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New plasma wave solutions of the modified Kadomtsev Petviashvili (MKP) equation are

presented. These solutions are written in terms of some elementary functions, including

trigonometric, rational, hyperbolic, periodic, and explosive functions. The computational

results indicate that these solutions are consistent with the MKP equation, and the

numerical solutions indicate that new periodic, shock, and explosive forms may be

applicable in layers of the Earth’s magnetotail plasma. The method employed in this

paper is influential and robust for application to plasma fluids. In order to depict the

propagating soliton profiles in a plasma medium, the MKP equation must be solved at

critical densities. In order to achieve this, the Riccati-Bernoulli sub-ODE technique has

been utilized in solutions. The research findings indicate that a number of MKP solutions

may be applicable to electron acoustics appearing in the magnetotail.
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1. INTRODUCTION

The existence of electron acoustic solitary excitations (EAs) in plasmas has been noticed
in laboratories [1, 2]. Different observations in space have confirmed propagations of EAs
in magnetospheres, auroral zones, broadband electrostatic noise (BEN), heliospheric shock,
and geomagnetic tails [3–10]. The concept of EAs was generated by Fried and Gould [11].
It is principally an acoustic-type of wave with inertia given by the mass of cold electrons
and restoring force expressed by hot electron thermal pressure [12]. Abdelwahed et al. [10]
inspected the modulation of characteristics of EAs in non-isothermal electron plasmas [13]
using a time-fractional modified non-linear equation. Pakzad studied [14] cylindrical EAs by hot
non-extensive electrons, and found through numerical simulations that the spherical amplitude
is greater than the cylindrical in EAs. Non-thermal critical geometrical EA plasmas were studied
using a Gardner-type equation in Shuchy et al. [15]. Contributions of solitons to science have been
discussed in many research works, some of which may be listed as [16–23]. The observed BEN
emission bursts in auroras and the Earth’s magnetotail regions indicate small and large amplitude
electric fields with some explosive and rational domains at critical density. These wave structures
appear to be prevalent in some parts of these regions [16, 17]. Therefore, we aim to obtain the
solutions that confirm the existence of the electrostatic field in our model.
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Let us consider the non-linear partial differential equation

H(ϕ,ϕx,ϕt ,ϕxx,ϕxt ,ϕtt , ...) = 0, (1.1)

where ϕ(x, t) is an unknown function. Using the
wave transformation

ϕ(x, t) = ϕ(ξ ), ξ = kx− ct, (1.2)

Equation (1.1) is converted to an ODE:

E(ϕ,ϕ′,ϕ′′,ϕ′′′, ...) = 0. (1.3)

Many models in physics, fluid mechanics, and engineering are
written in the form of (1.1), and this form may be transformed
into the ODE:

α1ϕ
′′ + α2ϕ

3 + α3ϕ = 0, (1.4)

(see for instance [24–35], and so on). Equation (1.3) is quite
significant and useful in our computations, and we employ a
robust and unified method known as the Riccatti-Bernoulli (RB)
sub-ODE method [36]. The RB sub-ODE method has been used
as a box solver for many systems of equations arising in applied
science and physics. There are other powerful analytical methods
that solve such ODEs; an important example is the Lie algebra
method (see [37, 38]).

Next, we describe the RB sub-ODE method briefly.

2. THE RB SUB-ODE METHOD

According to the RB sub-ODE method [36], the solution of
Equation (1.3) is

ϕ′ = aϕ2−m + bϕ + cϕm, (2.1)

where a, b, c, and n are constants that will be determined later.
From Equation (2.1), we get

ϕ′′ = ab(3−m)ϕ2−m + a2(2−m)ϕ3−2m +mc2ϕ2m−1

+bc(m+ 1)ϕm + (2ac+ b2)ϕ, (2.2)

