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Quadratic rational Bézier curve transformation is widely used in the field of computational

geometry. In this paper, we offer several important characteristics of the quadratic rational

Bézier curve. More precisely, on the basis of proving its monotonicity, the necessary and

sufficient conditions for transforming a quadratic rational Bézier curve into a point, line

segment, parabola, elliptic arc, circular arc, and hyperbola are proved, respectively.
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1. INTRODUCTION

Bézier curves have wide application in computer-aided geometric design, being used to provide
precisely described points along a given curve [1]. Compared to other methods, such as the French
curve, Bézier-based approaches are more computationally affordable and reliable. Additionally,
the advantages of the Bézier curve in geometric design include its simple but clear mathematical
function [2]. For instance, it is capable of incorporating both conic sections and parametric cubic
curves as special cases [3]. As such, one can deal with two different curves simultaneously using
one unique computational procedure. Some preliminary studies and applications of Bézier curves
can be found in Lu et al. [4], Lee [5], and Han [6].

In this paper, to better understand the basic characteristics of Bézier curves, we conduct
some fundamental research. In particular, we discuss the necessary and sufficient conditions for
representing six different basic shapes, including a point, line segment, parabola, elliptic arc,
circular arc, and hyperbola, using Bézier curves [7, 8]. These results play a fundamental role in the
shape formulation and can help in facilitating any subsequent computer-based geometric design.

To begin with, we introduce the mathematical model of the quadratic rational Bézier curve [1].

Definition 1. The quadratic rational Bézier curve is defined as follows:

p(t) =
(1− t)2ω0P0 + 2t(1− t)ω1P1 + t2ω2P2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
, t ∈ [0, 1], (1)

where

t =
√

ω0µ√
ω0µ +√

ω2(1− µ)
, µ ∈ [0, 1], (2)

and ω0 and ω2 are not zero values at the same time.
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The monotonicity of Formula (1.2) is discussed below. Let µ1 ∈
[0, 1],µ2 ∈ [0, 1], and µ1 ≤ µ2. Accordingly, in the case of
µ1 = 0, we have:

t1 =
√

ω0µ1√
ω0µ1 +

√
ω2(1− µ1)

= 0. (3)

Note that 1 ≥ µ2 > µ1 ≥ 0, and t2 =
√

ω0µ2√
ω0µ2+

√
ω2(1−µ2)

≥ 0;

then it is easy to have t2 ≥ t1 = 0.
In the case of µ1 6= 0 and µ2 6= 0, according to Formula (1.2),

we have:

t1

t2
=

√
ω0µ1√

ω0µ1 +
√

ω2(1− µ1)
/

√
ω0µ2√

ω0µ2 +
√

ω2(1− µ2)

= (
√

ω0 +
√

ω2(
1

µ2
− 1)) / (

√
ω0 +

√
ω2(

1

µ1
− 1)) ≤ 1.

(4)

In other words, we have the conclusion that t is monotonically
increasing [9–11]. Furthermore, if we apply linear transformation
to Formula (1.1), it is easy to know

p(µ) =
ω0ω2(1− µ)2P0 + 2

√
ω0

√
ω2ω1µ(1− µ)P1 + ω0ω2µ

2P2

ω0ω2(1− µ)2 + 2
√

ω0
√

ω2ω1µ(1− µ)+ ω0ω2µ
2

= ((1− µ)2P0 + 2

√

ω2
1

ω0ω2
µ(1− µ)P1 + µ2P2)/((1− µ)2

+ 2

√

ω2
1

ω0ω2
µ(1− µ)+ µ2).

(5)

Let ω =
√

ω2
1

ω0ω2
and substitute µ with t in the standard form

of the quadratic rational Bézier curve. To this end, we have the
simplified version of the quadratic rational Bézier curve, which is
expressed as follows:

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
. (6)

2. SUFFICIENT AND NECESSARY
CONDITIONS FOR A QUADRATIC
RATIONAL BÉZIER CURVE TO
DEGENERATE INTO A POINT

Theorem 1. A quadratic rational Bézier curve degenerates into a
point if and only if three control points P0, P1, P2 coincide.

