
the scattering and structure of nuclei [5–7]. The application
of nuclear forces at higher chiral orders are problematic
on the lattice due to the breaking of rotational invariance
produced by the lattice regularization [8, 9]. In this review we
focus only on the short-range interactions since this is where
the new developments have been made. We use the terms
leading order (LO), next-to-leading order (NLO), next-to-next-
to-leading order (N2LO), and next-to-next-to-next-to-leading
order (N3LO) for the successive orders in chiral EFT.

In Li et al. [10], we introduce a set of short-range interactions
in lattice chiral EFT that decompose more naturally into spin
channels. In the following we explain how to construct two-
nucleon operators on the lattice with intrinsic spin S, Sz , orbital
angular momentum L, Lz , and isospin I, Iz . Since orbital angular
momentum is not exactly conserved on the lattice, we enforce the
required orbital angular momentum projection by hand using
smeared distributions of annihilation and creation operators
whose angular dependence are given by spherical harmonics.
The use of these smeared annihilation and creation operators
has the effect of controlling the range of the interaction as well
as reducing lattice artifacts. Since the annihilation and creation
operators are no longer at the same point in space, the resulting
interaction depends on the particle velocities and is therefore a
non-local interaction. This is in contrast with local interactions,
where the annhiliation and creation operators are at the same
point in space. Previous lattice studies had only considered local
interactions [8].

We will work with lattice units where quantities are multiplied
by the corresponding power of the spatial lattice spacing a to
make the object dimensionless. Let 〈n′n〉 denote the nearest
neighbors n′ of lattice site n. Our starting point is ai,j(n), the
nucleon annihilation operator for lattice site n with spin i
and isospin j. We then add lattice operators on neighboring
lattice sites with coefficient, sNL. This defines the smeared
annihilation operator

aNL,i,j(n) = ai,j(n)+ sNL
∑

〈n′n〉

ai,j(n
′). (1)

The overall normalization of the smeared annihilation operators
is not important since any normalization factors can be absorbed
into the definition of the interaction coefficients that we build
with these smeared operators.

This process can easily be extended to lattice sites beyond the
nearest neighbors of n. After this we construct combinations with
spin S, Sz , and isospin I, Iz ,

[a(n)a(n′)]
sNL
S,Sz ,I,Iz

=
∑

i,j,i′ ,j′

aNL,i,j(n)Mii′ (S, Sz)Mjj′ (I, Iz)aNL,i′ ,j′ (n
′). (2)

Let us define the lattice derivative ∇l along the l spatial direction
as

∇lf (n) =
1

2
f (n+ l̂)−

1

2
f (n− l̂). (3)

We can also define the lattice derivative ∇1/2,l with half steps in
the forward and backward directions,

∇1/2,lf (n) = f (n+
1

2
l̂)− f (n−

1

2
l̂). (4)

This yields a well-defined function on the lattice sites when we
take double derivatives,

∇2
1/2,lf (n) = f (n+ l̂)− 2f (n)+ f (n− l̂). (5)

The lattice Laplacian operator is defined as

∇2
1/2f (n) =

∑

l

∇2
1/2,lf (n). (6)

We select orbital angular momenta with the help of solid
spherical harmonics,

RL,Lz (r) =

√

4π

2L+ 1
rLYL,Lz (θ ,φ). (7)

We work with polynomials of the lattice derivatives that act on
one of the annihilation operators, with coefficients prescribed by
the solid spherical harmonics,

P
2M,sNL
S,Sz ,L,Lz ,I,Iz

(n) = [a(n)∇2M
1/2R

∗
L,Lz

(∇)a(n)]
sNL
S,Sz ,I,Iz

. (8)

This ensures the lattice operators have the correct rotational
properties in the continuum limit. We use Clebsch-Gordan
coefficients to put together the required spin and orbital angular
momentum combinations,

O
2M,sNL
S,L,J,Jz ,I,Iz

(n)

=
∑

Sz ,Lz

〈SSzLLz|JJz〉P
2M,sNL
S,Sz ,L,Lz ,I,Iz

(n). (9)

