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There have been various claims that the Equivalence Principle, as originally formulated

by Einstein, presents several difficulties when extended to the quantum domain, even in

the regime of weak gravity. Here we point out that by following the same approach as

used for other classical principles, e.g., the principle of conservation of energy, one can,

for weak fields, obtain a straightforward quantum formulation of the principle. We draw

attention to a recently performed test that confirms the Equivalence Principle in this form

and discuss its implications.
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The principle of equivalence is a pillar of Einstein’s theory of relativity; as such, it was originally
formulated within a classical theory, where all observables of a point particle, in particular its
position, energy and mass, are sharp in any state of the particle. This is true of other principles,
such as the principle of conservation of energy, whose expression and validity in quantum theory
are nonetheless widely accepted. Yet, there has been a great degree of controversy about the
formulation of the Equivalence Principle for quantum systems: this is because a quantum system
can exist in a spatial superposition; and the Equivalence Principle as classically formulated does not
cover directly such cases. Consequently, there have been proposals to extend it to quantum systems
[1–3]; there also have been claims that the principle is violated by quantum systems (see e.g., the
introduction in Anastopoulos and Hu [4] and references herein); some have also claimed that this
should be a reason for gravitational state reduction [5]. The main point of discussion here is the fact
that the Equivalence Principle implies that different masses should fall at the same rate in the same
gravitational field. However, the quantum de Broglie wavelength is a function of the particle’s mass
and therefore different masses would interfere differently in the same gravitational field; this would
seem to violate the prescription, from the Principle of Equivalence, that the behavior of different
masses in the same field cannot be distinguished. As we will see below, in our formulation of the
quantum Equivalence Principle, this is not a relevant issue. The same we believe is true for other
aspects of the controversy, such as those mentioned in Anastopoulos and Hu [4].

Here we would like to extend the Equivalence Principle to the quantum domain via a similar
approach to that applied to the energy conservation. Namely, to extend the principle to the
quantum domain, we will assume that for any branch of a quantum superposition the principle
holds true. Specifically, we will assume that for each branch of a spatial superposition, sharp at
location x, the Equivalence Principle holds in one of its currently accepted forms: the state of motion
of a point particle at rest in a uniform gravitational field g is empirically indistinguishable, by local
operations at x, from the state of motion of a point particle that undergoes an acceleration −g in
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a gravity-free region. To the best of our knowledge, this
formulation of the Equivalence Principle is original; however,
there are other recent proposals that are similar in spirit [1].
In the limit of weak gravity this is a good approximation; the
ultimate formulation of the Equivalence Principle will have to
lift this assumption and it should not rely on the idea of a
fixed spacetime background. For present purposes, however, it is
possible to confine attention to this regime, as even in this regime
problems with the quantum formulation of the Equivalence
Principle have been claimed to exist. This regime is also very
interesting, as it does not involve general-relativistic effects, but
it can be used to probe the quantum nature of gravity [6, 7].
We will now derive a number of well-known consequences of
the principle formulated in this way and point out a recent
experimental confirmation of its validity.

THE PHASES INDUCED BY THE
EQUIVALENCE PRINCIPLE

Assuming the Equivalence Principle, in classical mechanics the
transformation between a system in a gravitational field and the
one in the equivalent accelerated frame is a gauge transformation.
Assuming, with the Equivalence Principle, that the inertial and
gravitational mass are the same constant m, the Lagrangian for
a particle with mass m moving in an accelerated frame with the
acceleration rate given by g is:

LF =
1

2
m(ẋ+ gt)2 ,

whereas for a particle moving in the gravitational potentialmggx,
the Lagrangian is

LG =
1

2
m(ẋ)2 −mgx = LF +

d

dt
3(x, t)

where

3 = −mgxt −
1

6
mg2t3

is the gauge transformation. For simplicity we only consider a
one-dimensional motion, but this results in no loss of generality.

Following the Equivalence Principle, as formulated above, the
wavefunctions of the particle described in the two coordinate
systems (the freely falling and the g frame), as expressed in the
position basis, are related in the following way [8, 9]:

|9(x, t)〉G = e
− i

h̄
3(x,t)|9(x, t)〉F .