ϕ′′′ = ϕ
′
[ab(3−m)(2−m)ϕ1−m + a2(2−m)(3− 2m)ϕ2−2m

+m(2m− 1)c2ϕ2m−2 + bcn(m+ 1)ϕm−1 + (2ac+ b2)].
(2.3)

The solitary solutions ϕi(ξ ) of Equation (2.1) are given by

1. Atm = 1

ϕ(ξ ) = ςe(a+b+c)ξ . (2.4)

2. Atm 6= 1, b = 0, and c = 0

ϕ(ξ ) =
(

a(m− 1)(ξ + ς)
)

1
m−1 . (2.5)

3. Atm 6= 1, b 6= 0, and c = 0

ϕ(ξ ) =
(

−a

b
+ ςeb(m−1)ξ

)
1

m−1

. (2.6)

4. Atm 6= 1,a 6= 0, and b2 − 4ac < 0

ϕ(ξ ) =

(

−b

2a
+

√
4ac− b2

2a
tan

(

(1−m)
√
4ac− b2

2
(ξ + ς)

))
1

1−m

(2.7)
and

ϕ(ξ ) =

(

−b

2a
−

√
4ac− b2

2a
cot

(

(1−m)
√
4ac− b2

2
(ξ + ς)

))
1

1−m

.

(2.8)
5. Atm 6= 1,a 6= 0, and b2 − 4ac > 0

ϕ(ξ ) =

(

−b

2a
−

√
b2 − 4ac

2a
coth

(

(1−m)
√
b2 − 4ac

2
(ξ + ς)

))
1

1−m

(2.9)
and

ϕ(ξ ) =

(

−b

2a
−

√
b2 − 4ac

2a
tanh

(

(1−m)
√
b2 − 4ac

2
(ξ + ς)

))
1

1−m

.

(2.10)
6. Atm 6= 1, a 6= 0, and b2 − 4ac = 0

ϕ(ξ ) =
(

1

a(m− 1)(ξ + ς)
−

b

2a

)
1

1−m

. (2.11)

2.0.1. Bäcklund Transformation

If ϕr−1(ξ ) and ϕr(ξ )(ϕr(ξ ) = ϕr(ϕr−1(ξ ))) are the solutions of
Equation (2.1), we have

dϕr(ξ )

dξ
=

dϕr(ξ )

dϕr−1(ξ )

dϕr−1(ξ )

dξ

=
dϕr(ξ )

dϕr−1(ξ )
(aϕ2−m

r−1 + bϕr−1 + cϕm
r−1),

namely

dϕr(ξ )

aϕ2−m
r + bϕr + cϕm

r

=
dϕr−1(ξ )

aϕ2−m
r−1 + bϕr−1 + cϕm

r−1

. (2.12)

Integrating Equation (2.12) once with respect to ξ , we get the
Bäcklund transformation of Equation (2.1) as follows:

ϕr(ξ ) =

(

−cL1 + aL2
(

ϕr−1(ξ )
)1−m

bL1 + aL2 + aL1
(

ϕr−1(ξ )
)1−m

)
1

1−m

, (2.13)

where L1 and L2 are arbitrary constants. Equation (2.13) gives the
infinite solutions of Equations (2.1) and (1.1).

3. UNIFIED SOLVER

In this section, we will describe the practical implementation of
the concept of a unified solver.

α1ϕ
′′ + α2ϕ

3 + α3ϕ = 0 , (3.1)
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Substituting Equation (2.2) into Equation (3.1), we obtain

α1

(

ab(3−m)ϕ2−m + a2(2−m)ϕ3−2m +mc2ϕ2m−1

+ bc(m+ 1)ϕm + (2ac+ b2)ϕ
)

+ α2ϕ
3 + α3ϕ = 0 . (3.2)

Makingm = 0, Equation (3.2) is reduced to

α1(3abu
2+ 2a2ϕ3+ bc+ (2ac+ b2)ϕ)+α2ϕ

3+α3ϕ = 0. (3.3)

Setting each coefficient of ϕi(i = 0, 1, 2, 3) to zero, we get

α1bc = 0, (3.4)

α1(2ac+ b2)+ α3 = 0, (3.5)

3α1ab = 0, (3.6)

2α1a
2 + α2 = 0. (3.7)

Solving Equations (3.4)–(3.7) yields

b = 0 , (3.8)

c = ∓
α3√

−2α1α2
, (3.9)

a = ±
√

−α2

2α1
. (3.10)

Hence, we present the following possible cases for solutions of
Equations (3.1) and (1.1).