In Li et al. [10], we consider the neutron-proton system up
to N3LO. The chosen lattice spacings are 1.97, 1.64, 1.32, and
0.99 fm. In Figure S1 we show the phase shifts and mixing
angles for neutron-proton scattering vs. relative momenta for
lattice spacing a = 1.32 fm. In Figure S2 we show the phase
shifts and mixing angles for neutron-proton scattering for lattice
spacing a = 0.99 fm. The estimated uncertainties at NLO,
N2LO, and N3LO are labeled with the blue, green, and red bands,
respectively. The Nijmegen partial wave analysis results are
shown with black solid lines, and the lattice results at N3LO are
shown with diamonds. These results show marked improvement
over previous studies of the lattice chiral EFT interactions [8].We
see that in most cases the error bands at LO, NLO, N2LO, and
N3LO are overlapping with each other and decreasing in width
with each successive order. This indicates the consistency of the
effective field theory expansion as well as its convergence rate.
There are however some exceptions such as the high-momentum
region of the 3P2 and

3D2 phase shifts where the convergence is
not yet optimal. We have work in progress now that indicates
these problems are resolved with a better lattice treatment of
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the tensor force in the one-pion exchange potential and will be
discussed in a forthcoming publication. As one would expect, we
also see a general improvement of the lattice phase shifts as we
decrease the lattice spacing. We see both better agreement with
the empirical data as well as smaller error bands.

3. NUCLEAR PHYSICS NEAR A QUANTUM
PHASE TRANSITION

In Elhatisari et al. [11], we investigate two different LO
interactions in chiral EFT, which we call interactions A and B.
Both are defined with lattice spacing a = 1.97 fm and have nearly
the same nucleon-nucleon scattering phase shifts and binding
energies for the three- and four-nucleon systems. However, for
heavier nuclei the binding energies are very different. Interactions
A and B each have the same one-pion exchange interaction as
well as the same Coulomb potential between protons. The only
distinction between the interactions A and B is the form of the
short-range interactions, and we limit our discussion here to the
short-range interactions.

We write σS with S = 1, 2, 3 for the spin Pauli matrices, and
τI with I = 1, 2, 3 for the isospin Pauli matrices. We will write
a(n) for the column vector of annihilation operators ai,j(n), and

we will write a†(n) for the row vector of creation operators a†
i,j(n).

For our chosen non-local smearing parameter sNL, we construct
the smeared operators as in Equation (1),

aNL(n) = a(n)+ sNL
∑

〈n′n〉

a(n′), (10)

a†
NL(n) = a†(n)+ sNL

∑

〈n′n〉

a†(n′). (11)

The point-like density operators are defined as

ρ(n) = a†(n)a(n), (12)

ρS(n) = a†(n)[σS]a(n), (13)

ρI(n) = a†(n)[τI]a(n), (14)

ρS,I(n) = a†(n)[σS ⊗ τI]a(n). (15)

The smeared non-local densities are defined as

ρNL(n) = a†
NL(n)aNL(n), (16)

ρS,NL(n) = a†
NL(n)[σS]aNL(n), (17)

ρI,NL(n) = a†
NL(n)[τI]aNL(n), (18)

ρS,I,NL(n) = a†
NL(n)[σS ⊗ τI]aNL(n), (19)

while the smeared local densities for local smearing parameter sL
are

ρL(n) = a†(n)a(n)+ sL
∑

〈n′ n〉

a†(n′)a(n′), (20)

ρS,L(n) = a†(n)[σS]a(n)+ sL
∑

〈n′ n〉

a†(n′)[σS]a(n
′), (21)

ρI,L(n) = a†(n)[τI]a(n)+ sL
∑

〈n′ n〉

a†(n′)[τI]a(n
′), (22)

ρS,I,L(n) = a†(n)[σS ⊗ τI]a(n)+ sL
∑

〈n′ n〉

a†(n′)[σS ⊗ τI]a(n
′).

(23)

The non-local short-range interactions have the form

VNL =
cNL

2

∑

n

: ρNL(n)ρNL(n) :+
cI,NL

2

∑

n,I

: ρI,NL(n)ρI,NL(n) :,

(24)

while the local short-range interactions are given by

VL =
cL

2

∑

n

: ρL(n)ρL(n) :+
cS,L

2

∑

n,S

: ρS,L(n)ρS,L(n) :

+
cI,L

2

∑

n,I

: ρI,L(n)ρI,L(n) :+
cS,I,L

2

∑

n,S,I

: ρS,I,L(n)ρS,I,L(n) : .

(25)

The : : symbol indicates normal ordering where the annihilation
operators are pushed to the right and the creation operators are
pulled to the left.

For interaction A we take the short-range interaction to
have the purely non-local form described in Equation (24).
For interaction B we take the short-range interaction to have
a combination of the non-local and local forms described in
Equations (24), (25), respectively. In Table 1, we show results for
the ground state energies of 8Be, 12C, 16O, and 20Ne. We present
results for interactions A and B at LO, including Coulomb
interactions, and the comparison with experimental data. While
the ground state energies for B are close to the experimental data,
the binding energies for A are not.