Proof: Assume that the quadratic rational Bézier curve
degenerates to a point PA. That is,

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
= PA ⇔

(1− t)2(P0 − PA)+ 2t(1− t)ω(P1 − PA)+ t2(P2 − PA) = 0.

(7)

As can be seen from Formula (7), when t ∈ (0, 1), we have
(1−t)2 6= 0, t2 6= 0, 2t(1−t) 6= 0, so P0 = PA, P1 = PA, P2 = PA.
That is, when the quadratic rational Bézier curve degenerates into
a point, P0, P1, P2 are the same point of PA.

On the other hand, when three control points coincide (say,
the same point PA), we know that:

p(t) =
(1− t)2PA + 2t(1− t)ωPA + t2PA

(1− t)2 + 2t(1− t)ω + t2
= PA. (8)

As can be seen from Formula (8), when three control
points P0, P1, P2 coincide, the quadratic rational Bézier curve
degenerates into a point [12, 13].

Algorithm 1: To degenerate a Quadratic Rational Bézier Curve
into a Point
Input: Control Points of Bezier Curve
Output: Points degenerated by Bezier Curve
1: Input Bézier Curve control points
2: Set coordinates of control points P1 = P0 and P2 = P0
3: Output coordinates of control points P0, P1, P2
4: if the number of control points < 3 then
5: goto Step 1.
6: end if

7: Initializing the independent variable t in the standard
formula of the quadratic rational Bezier curve to 0, Set t = 0

8: for t = 0; t ≤ 1; t+ = 0.00125 do

9: Calculate the standard formula of the quadratic rational
Bezier Curve.

10: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y = (1−t)2y0+2t(1−t)ωy1+t2y2
(1−t)2+2t(1−t)ω+t2

11: end for

12: Output Bezier Curve.
13: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
14: return

3. NECESSARY AND SUFFICIENT
CONDITIONS FOR DEGRADATION OF A
QUADRATIC RATIONAL BÉZIER CURVE
INTO A LINEAR SECTION

Theorem 2. The quadratic rational Bézier curve degenerates into
a straight line segment if and only if the control points P0, P2 do not
coincide, the weight factor ω = 0, or the control point P1 is on the
line segment [14–16].

Proof: First, we assume that one point is with two coordinates;
alternatively, we have P0 = (x0, y0), P1 = (x1, y1), and P2 =
(x2, y2). As such, for an arbitrary point p(t) = (x, y), according to
Formula (6) it is easy to have:

x =
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
,

y =
(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2
,

(9)
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On the other hand, a general form for a line function can be
expressed as: y = ax+ b, where a, and b is a constant [17]. Then,
substituting x and y using Formula (12), we can get:

(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2

= a
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
+ b,

(10)

If we simplify the above formula, it is easy to know:

(y0 − ax0 − b+ y2 − ax2 − b− 2y1ω + 2ax1ω + 2bω)t2 (11)

− 2(y0 − ax0 − b− y1ω + ax1ω + bω)t + y0 − ax0 − b = 0.

First, we assume that one point is with two coordinates;
alternatively, we have P0 = (x0, y0), P1 = (x1, y1), and P2 =
(x2, y2). As such, for an arbitrary point p(t) = (x, y), according to
Formula (6) it is easy to have:

x =
(1− t)2x0 + 2t(1− t)ωx1 + t2x2

(1− t)2 + 2t(1− t)ω + t2
,

y =
(1− t)2y0 + 2t(1− t)ωy1 + t2y2

(1− t)2 + 2t(1− t)ω + t2
,

(12)

Now, control points P0 and P2 are the first and last points of the
Bézier curve. As they are all on the Bézier curve, they will also be
on the straight line [18–20]. Alternatively, we have:

y0 = ax0 + b, y2 = ax2 + b. (13)

Therefore, Formula (11) is further simplified:

(y1 − ax1 − b)(ωt − ωt2) = 0. (14)

Next, Formula (14) is analyzed in the following aspects:

1. If the control point P1 is also on the Bézier curve (or on the
straight line), then y1 − ax1 − b = 0, and Formula (14)
clearly holds.