1. When b = 0 and c = 0 (α3 = 0), the solution of Equation
(3.1) is

ϕ1(x, t) =
(

∓
√

−α2

2α1
(ξ + ς)

)−1

, (3.11)

where ς is an arbitrary constant.
2. When α3

α1
< 0, substituting Equations (3.8)–(3.10) and (1.2)

into Equations (2.7) and (2.8), the trigonometric function
solutions of Equation (1.1) are then given by

ϕ2,3(x, t) = ±
√

α3

α2
tan

(
√

−α3

2α1
(ξ + ς)

)

(3.12)

ϕ4,5(x, t) = ±
√

α3

α2
cot

(
√

−α3

2α1
(ξ + ς)

)

, (3.13)

where ς is an arbitrary constant.
3. When α3

α1
> 0, substituting Equations (3.8)–(3.10) and

(1.2) into Equations (2.9) and (2.10), the hyperbolic function
solutions of Equation (1.1) are,

ϕ6,7(x, t) = ±
√

−α3

α2
tanh

(√

α3

2α1
(ξ + ς)

)

(3.14)

and

ϕ8,9(x, t) = ±
√

−α3

α2
coth

(√

α3

2α1
(ξ + ς)

)

, (3.15)

where ς is an arbitrary constant.

4. MATHEMATICAL MODEL

We use stretched τ = ǫ3t, ξ = ǫ(x− λt), η = ǫ2y, where ǫ is an
arbitrarily small number and λ is the speed of EA. Elwakil et al.
[17] examined two-dimensional propagation of EAs in plasma
with cold fluid of electrons and two different ion temperatures
within the framework of Poisson equations:

∂2φ

∂x2
+

∂2φ

∂y2
= (ne − nil − nih), (4.1)

nil = µ exp(
− φ

νβ + µ
), nih = γ exp(

− β φ

νβ + µ
). (4.2)

where Tl is the low ion temperature at equilibrium density µ,
Th is the high ion temperature at equilibrium density γ , and

β = Tl
Th
. The computational results indicate that the system

reaches critical density µc which makes non-linearity vanish. At
µ = µc, the modified KP equation was given:

∂

∂ξ

(

∂

∂τ
φ + Gφ2 ∂

∂ξ
φ + R

∂3

∂ξ 3
φ

)

+ Q
∂2

∂η2
φ = 0

with

µc =
β2λ4 − λ4 ± (β − 1)λ2

√

β2λ4 + 2βλ4 + λ4 − 12β − 6β2 + 6β

2
(

−3β2 + 6β − 3
) ,

(4.3)

G =
1

2
λ(−

3νβ2

2(µ + βν)2
−

3µ

2(µ + βν)2
−

3

λ4
), (4.4)

R =
λ3

2
,Q =

λ

2
.

We use a similarity transformation in the form:

χ = Lξ +Mη − τ (υ1 + υ2), (4.5)

φ(χ) = φ(x, y, t) (4.6)

τ = t, (4.7)

where L andM are directional cosines of x and y axes.

The MKP equation transformed to the ODE form is:

− 3(v− s)φ + δ φ3 + 3 σ
d2φ

dχ2
= 0. (4.8)

Equation (4.8) gives a stationary soliton in the form of

φc =
√

6(
v− S

δ
)sech





√

v−S
δ

√

σ
δ

χ



 , (4.9)

S =
M2Q

L
− u, (4.10)

δ = GL, σ = RL3, (4.11)

where u and v are traveling speeds in both directions.
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FIGURE 1 | Variation of φc against χ ,β for u = 0.01, v = 0.01, L = 0.95.