To identify the reason for the disagreement, we compute the
ground state energies of 8Be, 12C, 16O, and 20Ne for interaction
A with the Coulomb interactions turned off. When we turn off
Coulomb and divide the ground state energy for each nucleus
with that of 4He, we find the ratios

E8Be

E4He

= 1.997(6),
E12C

E4He

= 3.00(1), (26)

E16O

E4He

= 4.00(2),
E20Ne

E4He

= 5.03(3). (27)

TABLE 1 | Results for the ground energies of 8Be, 12C, 16O, and 20Ne using

interactions A and B at LO with Coulomb interactions and the comparison with

experimental data.

Nucleus A (LO + Coulomb) B (LO + Coulomb) Experiment

8Be −56.51(14) −57.29(7) −56.591

12C −84.0(3) −89.9(5) −92.162

16O −110.5(6) −126.0(7) −127.619

20Ne −137(1) −164(1) −160.645
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These consecutive integer numbers are an indication of a Bose
condensate of alpha particles filling the periodic box. In Elhatisari
et al. [11] this interpretation is confirmed by showing that the
alpha-alpha interactions are indeed very weak for interaction A.

These results shows that nature sits near a quantum phase
transition. Along the N = Z line where the number of neutrons
equals the number of protons, there is a first-order quantum
transition separating a Bose gas of alpha particles from a nuclear
liquid. The strength of the alpha-alpha interactions determines
whether one has a Bose gas of alpha particles or a nuclear liquid.
In turn, the alpha-alpha interactions are impacted by the strength
and range of the local part of the nucleon-nucleon interactions.
The local part of interaction B is stronger than the local part of
interaction A, and hence the different behaviors that we see.

The phase diagram of nuclear matter at zero temperature is
in Figure S3. The parameter λ indicates the strength of the local
part of the nucleon-nucleon interactions. This can be constructed
explicitly by taking a linear combination of the interactions
used for interactions A and B. Nuclear matter is in a Bose gas
phase of alpha particles when λ is below the critical value, and
nuclear matter is in a nuclear liquid phase if λ crosses above
the critical value. When λ increases even further, finite A-body
nuclei become stable as their energy fall below the threshold value
EαA/4 associated with multi-alpha continuum states.

4. ESSENTIAL ELEMENTS FOR NUCLEAR
BINDING

In Lu et al. [12], we investigate a basic question connecting
nuclear forces and nuclear structure. What are the essential
elements for nuclear binding? For this analysis we work with a
simple leading order effective field theory without pions. This
simple pionless EFT theory is SU(4)-invariant, where the SU(4) is
Wigner’s approximate symmetry where the four nucleon degrees
of freedom can be rotated into each other [13]. The lattice
Hamiltonian has the form

HSU(4) = Hfree +
1

2!
C2

∑

n

ρ̃2(n)+
1

3!
C3

∑

n

ρ̃3(n), (28)

where Hfree is the free nucleon Hamiltonian and

ρ̃(n) = ρNL(n)+ sL
∑

〈n′n〉

ρNL(n), (29)

and ρNL(n) was defined in Equation (16). The local part of the
interaction is adjusted using the parameter sL, while the non-local
part of the interaction is controlled by the parameter sNL, which
appears implicitly in the definition of ρNL(n). The parameter
C2 controls the strength of the two-nucleon interaction, and C3

controls the three-nucleon interaction. For these calculations the
lattice spacing is a = 1.32 fm.

The two-nucleon interaction coefficient C2 and interaction
range, controlled jointly by sNL and sL, are set by fitting the
scattering length a0 and effective range r0 averaged over the
two S-wave channels, 1S0 and 3S1. The three-nucleon coupling
strength C3 is set according to the binding energy of 3H. At the

empirical binding energy B(3H) = 8.48 MeV, the 4He binding
energy is 28.9 MeV, and this is near the empirical value B(4He) =
28.3 MeV. This fitting process is carried out for several pairs
of values for sNL and sL. We calculate several nuclear ground
states for each pair using auxiliary-field lattice Monte Carlo
simulations. We find that sNL = 0.5 and sL = 0.061 gives the
best agreement overall. We note that the rather large value of sL
as compared with sNL is an indication that the local interaction
plays an important role in nuclear binding. The corresponding
couplings are C2 = −3.41 × 10−7 MeV−2 and C3 = −1.4 ×

10−14 MeV−5. Overall about 20% of the binding is coming from
the three-body interaction. This is consistent with the expected
hierarchy of forces in effective field theory, with three-body forces
being less important than two-body forces.