2. If the control point P1 is not on the Bézier curve (or not on
the straight line), then y1 − ax1 − b 6= 0, and Formula (14)
can be simplified as

− ωt2 + ωt = 0. (15)

Therefore, when t ∈ [0, 1], in order to make Formula (15) hold,
we have ω = 0.

As such, it is proved that when the quadratic rational Bézier
curve degenerates into a straight line segment, two conditions
are met: (1) the weight factor ω = 0, or (2) the control
point P1 is on the line segment with the control point P0, P2
as the end point. In the following, we discuss these two
conditions separately.

1. According to Formula (6), when the weight factor ω = 0,
we have:

p(t) =
(1− t)2P0 + 2ωt(1− t)P1 + t2P2

(1− t)2 + 2ωt(1− t)+ t2
=

(1− t)2P0 + t2P2

(1− t)2 + t2
,

(16)

and

x =
(1− t)2x0 + t2x2

(1− t)2 + t2
=

(1− t)2x0

(1− t)2 + t2
+

t2x2

(1− t)2 + t2
.

(17)

y =
(1− t)2y0 + t2y2

(1− t)2 + t2
=

(1− t)2y0

(1− t)2 + t2
+

t2y2

(1− t)2 + t2
.

(18)
To simplify the calculation process, let us assume that:

α =
(1− t)2

(1− t)2 + t2
. (19)

and

1− α =
t2

(1− t)2 + t2
. (20)

Now the following formula holds:

x = αx0 + (1− α)x2 → x− x2 = α(x0 − x2). (21)

y = αy0 + (1− α)y2 → y− y2 = α(y0 − y2). (22)

As the control points P0, P2 do not coincide, x0 6= x2, y0 6= y2,

α =
y− y2

y0 − y2
=

x− x2

x0 − x2
(23)

y

y0 − y2
−

x

x0 − x2
=

y2

y0 − y2
−

x2

x0 − x2
, (24)

where x0, x2, y0, y2 are constants. We assume that 1
y0−y2

=
A, 1

x0−x2
= B,

y2
y0−y2

− x2
x0−x2

= C (that is, A,B,C are all

constants). Accordingly, we know that Ay − Bx = C is a line
segment [21].

Algorithm 2: To Degenerate a Quadratic Rational Bézier Curve
into a Linear section
Input: Control Points of Bezier Curve
Output: Linear section degenerated by Bezier Curve
1: Set ω = 0
2: Input Bézier Curve control points P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: end if
6: Output coordinates of control points P0, P1, P2
7: Output line segment between control points P0, P1 and P1, P2
8: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
9: for t = 0; t ≤ 1; t+ = 0.00125 do
10: Calculate the standard formula of the quadratic rational

Bezier Curve.

11: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y = (1−t)2y0+2t(1−t)ωy1+t2y2
(1−t)2+2t(1−t)ω+t2

12: end for
13: Output Bezier Curve.
14: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
15: return
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2. Let the conditional control point P1 be the end point (on the
line segment with the control points P0 and P2) [22]; thus, it
can be seen that:

P1 = (1− v)P0 + vP2, v ∈ [0, 1], (25)

The Formula (25) can be substituted with Formula (6)
to have:

p(t) =
(1− t)2 + 2t(1− t)ω(1− v)

(1− t)2 + 2t(1− t)ω + t2
P0

+
(2t(1− t)ωv+ t2

(1− t)2 + 2t(1− t)ω + t2
P2. (26)

Then we set:

u =
(2t(1− t)ωv+ t2

(1− t)2 + 2t(1− t)ω + t2
. (27)

Comparing Formula (26) with Formula (27), it is easy to
find that

p(t) = (1− u)P0 + uP2. (28)

In conclusion, Formula (28) is the parametric formula
of the line segment. When the control point P1 is
on the line segment with the control point (P0, P2) as
the end point, Formula (26) can be written as the
parametric formula of the line segment of Formula (28).
As such, it is proved that it degenerates into a line
segment [23, 24].