This can easily be verified by applying the Equivalence Principle
in the above form to the corresponding Schrödinger equations:
one, where the particle is freely falling; the other, where the
particle is in a uniform gravitational field. The above relation
holds for all the solutions of the Schrödinger Equation [9].
Now, as expected, the gauge transformation between the two
coordinate systems (the freely falling and the one in the
uniform gravitational field) is quantum mechanically reflected

in the appearance of the extra phase factor between the
two corresponding quantum states. This can be seen as a
consequence of the fact that, upon quantization, the classical
Lagrangian becomes the phase factor which constitutes the basis
of the path-integral formulation of quantum physics. It may
at first be surprising that the gauge transformation is not just
−mgxt and that there is an additional term proportional to t3.
Mathematically, it is of course clear that this term is needed since
the freely falling Lagrangian has a t2 term which, in order for
the Equivalence Principle to hold, needs to be canceled by the
additional term in the gauge.

We note in passing that General Relativity would introduce
corrections to this phase. One way of thinking about it is that
time simply flows at different rates at the two different heights.
The difference between the two flows is given by

1t =
(

√

1−
2GM

c2x
−

√

1−
2GM

c2(x+ 1h)

)

τ (1)

=
(

GM

c2x2
1h+

1

2

(

GM

c2x2
1h

)2

+ ...

)

τ (2)

The phase difference can now be calculated by multiplying this
by ω = mc2/h̄ and so

1φ = mg1hτ/h̄+mg2
12h

c2
τ/h̄+ ... (3)

The first term in the gauge transformation was observed
in the Colella-Overhauser-Werner (COW) experiment [10],
implementing the interference of a single neutron superposed
across two different heights, each experiencing different Earth
gravitational fields. The potential difference between the paths
mg1h leads to the phase difference 1φ = mg1ht/h̄ between
the two neutron states. In a variant of the COW experiment,
a neutron interferometry was also performed in a uniformly
accelerated interferometer, confirming the same results as the
original COW experiment and thus, indirectly, the validity of
the Equivalence Principle in the above form [11]. The second
term in this expression is the GR correction and it is clearly
much smaller than the Newtonian one, therefore harder to
access experimentally. As far as we can tell, it has never been
observed experimentally.

Here we want to focus on the following interesting question:
is the t3 term observable? We are used to hearing that gauge
transformations are unobservable, so an immediate response
would be “no.” However, as we will explain, it is still possible
to observe the t3 as a relative phase between the branches of a
quantum superposition of two distinct reference frames.

THE T3 PHASE IS OBSERVABLE

To observe the t3 term, we need to perform an experiment
that effectively superposes the freely falling and the gravitational
field states of motion for a single particle. This is the main
point of our paper. The COW experiment can certainly be
analyzed from the perspective of both reference frames and the
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two treatments ought to give the same predictions due to the
Equivalence Principle. But the COWexperiment does not involve
the superposition of two frames, it involves the neutron being in
a superposition of different spatial paths (in Earth’s frame).

We discuss here a thought experiment where a single particle
is in a superposition of two states, one where it is freely falling
in a gravitational field and the other where it is static in the
same gravitational field. Conceptually, this experiment could in
principle be achieved as follows.

Consider a quantum system of massm superposed across two
different locations, e.g., in the state 1√

2
(|0〉 + |1〉) , and placed

horizontally in an ideal, uniform gravitational field, as in the
COW experiment [10]. Suppose the two branches |0〉 and |1〉
are a distance d apart. As confirmed by the COW experiment,
the contribution to the phase due to this field is equal on the
two arms, therefore amounting to no phase difference. The
interferometer can now be tilted to the vertical position (see
Figure 1), so that the potential on the arm labeled as |0〉 differs
from that on the branch |1〉 by the amount mgd. At that point,
the mass on say the branch |0〉 is dropped, and let interfere with
the branch |1〉.

The phase difference between the two paths, assuming the
Equivalence Principle to hold in every branch of the wave-
function, and that x(t) = d − 1

2gt
2, reads:

1

h̄

∫ t

0
mgx(τ )dτ =

mg

h̄
(dt −

1

6
gt3)

The freely-falling branch of the mass interferes with the
stationary branch and the resulting shift of the interference
fringes contains the t3 term, which can therefore in principle be
detected. Whether we think of this experiment as a particle in a
superposition of two different states of motion, or we think of the
particle as an observer and therefore in a superposition of two
reference frames, is irrelevant. The result ought to be the same,
and the experiment would confirm the Equivalence Principle
if the t3 term were to be observed, at least in this quantum
weak-field regime.

