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Cardiovascular magnetic resonance (CMR) imaging has become an accurate and

versatile imaging modality to visualize the cardiovascular system in normal or abnormal

conditions. In preclinical research, small rodent animal models of human cardiovascular

diseases are frequently used to investigate the basic underlying mechanism of normal

and abnormal cardiac function and for monitoring the disease progression under therapy.

Technical improvements have enabled the transfer of CMR to small animal research,

and as such made this non-invasive technique available to provide insights into cardiac

morphology, function, perfusion, and pathophysiology in small animal cardiac disease

models. This article reviews the basic technical approaches to in vivo small animal

magnetic resonance imaging and its variants for the most promising applications.

Keywords: cardiac MRI, cardiac MRS, imaging techniques, small animals, cardiovascular diseases, cardiac

function

INTRODUCTION

Cardiovascular disease is considered the leading cause of death in the developed world, with high
morbidity and mortality [1, 2]. In preclinical research, small rodent animal models of human
cardiovascular disease are frequently used to investigate the basic underlying mechanism of normal
and abnormal cardiac functions and formonitoring the disease progression under therapy [3]. Over
the past decades, the use of small animal models has provided improved understanding of cardiac
diseases [4, 5].

Translational research accounts for a large proportion of animal studies performed each year.
Since the implementation of the 3 Rs principles (replacement, refinement, reduction) into the
European Directive 2010/63/EU, medical imaging is highly recommended in translational research,
because it can visualize the progression of the disease longitudinally often in a quantitative and
non-invasive way. It thus has the potential to significantly reduce the number of experimental
animals. Due to the high spatial and temporal resolutions, a versatile image contrast, and access
to metabolic information, magnetic resonance imaging (MRI), and spectroscopy (MRS) have
been proven to be promising diagnostic tools to monitor disease progression and response
to treatment in small animal models. Its versatility, accuracy and high reproducibility has
made cardiovascular magnetic resonance (CMR) imaging the non-invasive reference modality
in preclinical research. MRI offers exceptional accuracy in the investigation of cardiac anatomy,
perfusion, wall motion, and contractility, and its excellent soft-tissue contrast enables advanced
myocardial tissue characterization [6–9].

However, the small size of the mouse heart [5–6mm left ventricle (LV) diameter, ∼0.2 g of
heart weight] [10], high heart (about 250–600 beats per minute [bpm]), respiratory (about 60–
160 cycles per minute [cpm]) rates, and fast systemic blood circulation times (4–5 heartbeats)
impose substantial challenges for functional assessment by MRI. Over the past decades, major
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improvements in MRI methodology and instrumentation have
been achieved, including rapidly switching high-performance
gradient systems, ultra-high magnetic fields (>7 T), and non-
Cartesian k-space encoding strategies such as spiral [11, 12]
and radial trajectories [13, 14]. In combination with advanced
mathematical concepts for image reconstruction [15–17] rapid
data acquisition techniques, providing a high temporal resolution
while preserving adequate spatial resolution and sufficient
volume coverage, have been realized.

The main objective of this manuscript is to summarize the
most important technical aspects of in vivo small animal CMR
imaging and the required variants for specific applications. For
the physiological, biological and pharmacological applications
and perspective, please refer to comprehensive recent reviews
[18–22]. With the included brief description of hardware
demands and animal handling strategies, the reader will get
familiar with the basic principle and challenges of small animal
CMR imaging.

TECHNICAL CONSIDERATIONS AND
METHODOLOGIES

Hardware
Small animal MRI systems usually possess high field strength
ranging from 4.7 up to 21 Tesla and strong gradient systems
with bore diameters typically ranging between 10 and 40 cm.
Higher field strengths provide an increased signal-to-noise ratio
(SNR), thus enabling a higher spatial resolution. Disadvantages
arise from changes in relaxation parameters, a higher chemical
shift, a higher magnetic field inhomogeneity, susceptibility to
artifacts, and increased specific absorption rate (SAR) [23], which
often limits the translation of the results to clinical settings. Even
though the lower SNR can partly be compensated with dedicated
coils at 1.5T and 3T scanner [24, 25], and high-resolution mouse
embryonic cardiac images were acquired at 17.6T [26], due to the
high costs of ultra-high field instruments, field strengths between
7 and 11.7 T are most commonly used in small animal CMR
imaging [7, 27, 28].