Algorithm 3: To degenerate a Quadratic Rational Bézier Curve
into a Linear section
Input: Control Points of Bezier Curve
Output: Linear section degenerated by Bezier Curve
1: Set ωisaarbitraryvalue
2: Input Bézier Curve control points,P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: else
6: if the number of control points= 3 then
7: Set control point P3 on line segment with the control

points P1 and P2 as end points
8: end if
9: end if
10: Output coordinates of control points P0, P1,P2
11: Output line segment between control points P0, P1 and P1, P2
12: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
13: for t = 0; t ≤ 1; t+ = 0.00125 do
14: Calculate the standard formula of the quadratic rational

Bezier Curve.

15: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y = (1−t)2y0+2t(1−t)ωy1+t2y2
(1−t)2+2t(1−t)ω+t2

16: end for
17: Output Bezier Curve.
18: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
19: return

4. NECESSARY AND SUFFICIENT
CONDITIONS FOR A QUADRATIC
RATIONAL BÉZIER CURVE TO
REPRESENT A SECTION OF ARC

Theorem 3. Quadratic rational Bézier curves can be used
to represent an arc if and only if |P0P1| = |P2P1|
and 0 ≤ ω ≤ 1 [25].

Proof: The equation of a circle passing through three collinear
pointsQi(xi, yi), (i = 1, 2, 3), on a rectangular coordinate plane is:

∣

∣

∣

∣

∣

∣

∣

∣

x2 + y2 x y 1

x20 + y20 x0 y0 1

x21 + y21 x1 y1 1

x22 + y22 x2 y2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (29)

Given three points that are not collinear, we have:

P0(x0, y0, 0) = (−a, 0, 0),A(xA, yA, 0), P2(x2, y2, 0) = (a, 0, 0).
(30)

The arc curve starts from point P0 and passes through point A
to point P2. Now, let us find another control vertex P1. To do
so, P0, A, P2 are substituted into the three-point common-circle
equation 29, and we get

∣

∣

∣

∣

∣

∣

∣

∣

x2 + y2 x y 1

x20 + y20 x0 y0 1

x2A + y2A xA yA 1

x22 + y22 x2 y2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (31)

From Formula (30) to Formula (31), we can find that x0 =
−a, y0 = 0, x2 = a, y2 = 0. Furthermore, by expanding the
determinant 31 in the first row, we have

(x2 + y2)

∣

∣

∣

∣

∣

∣

−a 0 1
0 yA 1
a 0 1

∣

∣

∣

∣

∣

∣

+ (−1)x

∣

∣

∣

∣

∣

∣

a2 0 1

y2A yA 1
a2 0 1

∣

∣

∣

∣

∣

∣

+ y

∣

∣

∣

∣

∣

∣

a2 −a 1

y2A 0 1
a2 a 1

∣

∣

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

∣

∣

a2 −a 0

y2A 0 yA
a2 a 0

∣

∣

∣

∣

∣

∣

= 0.

(32)

Among them,

∣

∣

∣

∣

∣

∣

−a 0 1
0 yA 1
a 0 1

∣

∣

∣

∣

∣

∣

= −2ayA,

∣

∣

∣

∣

∣

∣

a2 0 1

y2A yA 1
a2 0 1

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

a2 −a 1

y2A 0 1
a2 a 1

∣

∣

∣

∣

∣

∣

= −a3 + ay2A + ay2A − a3,

∣

∣

∣

∣

∣

∣

a2 −a 0

y2A 0 yA
a2 a 0

∣

∣

∣

∣

∣

∣

= −a3yA − a3yA. (33)

Frontiers in Physics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 175

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Yang et al. Conditions for Expressing Bézier Curves

Finally, the above formula can be simplified as follows:

(−2ayA)(x
2 + y2)+ y(−a3 + 2ay2A − a3)+ 2a3yA = 0. (34)

Because yA 6= 0, it is easy to know

x2 +
(

y+
a2 − y2A
2yA

)2

= a2 +
(a2 − y2A)