In order to observe the phase of course no decoherence should
occur. This includes any entanglement of the interfering mass to
another system that does not participate in the final interference.

This other system could be another simple physical system (such
as a colliding atom or the electromagnetic field), or it could be an
internal degree of freedom [4]. More subtly, no observer should
measure which of the two reference frames the mass is in, as this
too would cause decoherence.

We note that an experiment to detect the t3 phase
was proposed and performed very recently, with a Bose-
Einstein condensate undergoing interference in a Stern-Gerlach
interferometer, subject to a state-dependent force [12]. The
experiment we have discussed is conceptually equivalent.
Measuring the t3 in this experiment has confirmed the
predictions of the Equivalence Principle expressed as above in the
quantum domain.

DISCUSSION

We have deployed the relation between the freely-falling and
the gravitational coordinate systems, which is based on the
Equivalence Principle in the weak-field limit, to discuss an
experiment that could detect the t3 phase that relates a mass
in free fall in a gravitational field, and the same mass being
stationary in the same field. We have derived this relation
using a formulation of the Equivalence Principle that holds
for each branch of a spatial superposition. This expression of
the Equivalence Principle harmonizes with the existing ways
of extending other principles, originally formulated for classical
systems (e.g., energy conservation), to the quantum world. We
would also like to point out that the transformation we applied
to change the freely falling into the gravitational one is the weak-
field limit of the Rindler coordinate transformation [13]. In this
limit, it is clearly legitimate to neglect the effects, such as Unruh-
Davies [5, 14], because only very weak fields are considered.
Moreover, in the Rindler setting, the time coordinate between
the inertial and the accelerated observer (with acceleration a)
transforms as t′ = c

a arcsinh
a
c t, where c is the speed of light.

Now, the second term in the Taylor expansion of this expression

is equal to a2

6c2
t3 which, when multiplied by mc2 gives us the

exact t3 phase term above. Therefore, the low acceleration limit
of Rindler’s coordinate transformation is perfectly consistent with
our analysis. We conclude by pointing out that even though our

FIGURE 1 | Schematics of the interferometry to measure the t3 phase. On the left, the particle is superposed across two paths (M is a mirror; g the gravitational field).

On the right, after tilting the interferometer in the vertical direction, the interferometry is closed by dropping the particle if it is on the upper branch.
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discussions are in the Newtonian, weak-field quantum regime,
the rest energy of the particle still somehow needs to be taken into
account. This is best seen from the perspective of the relativistic
action. The difference between the actions in the falling and
the stationary coordinate systems can be expressed as: mc2(t −
T), where t and T are the proper times of the two coordinate
systems. In the lowest two orders of expansion, this difference
reads: −mgxt − 1

6mg2t3. The phase difference between two
branches is then, just like in the COW experiment, the difference
between the time flows in those two branches (multiplied by
ω = mc2/h̄).

Our guiding philosophy here has been to take quantum
physics seriously and assume that it applies to all systems and
all degrees of freedom. This means, in particular, that if any two
states of motion of a particle are possible, such as an inertial and
an accelerated state of a mass, then their superposition is also
possible. Our paper indeed has been exploring the consequences
for the relative phase between two such states, which we claim to
be observable (and which the experiment in Amit et al. [12] has
indeed observed).

One could also think of the measuring system being in a
superposition of two different states of motion. For instance, a
detector could be in a superposition of being inertial and being
accelerated, while measuring another physical system in a sharp
state of motion. None of this is a problem to handle quantum
mechanically (as far as we can tell), but one has to be careful
not to make some unwarranted assumptions. For instance, a
particle being in a superposition of different motions while the
detector is inertial, will in general yield different results to the
detector being in different states of motion while the particle is
inertial. If quantum mechanics is assumed to hold universally,
none of these situations presents a difficulty: the physical systems

involved will have well-defined behaviors that perfectly comply
with the quantum postulates.

In summary, given the observability of the t3 term, it seems
to us that at least in the regime of weak-field there should be
no qualms about considering the Equivalence Principle to be
extended into the quantum domain in the same way as all other
classical principles are. However, there are still many interesting
other open issues to be investigated both theoretically, e.g.,
references [1, 2], as well as experimentally.
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