Further SNR improvement is achieved with dedicated radio
frequency (RF) coils [29, 30]. Especially phased-array coils,
additionally enabling parallel imaging [31, 32], have become
standard in small animal CMR imaging. Further improvements
have been reported by Wagenhaus et al. [33] and Dieringer et al.
[34], who showed a 3–5-fold gain in SNR when comparing a
4-element room-temperature heart coil with a cryogenic coil.

As a further major progress, gradient systems that, depending
on their inner diameters, provide amplitudes of up to 1,000mT/m
with slew rates of up to 9,000 T/m/s, have been introduced. In
combination with efficient water-cooling high-duty cycles have
been achieved, thus enabling rapid imaging at a high spatial
resolution and a large field-of-view (FOV).

Animal Handling
Motion is one of the main challenges for in vivo imaging.
In contrast to human studies, suitable anesthesia is generally
required in small animal imaging to prevent animal motion.
During scanning, the physiological status of the animal needs

to be carefully monitored (e.g., ECG, respiration sensor, rectal
temperature probe) and heating blankets are required to avoid
temperature loss of the animal during anesthesia. General
anesthesia is achieved using injectable or inhalational agents,
or a combination of the two methods, to achieve the loss
of consciousness, analgesia, suppression of reflex activity, and
muscle relaxation [35]. An ideal anesthetic agent for animal CMR
imaging should be easy to administer, and provide adequate
and reproducible immobilization, preferably without changes
in cardiac function and heart rate. However, since such agents
are not available, the impact of the agent on cardiovascular
physiology, especially depression of cardiac function and heart
rate, respiratory function and induced hypothermia [36], has to
be carefully considered.

Compared with inhalant agents, injectable anesthetics have
several advantages. Their administration is more convenient
to perform, and complex and expensive equipment such as
precision vaporizers and specific breathing systems are not
required. Due to its large safety threshold and compatibility with
other drugs, ketamine is one of the most widely used anesthetics
in animal research [37]. However, because of muscle rigidity,
it is usually combined with xylazine, resulting in cardiac and
respiratory depression. Berry et al. [38] reported deep sedation
by subcutaneous injection of morphine and midazolam causing
significantly less depression of heart rate and ejection fraction
than imaging during general anesthesia with isoflurane in mice
with normal cardiac function. Pachon et al. [39] suggested that
ketamine was the least effective on the LV function and the heart
rate, followed by Avertin, isoflurane (see below), and ketamine-
xylazine combination. Other agents such as pentobarbitone,
fentanyl/fluanisone, and urethane were shown to result in
profound cardiovascular depression or prolonged recovery time
and are not recommended in cardiac imaging. A general major
drawback of injectable agents results from the limited anesthesia
duration and adjustment possibilities during scanning.

Even though more complicated, in most cases inhalation
anesthesia by halothanes is suggested. Here, the preferred
approach is isoflurane inhalation [40]. Major advantages
comprise short induction and fast recovery times, convenient
adjustment during scanning, rather low hemodynamic
depression, and flexible maintenance. In order to achieve
high reproducible experiments, isoflurane (5% for induction,
1–1.5% for maintenance) in medical air (0.1 L/min) [7] is
normally used.

Cine Imaging
For the quantification of cardiac function by CMR, rapid
data acquisition techniques are required. Where for clinical
applications mainly steady-state-free-procession (SSFP)
sequences are applied for improving myocardium-blood
contrast. In small animal CMR, fast low-angle shot (FLASH)
gradient-echo [41] techniques are applied to avoid banding
artifacts caused by off-resonances. Because of high heart and
respiratory rates, real-time imaging of cardiac function is
normally not possible and CMR imaging generally requires
synchronization of the data acquisition to the cardiac and
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respiratory motion. In current practice, prospective triggering
and retrospective/self-gated gating are used.