We present binding energies and charge radii in Table 2

for selected nuclei together with the experimental values and
the computed Coulomb energy. Although the 3H energy is a
constraint in the fitting process, the other values are predictions.
We have included the charge radius of the proton for calculations
of the nuclear charge radii, but have not included smaller effects
arising from the charge distribution of the neutron, relativistic
corrections, and spin-orbit terms. In Figure S4 we show the
binding energies for 86 bound nuclei with up to A = 48
nucleons in comparison with empirical data. The Monte Carlo
error bars are not visible as they are smaller than the symbol
size. The errors associated with Euclidean time extrapolation
and volume extrapolation are less than 1% relative error, and
these errors are not shown. In Figure S4 one can see that the
agreement with empirical results is fairly good. The remaining
discrepancies are a sign of missing effects such as interactions
which are spin dependent.

In Figure S5 we show the charge densities of 16O and 40Ca.
These densities are calculated using the pinhole algorithm [16]
where a barrier is placed in the middle of the Euclidean time
evolution, and the amplitude vanishes unless each nucleon passes
through a pinhole. As the number of pinholes are set to equal the
number of nucleons, the sampling over pinholes yields a classical
distribution of the nucleon positions. We show the comparison

TABLE 2 | Left side: Computed binding energies of several nuclei compared with

experimental values.

B Exp. Coulomb B/Exp. Rch Exp. Rch/Exp.

3H 8.48 (2)(0) 8.48 0.0 1.00 1.90 (1)(1) 1.76 1.08

3He 7.75 (2)(0) 7.72 0.73 (1)(0) 1.00 1.99 (1)(1) 1.97 1.01

4He 28.89 (1)(1) 28.3 0.80 (1)(1) 1.02 1.72 (1)(3) 1.68 1.02

16O 121.9 (1)(3) 127.6 13.9 (1)(2) 0.96 2.74 (1)(1) 2.70 1.01

20Ne 161.6 (1)(1) 160.6 20.2 (1)(1) 1.01 2.95 (1)(1) 3.01 0.98

24Mg 193.5 (02)(17) 198.3 28.0 (1)(2) 0.98 3.13 (1)(2) 3.06 1.02

28Si 235.8 (04)(17) 236.5 37.1 (2)(3) 1.00 3.26 (1)(1) 3.12 1.04

40Ca 346.8 (6)(5) 342.1 71.7 (4)(4) 1.01 3.42 (1)(3) 3.48 0.98

Right side: Computed charge radii of several nuclei compared with empirical values. The

first parenthesis denotes the Monte Carlo error, and the second parenthesis is the time

extrapolation error. All energies are in MeV, and all lengths are in fm. Experimental data is

from Wang et al. [14]. Table from Lu et al. [12].
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with electron scattering data, as well as the lattice results with
the Coulomb interaction included via first order perturbation
theory. The Coulomb force suppresses the densities near the
nucleus center, bringing the results in better agreement with the
experimental data. The results are surprisingly accurate in view
of the simple nuclear interaction.

The ground state energy of pure neutron matter is shown
in Figure S6 as a function of the neutron density. We show
the results of several other calculations for comparison. For the
lattice results the number of neutrons ranges from 14 to 66. The
calculations are done with three box sizes L = 5, 6, 7. Our lattice
results, shown as the filled red polygons, are generally in good
agreement with the other calculations for densities higher than
0.05 fm−3. For lower densities the disagreement is larger due
to the neutron-neutron scattering length being incorrect. The
open red polygons correspond to an improved calculation where
a contact interaction is included to give the correct neutron-
neutron scattering length. There is also a correction included to
restore invariance with respect to Galilean boosts [17]. In spite of
the simplicity of the interaction, the results are quite good.

5. DISCUSSION

We have reviewed several recent results by the Nuclear Lattice
EFT Collaboration. We presented the improved description of
scattering phase shifts in chiral effective field theory up to N3LO.
We then showed evidence that nuclear physics is close to a
quantum phase transition. After this we described the minimal
nuclear interaction that can accurately reproduce the ground
state energies of neutron matter, light nuclei, and medium-mass
nuclei. A common theme flowing through all aspects of our
review was the notable difference between local and non-local
interactions. We now put some of these findings into context.

Numerous calculations show the reliability of chiral EFT for
the properties of light nuclei [18–22]. However, the binding
energies as well as the charge radii of medium mass nuclei are
sometimes not well reproduced [20, 23–29]. One notable case is
that the charge radius of 16O, which is often too small [23, 25–28].
Without further input, chiral EFT calculations do not yet provide
accurate predictions at higher nuclear densities.