2

4y2A
. (35)

On the other hand, as xA = 0, we can add xA to have

x2 +
(

y+
a2 − (x2A + y2A)

2yA

)2

= a2 +
(a2 − (x2A + y2A))

2

4y2A
. (36)

Summarizing the above formula, the coordinates of the center of
the circle O are:

xO = 0, yO =
a2 − (x2A + y2A)

2yA
. (37)

The radius of the circle is:

r =

√

a2 +
(a2 − (x2A + y2A))

2

4y2A
. (38)

The vertical lines of OP0 and OP2 are made from points P0 and
P2, respectively. According to the symmetry, if two vertical lines
intersect with the Y axis at point P1, then point P1 is the control
vertex of the arc curve. That is,

y1 =
2a2yA

a2 − (x2A + y2A)
. (39)

Accordingly, the coordinates of point P1 are:

x1 = 0, y1 =
2a2yA

a2 − (x2A + y2A)
. (40)

From the definition of the Bézier Curve in Formula (1), we have:

x(t) =
(1− t)2ω0x0 + 2t(1− t)ω1x1 + t2ω2x2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
,

y(t) =
(1− t)2ω0y0 + 2t(1− t)ω1y1 + t2ω2y2

(1− t)2ω0 + 2t(1− t)ω1 + t2ω2
.

(41)

To simply Formula (41), we further introduce the
Quadratic Bernstein Basis Function (Bi,2(t)), which can be
expressed as follows:

B0,2(t) = (1− t)2, B1,2(t) = 2t(1− t), B2,2(t) = t2. (42)

As such, Formula (41) can be rewritten by applying Bi,2(t) in the
following format:

x(t) =
−aω0B0,2(t)+ aω2B2,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
,

y(t) =
2t(1− t)ω1y1

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
.

(43)

On the other hand, note that the standard equation of curve arc
circle can be estimated as

x2(t)+ (y(t)+ a cot θ)2 = a2/ sin2 θ . (44)

Consequently, by substituting Formulas (43) into Equation (44),
the following results are obtained:

(

−aω0B0,2(t)+ aω2B2,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)

)

2

+
(

ω1y1B1,2(t)

ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t)
+ a cot θ

)

2 =
a2

sin2 θ
,

(45)

Note that

a2

sin2 θ
− a2 cot2 θ = a2. (46)

As such, Formula (45) can be further simplified as

a2ω2
0B

2
0,2(t)+ a2ω2

2B
2
2,2(t)− 2a2ω0ω2B0,2(t)B2,2(t)+ ω2

1y
2
1B

2
1,2(t)

+(2ω1y1B1,2(t)a cot θ(ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t))

= a2(ω0B0,2(t)+ ω1B1,2(t)+ ω2B2,2(t))
2

(47)

Furthermore, according to Formula (38) and Formula (40), we
can have

y1 cot θ =
2a2yA

a2 − (x2A + y2A)
×

(a2 − (x2A + y2A))

2ayA
= a, (48)

and then,

(y21 + a2)ω2
1B

2
1,2(t)− 4a2ω0ω2B0,2(t)B2,2(t) = 0. (49)

Again, we consider the Quadratic Bernstein Basis Function,
and then the above formula (in Formula 49) can be simplified
as follows:

((y21 + a2)ω2
1 − a2ω0ω2)(1− t)2t2 = 0. (50)

Next, according to Formula (40), we know

(ω2
1 sec

2 θ − ω0ω2)(1− t)2t2 = 0, (51)

and t ∈ (0, 1), t2(1− t)2 6= 0. It is thus easy to know

ω2
1 = ω0ω2 cos

2 θ . (52)

According to the standard form of the quadratic rational Bézier
curve (see Formula 6), we can further estimate ω0 = ω2 =
1,ω1 = cos θ , and the value range of θ of the center angle of
the semicircle should be 0 ≤ θ ≤ π/2 [26].
In summary, the rational quadratic Bézier expressions of arc
curves passing through points P0,A, P2 are as follows,