Prospective Trigger
For the prospective triggering, the ECG signals are
simultaneously recorded for synchronization [42, 43]. ECG
signals are normally drawn from two electrodes attached to one
front and rear paw. After detecting the R wave, data acquisition
is performed either at a specific phase of the heart (single-phase
imaging) or continuously over multiple consecutive phases of
the cardiac cycle (multi-phase or cine imaging, Figure 1A).
Simultaneously, the respiration phase is measured with a balloon
pressure sensor, and respiratory gating is additionally applied to
avoid respiratory motion artifacts.

However, radiofrequency pulses and gradient switching
induce interferences in the ECG signal and may cause false
triggers, which are more prominent at ultra-high magnetic fields.
Further, the magneto-hydrodynamic effect is more prominent
at higher field-strengths, often limiting the detectability of the
R-peak. To avoid severe susceptibility artifacts, non-metallic
materials like carbon wires have been introduced almost 30
years ago [44]. Recently, Choquet et al. [45] tested carbon
wire electrodes in an 11.7 T magnetic field. Even though R-
peaks were usually detectable, a clear distortion in the ECG
signal still persisted. Other types of trigger devices such as
optical fiber-based gating were developed, and excellent ECG
signal quality has been reported [46]. Meanwhile, different filter
techniques were developed to reduce ECG distortion duringMRI
examinations [47–49]. In principle, these filter techniques allow
electrical ECG recordings for scan synchronization even at high
field strengths. However, a principal limitation of prospective
triggering is the required gap prior to the R-peak to ensure its
proper detection. This causes loss of the end-diastolic phase or, in
case only every second heartbeat is used for triggering, doubling
of the scan times.

Retrospective Gating
In the clinical setting retrospective gating refers to simultaneous
recording of the ECG signal with the data acquisition and
subsequent reordering of the data into different cardiac phases
according to the recorded ECG (Figure 1B). In small animal
research, the term is related to self-gating techniques. Here, data
synchronization is not based on physiological signals and no ECG
recording is required. Instead, an additional navigator signal is
acquired prior to each data acquisition (echo). After the scan, this
navigator signal is analyzed and used to assign each echo to its
correct position in the cardiac and respiratory cycles (Figure 1C).

Two of the most widely used retrospective gating sequences
are self-gated FLASH (IgFLASH) and ultra-short echo time
(IgUTE). The advantage of IgUTE compared to its Cartesian
counterpart IgFLASH is the shorter achievable echo time (TE),
which helps to reduce flow artifacts. Hoerr et al. [50] reported an
IgUTE sequence with a minimal TE of 314 µs, clearly showing
superior image quality especially for the delineation of small
morphological structures like valves or papillary muscles. When
compared with igFLASH, a substantial reduction of flow artifacts

but maintained functional parameters were reported for IgUTE
by Motaal et al. [13].

Compared with prospective triggering, retrospective
approaches yielded similar global cardiac function data [43, 51].
As the data are acquired continuously, a flexible number of
reconstructed cardiac phases and different temporal resolution
can be achieved. However, the data acquired during certain
periods of motion are not used for reconstruction. Thence, data
oversampling is required to compensate for excluded data [52].
More importantly, the retrospective gating allows for steady-state
acquisition, which is essential for mapping myocardial relaxation
times [53, 54] or for quantifying image contrast as required in
molecular CMR imaging with contrast agents [53, 55].

Real-Time Imaging
The self-gating techniques enable high-quality cardiac MRI with
high reproducibilities [7]. However, the acquisition times in the
minute range for a single slice still limit their applications in
time critical settings such as pharmacological stress or first-
pass perfusion imaging. Recently, based on technical progress in
hardware and software, real-time concepts have been introduced
and applied in CMR imaging. Real-time imaging refers to
the rapid and continuous data acquisition followed by image
reconstruction and visualization. To reduce acquisition times,
dedicated real-time methods, including parallel imaging [56–58],
k-t acceleration methods [59–61], and compressed sensing (CS)
[15, 62, 63], have been suggested and initially evaluated [64]
for the rapid and continuous acquisition of image series. Real-
time methods utilize undersampling techniques, thus reducing
the amount of acquired data for a single frame of an image
series. Iterative reconstruction algorithms ensure image fidelity,
e.g., by adding spatial and temporal regularization. Recent
progress in real-time MRI results in high-quality images with
high SNR, adequate spatial resolution and unsurpassed temporal
resolution [65–68].