FIGURE 2 | Variation of rational φc against χ ,β for u = 0.01, v = 0.01,

L = 0.95.

FIGURE 3 | Variation of periodic φc against χ for β = 0.05, u = 0.02, v = 0.5,

L = 0.92.

5. RESULTS AND DISCUSSION

Comparing Equation (4.8) with the general form (3.1) gives α1 =
3σ , α2 = δ, and α3 = −3(υ − s). According to the unified

FIGURE 4 | Variation of shock φc against χ for β = 0.02, u = 0.02, v = 0.5,

L = 0.5.

FIGURE 5 | Variation of explosive shock φc against χ for β = 0.02, u = 0.02,

v = 0.5, L = 0.5.

solver given in section 3, solutions of Equation (4.8) are expressed
as follows.

5.1. Rational Function Solutions: (When
υ = s)
The rational solutions of Equation (4.8) are.

φ1,2(x, t) =

(

∓
√

−δ

6σ
(χ + ς)

)−1

. (5.1)

5.2. Trigonometric Function Solution:
(When υ−s

σ
> 0)

The trigonometric solutions of Equation (4.8) are

φ3,4(x, t) = ±
√

−3(υ − s)

δ
tan

(

√

υ − s

2σ
(χ + ς)

)

(5.2)
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and

φ5,6(x, t) = ±
√

−3(υ − s)

δ
cot

(

√

υ − s

2σ
(χ + ς)

)

. (5.3)

5.3. Hyperbolic Function Solution: (When
υ−s
σ

< 0)
The hyperbolic solutions of Equation (4.8) are.

φ7,8(x, t) = ±
√

3(υ − s)

δ
tanh

(
√

s− υ)

2σ
(χ + ς)

)

(5.4)

and

φ9,10(x, t) = ±
√

3(υ − s)

δ
coth

(

√

s− υ

2σ
(χ + ς)

)

. (5.5)

Two-dimensional propagation of solitary non-linear EAs has
been examined in a plasma mode using parameters related to
sheet layers of plasmas of the Earth’s magnetotail [16, 17]. At a
certain ion density value called the criticality value, the equation
obtained cannot describe the mode. Hence, the new stretching
produced by the MKP equation describes the critical system
under investigation. Equation (4.9) represents a soliton with
stationary behavior, as shown in Figure 1. At the critical point,
many solitary forms are concerned with the behavior of EAs
using the Riccati-Bernoulli solver for the MKP equation.

Solution (5.1) is a solitary wave type called explosive type,
which has rapidly increasing amplitude, as depicted in Figure 2.
Solution (5.2) has a blow-up periodic shape, as shown in Figure 3.
Dissipative behaviors are also produced in Figures 4, 5. In the
solution of (5.4), the shock wave is propagated in the medium, as
shown in Figure 4. Finally, the explosive shock profile is obtained
for solution (5.5), as shown in Figure 5.

6. CONCLUSIONS

We have devoted major effort to examining the adequate
description of the new type solutions at critical density in
plasma layers of the Earth’s magnetotail. The application of
perturbation theory leads to the modified MKP equation.
An RB sub-ODE solver gives new solitary excitations for
the MKP equation, including periodic, explosive, and shock
types. The new explosive shocks represent the wave motion
of plasma solitons. Moreover, these new exact solitonic and
other solutions to the MKP equation supply guidelines for the
classification of the new types of waves according to the model
parameters and can introduce the following types: (a) solitary
and hyperbolic solutions, (b) periodic solutions, (c) explosive
solutions, (d) rational solutions, (e) shock waves, and (f)
explosive shocks. The application of this model could be used in
the verification of the broadband and observations of magnetotail
electrostatic waves.
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