C(t) =
(1− t)2P0 + 2 cos(θ)t(1− t)P1 + t2P2

(1− t)2 + 2 cos(θ)t(1− t)+ t2
. (53)
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Compared with the standard formula of a rational quadratic
Bézier, the following results are obtained,

ω = cos(θ), (54)

where 0 ≤ θ ≤ π/2, 0 ≤ ω ≤ 1. Consequently, the
necessary and sufficient conditions for a rational quadratic
Bézier curve to represent a circular arc are expressed
as follows:

|P0P1| = |P2P1| and 0 ≤ ω ≤ 1. (55)

Algorithm 4: For a Quadratic Rational Bézier Curve to Represent
a section of an Arc
Input: Control Points of Bezier Curve
Output: A section of Arc Represented by Bezier Curve
1: Set − 1 < ω < 1, and ω 6= 0
2: Input Bézier Curve control points,P0, P1, P2
3: if the number of control points < 3 then
4: goto Step 2.
5: else

6: if the number of control points= 3 then
7: Set |P0P1| = |P1P2|:
8: P2(y) = P0(y)

9: P1(x) = P0(x)+P2(x)
2

10: P1(y) = P0(y)− P2(x)−P0(x)
2 × tan(5

3 )
11: end if

12: end if

13: Output coordinates of control points P0, P1,P2
14: Output line segment between control points P0, P1 and P1, P2
15: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0
16: for t = 0; t ≤ 1; t+ = 0.00125 do

17: Calculate the standard formula of the quadratic rational
Bezier Curve.

18: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y = (1−t)2y0+2t(1−t)ωy1+t2y2
(1−t)2+2t(1−t)ω+t2

19: end for

20: Output Bezier Curve.
21: Clear Bezier Curve, Bezier Curve control points. goto Step 1.
22: return

5. NECESSARY AND SUFFICIENT
CONDITIONS FOR QUADRATIC RATIONAL
BÉZIER CURVES TO REPRESENT A
PARABOLA, ELLIPTIC ARC AND
HYPERBOLA

Theorem 4. Quadratic rational Bézier curve represents a
parabola, elliptic arc, and hyperbola if and only if ω = ±1,
−1 < ω < 1, and ω < −1 or ω > 1, respectively [27].

Proof: According to the second order Bernstein basis function of
Formula (42), Bézier curve from Formula (1) is written as follows,

p(t) =
ω0B0,2(t)P0
2

∑

j=0
Bj,2(t)ωj

+
ω1B1,2(t)P1
2

∑

j=0
Bj,2(t)ωj

+
ω2B2,2(t)P2
2

∑

j=0
Bj,2(t)ωj

=
2

∑

i=0

Ri,2(t)Pi,

(56)
where

Ri,2(t) =
ωiBi,2(t)
2

∑

j=0
Bj,2(t)ωj

. (57)

Next, we introduce the Local Oblique Coordinate System P1, S,T,
so that S = P0 − P1, T = P2 − P1. Since point P(t) is within
δP0P1P2 for arbitrary t ∈ [0, 1], P(t) can be rewritten as

P(t) = P1 + u(t)S+ v(t)T

= P1 + u(t)(P0 − P1)+ v(t)(P2 − P1)

= u(t)P0 + [1− u(t)− v(t)]P1 + v(t)P2.

(58)

Comparing the coefficients from both Formula (56) and Formula
(58), we know that

R0,2(t) = u(t),

R1,2(t) = 1− u(t)− v(t),

R2,2(t) = v(t).