Dai et al. [69] first reported real-time cine MRI in mice with
a single-shot echo-planar sequence with the Karhunen-Loeve
transform (KLT) filter. Radial trajectories have shown favorable
properties for real-time imaging by their intrinsic low motion
artifact level. Further, due to the continuous recording of all
spatial frequencies with every single spoke, undersampling results
in almost incoherent artifacts, often showing no noticeable effect
on the reconstructed images [70]. Winkelmann et al. [71] showed
that a uniform profile distribution is guaranteed with a constant
golden angle (111.246◦) increment. The concept of Golden Angle
(GA) angular spacing enabled data acquisition with optimal k-
space coverage almost independent on the number of projections
(Fibonacci sequence) and ensured incoherent undersampling
artifacts [72]. Wech et al. [64] investigated the application of
radial generalized autocalibrating partially parallel acquisitions
(GRAPPA) with large golden angle (111.25◦) real-time imaging
in mice. However, only mid-ventricular slices were reported, and
fully left-ventricular functions were not assessed. Its extension
to the tiny golden angle (tyGA) [72] enabled the translation
of the GA principle to higher field strength and provided even
larger flexibility in the selection of the number of projections
used for reconstruction of a single frame (generalized Fibonacci
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FIGURE 1 | Strategies for the synchronization of cardiac cine MRI with the cardiac cycle. (A) In the prospective triggering scheme, the acquisition is synchronized with

the ECG signal. After detecting the R wave, a suitable trigger delay is set due to application, then cardiac acquisitions can be performed at a specific phase of the

heartbeat or to acquire multiple consecutive cardiac phases of the cardiac cycle. (B) In the retrospective gating scheme, data are acquired continuously while

simultaneously recording the ECG and respiratory signals. (C) As an alternative, an additional navigator signal is acquired prior to each echo. Primary signals are

calculated from navigator scans. The navigator signals are automatically analyzed and weighted according to their contribution to respiration and cardiac signals. The

weighted physiological signals are retrieved (with demerging) and/or frequency filtered (with Fourier Filter) to create respiration and cardiac signal, which are used to

assign each echo to its correct position in the cardiac and respiratory cycles. Retrospective gating signal is acquired with ParaVision 5.1 (IntraGate©, Bruker Biospin,

Ettlingen, Germany). The partial figure is reproduced with permission from Zuo et al. [7].

sequence). Our group investigates the feasibility of tyGA radial
sparse MRI for real-time imaging of cardiac function in healthy
mice [73] and a nexilin induced heart failure model [74].
Real-time cardiac tyGA radial sparse sense (tyGRASP) MRI
in mice appears feasible with sufficient image quality for the
quantification of global functional parameters. It enables a
flexible number of projections for image reconstruction and thus
offers the possibility for cardiac-phase dependent adjustment of
the temporal resolution.

Accelerated Methods for CMR Imaging
MRI is an essential medical imaging tool with inherently
slow data acquisition (Figure 2A), which imposes limitations
to spatial and temporal resolution and volumetric coverage
for dynamic cardiac imaging. The reduction of acquisition
times can be achieved by incomplete sampling of k-space data.

However, related aliasing artifacts often cause degrading of
the diagnostic quality. During recent years, various techniques
have been developed and applied to increased undersampling,
while maintaining diagnostic image quality by advanced
reconstruction techniques.

Compressed Sensing
The mathematical foundation of compressed sensing (CS) was
first introduced by Donoho [75] and Candès et al. [76] and
translated to MRI by Lustig et al. [15]. CS aims to reconstruct
signals and images from a reduced number of k-space samples
not following the Nyquist criterion. As the MRI data are
redundant and naturally compressible by sparse coding in
some appropriate transform domain, CS has the potential to
significantly reduce scan time.
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FIGURE 2 | Undersampling techniques used for cardiac imaging. (A) Fully sampled k-space. (B) Regular Cartesian undersampling (2-fold), which results in discrete

aliasing artifacts in the reconstructed image with an inverse fast Fourier transform (IFFT). (C) Uniform radial undersampling (2-fold) leads to low-intensity streaking

artifacts.