One practical approach is to put constraints on the nuclear
force by fitting the properties of mediummass nuclei and nuclear
matter saturation [29]. This strategy has been used in several
calculations [30–33]. The approach we have pursued in nuclear
lattice studies is to focus on the microscopic origins of the
problem. In Elhatisari et al. [11], we find that nuclear matter
resides near a quantum phase transition that lies at the boundary
between a Bose condensate of alpha particles and a nuclear liquid.
There we show that local interactions are especially important
for nuclear binding. In Lu et al. [12], we construct a simple
nuclear interaction that can produce, with no more than a few
percent error, the ground state energies of neutron matter, light
nuclei, and medium-mass nuclei. From that analysis we see the
importance of the range and locality of the SU(4)-invariant forces
in determining the bulk properties of nuclei.

The dominance of SU(4)-invariant interactions can be
explained in terms of coherent enhancement. Upon summation
over nucleonic spin configurations, much of the effect of spin-
dependent forces cancel. In a similar manner, isospin-dependent
forces will cancel in symmetric nuclear matter due to the protons
and neutrons being equal in number. One important exception
though is the Coulomb interaction. SU(4) symmetry and large
scattering length universality have a long history in nuclear
physics. It is well-known that the Tjon line connecting 3H and
4He binding energies is a manifestation of universality in nuclear
systems [9, 34–36].

SU(4)-symmetric short-range interactions are now being used
with local and non-local smearing and one-pion exchange. These
improved calculations of light and medium-mass nuclei will use
chiral forces up to N3LO. One of the central questions that we
seek to address is why the straightforward application of chiral
EFT does not give reliable and accurate predictions at higher
nuclear densities. While more investigations are needed, it seems
that part of the answer to this question is related to the emergence
of a physical length scale relevant to many-body nuclear systems,
the size of the alpha particle. The amount of fine tuning needed
to reproduce the alpha-alpha and alpha-nucleon scattering
phase shifts can be understood as the competition between
Pauli repulsion and attractive nucleon-nucleon interactions. This
important and delicate balance is amplified by the fact that
the range of the nucleon-nucleon interaction is comparable to
the size of the alpha particle. Hence small differences in the
range or locality of the interaction can have a large impact
on the interactions of the alpha particle. This is turn has
consequences for nuclear systems with increasing numbers
of nucleons.
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Figure S1 | Results for the neutron-proton scattering phase shifts and mixing

angles vs. the relative momenta for lattice spacing a = 1.32 fm. The blue, green

and red bands show the estimated uncertainties at NLO, N2LO and N3LO

respectively. The black solid line and diamonds denote phase shift or mixing angle

from the Nijmegen partial wave analysis and lattice calculation at N3LO,

respectively. Figure from Li et al. [10].

Figure S2 | Results for the neutron-proton scattering phase shifts and mixing

angles vs. the relative momenta for lattice spacing a = 0.99 fm. The blue, green

and red bands show the estimated uncertainties at NLO, N2LO and N3LO

respectively. The black solid line and diamonds denote phase shift or mixing angle

from the Nijmegen partial wave analysis and lattice calculation at N3LO,

respectively. Figure from Li et al. [10].

Figure S3 | Phase diagram of nuclear matter at zero temperature. λ controls the

strength of the local part of the interactions. Figure from Elhatisari et al. [11].

Figure S4 | Calculated binding energies from 3H to 48Ca. The solid symbols are

lattice results and the open symbols are experimental values. The experimental

values are from Wang et al. [14]. Figure adapted from Lu et al. [12].

Figure S5 | Computed 16O and 40Ca charge densities compared with

experimental results. The circles denote the results without Coulomb interaction.

The squares are the results with the Coulomb interaction included perturbatively.

Experimental results are from De Vries et al. [15]. Figure adapted from Lu et al. [12].

Figure S6 | Ground state energy of pure neutron matter as a function of neutron

density for box sizes L = 5 (upright triangles), L = 6 (squares), L = 7 (right-pointing

triangles). The filled red polygons are results for the leading-order interaction. The

open red polygons show an improved calculation with a short-range interaction

tuned to the physical neutron-neutron scattering length as well as a correction to

restore Galilean invariance. Also shown are results calculated with N3LO chiral

interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV) [37], as

well as results from variational (APR) [38] and auxiliary-field diffusion MC

calculations (GCR) [39]. Figure adapted from Lu et al. [12].
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