(59)

Let k = ω0ω2/ω
2
1 , where k is the shape-invariant factor of a

conic, so

u(t)v(t) = R0,2(t)Ṙ2,2(t) =
1

4
k[1− u(t)− v(t)]2. (60)

Formula (60) is an implicit equation of a quadratic curve in
the local oblique coordinate system P1, S,T. The expansion of
Formula (60) further indicates that:

ku2(t)+(2k−4)u(t)v(t)+kv2(t)−2ku(t)−2kv(t)+k = 0. (61)

In the Cartesian coordinate system, the image of a binary
quadratic equation can represent a conic curve, and all conic
curves can be derived in the aforementioned way [1]. The
equation has the following forms [28]:

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0, A,B,C are not all zero,
(62)

where A,B,C,D,E, F are polynomial coefficients. If the following
conditions are satisfied,

B2 − 4AC < 0, (63)

then Formula (62) represents an ellipse; furthermore, under the
same condition, if the conic degenerates (that is, A = C,B = 0),
the equation represents a circle. Additionally, if the following
conditions are satisfied,

B2 − 4AC = 0, (64)
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Algorithm 5: For Quadratic Rational Bézier Curves to Represent

a Parabola, Elliptic Arc and Hyperbola

Input: Control Points of Bezier Curve

Output: A section of a Parabola, Elliptic Arc or Hyperbola

Represented by a Bezier Curve

1: if Quadratic Rational Bézier Curves to Represent a Parabola

then

2: Set ω = 1 or ω = −1

3: end if

4: if Quadratic Rational Bézier Curves to Represent an Elliptic

Arc then

5: Set − 1 < ω < 1, and ω 6= 0

6: end if

7: if Quadratic Rational Bézier Curves to Represent a

Hyperbola then

8: Set ω < −1 or ω > 1

9: end if

10: Input Bézier Curve control points P0, P1, P2
11: if the number of control points < 3 then

12: goto Step 2.

13: else

14: if the number of control points = 3, and Quadratic

Rational Bézier Curves to Represent an Elliptic Arc then

15: Set |P0P1| 6= |P1P2|
16: end if

17: end if

18: Output coordinates of control points P0, P1,P2
19: Output line segment between control points P0, P1 and P1, P2
20: Initializing the independent variable t in the standard

formula of the quadratic rational Bezier curve to 0, Set t = 0

21: for t = 0; t ≤ 1; t+ = 0.00125 do

22: Calculate the standard formula of the quadratic rational

Bezier Curve.

23: x = (1−t)2x0+2t(1−t)ωx1+t2x2
(1−t)2+2t(1−t)ω+t2

, y = (1−t)2y0+2t(1−t)ωy1+t2y2
(1−t)2+2t(1−t)ω+t2

24: end for

25: Output Bezier Curve.

26: Clear Bezier Curve, Bezier Curve control points. goto Step 1.

27: return

then Formula (62) represents a parabola [29]. Finally, if the
following conditions are satisfied,

B2 − 4AC > 0 (65)

then Formula (62) represents an hyperbola. The coefficients from
Formula (61) and Formula (62) can be obtained as follows: A =
k,B = k − 2,C = k,D = −2k,E = −2k, F = k. As such, we
can get:

B2 − 4AC = 1− k. (66)

We then provide the discussion and judgment of Formula
(66). That is, from the condition of Formula (63), if the curve is
an ellipse, then in Formula (66) we have B2 − 4AC = 1− k < 0.
Therefore, when k > 1, the curve is an ellipse. From the condition
of (64), if the curve is a parabola, then B2 − 4AC = 1 − k = 0
(again see Formula 66). Therefore, when k = 1, the curve is a
parabola. From the condition of 65, if the curve is a hyperbola,
then B2 − 4AC = 1 − k > 0, so when k < 1, the curve
is a hyperbola.

Note that k = ω0ω2/ω
2
1 . In summary, under the standard

form of the quadratic rational Bézier curve, we have ω0 =
ω2 = 1, and ω = ω1. Consequently, we prove that when
−1 < ω < 1, the quadratic rational Bézier curve is a ellipse;
when ω = ±1, the quadratic rational Bézier curve is a parabola;
when ω < −1, or ω > 1, the quadratic rational Bézier curve
is a hyperbola.

6. CONCLUSION

In this paper, we discuss the necessary and sufficient
conditions for utilizing quadratic rational Bézier curves to
represent different shapes, such as a point, line segment,
parabola, elliptic arc, circular arc, and hyperbola. These
results can be further used to facilitate other computer-aided
geometric designs.
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