A successful application of CS has three basic requirements
[16]. First, the desired images have a sparse representation in
a known transform domain, and they can be characterized by
only a small number of non-zero coefficients. Especially for
dynamic CMR imaging, the quasi-periodicity of the heartbeat
causes a sparse temporal Fourier transform, and data are as
such highly compressible. This enables higher acceleration for
dynamic imaging than static imaging [77]. Second, the aliasing
artifacts should be incoherent, i.e., that they must manifest as
noise-like patterns. Regular undersampling patterns lead to fold
over artifacts, known as coherent aliasing (Figure 2B). In the
Cartesian sampling, some k-space lines can be pseudo-randomly
omitted, resulting in more incoherent artifacts. Alternatively,
due to its highly incoherent undersampling property, many
non-Cartesian trajectories, such as radial trajectories [64, 73]
(Figure 2C), are widely used in CS applications. Especially radial
trajectories with golden or tiny golden angle angular increments

have proven to be beneficial undersampling properties since
almost any arbitrary number of projections provides uniform k-
space coverage [78]. Motaal et al. [13] reported UTE Cine images
in the rat model, and successfully reconstructed from up to 5-
fold undersampled kt-space data utilizing a CS algorithm. Wech
et al. [64] and Li et al. [73] investigated CS with golden angle
radial real-time imaging in the mouse model. Third, a non-linear
reconstruction algorithm should be applied to enforce sparsity
constrains and data consistency, to suppress incoherent aliasing
artifacts [64, 72].

Several studies have shown the feasibility and accuracy of CS
to accelerate CMR imaging [79–81]. Further acceleration was
reported by combining CS and parallel imaging [64, 82].

Parallel Imaging
Parallel imaging is a robust method to accelerate the acquisition
of MRI data using a reduced number of k-space data
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simultaneously acquired with multiple receive coils. However,
simply reducing the number of measured k-space data results
in aliasing artifacts, mainly represented as well-known ghosting
artifacts in Cartesian sampling and streaks in radial sampling
[83]. The sensitivity encoding (SENSE) and GRAPPA are two
principal methods in parallel imaging to correct for aliasing
artifacts. The separate images reconstructed from the signals
acquired with the different receive coil elements will have
different relative intensities of the aliased component of the
image. SENSE makes use of this property to separate the aliased
components from the true structures in the image [84]. GRAPPA
uses autocalibration signals and neighboring points in k-space
to perform reconstruction of the missing portion in the k-
space [85]. For the proper application of SENSE and GRAPPA,
the signal at each point in the FOV has to be simultaneously
recorded by several independent receive coil elements and
careful alignment of the coil-array with the FOV is required.
Theoretically, the maximum acceleration is only limited by the
number of independent coils, but SNR limitations normally
restrict the possible acceleration [83]. Wagenhaus et al. [33]
investigated cardiac functional imaging of mice using a cryogenic
quadrature RF coil with parallel imaging of an acceleration factor
of 2. Ratering et al. [86] reported accelerated CMR of the mouse
heart using self-gated parallel imaging strategies with a high
acceleration factor up to 3.

k-t Acceleration
Cardiac dynamic images are sparse in an appropriate transform
domain and exhibit correlations in k-space and time, enabling
the recovery of missing data in undersampled data acquisitions.
Based on this hypothesis, the k-t broad-use linear acquisition
speed-up technique (k-t BLAST) and k-t sensitivity encoding (k-t
SENSE) were developed to improve the performance of dynamic
cardiac imaging. As a further generalization of the original
method, k-t principal component analysis (k-t PCA) constrains
the reconstruction using a standard data compression technique,
thus enabling higher acceleration [87]. Signal correlations are
learned from a small set of training data with low spatial but
high temporal resolution, with subsequent reconstruction using
temporal correlations [88].

Marshall et al. [89] investigated the k-t BLAST with an
acceleration factor of three in healthy and myocardial infarction
mice. Compared with the gradient echo cine sequence, the k-
t BLAST scanning showed no significant differences. Makowski
et al. [90] reported first-pass perfusion imaging with 10-fold
undersampling in mice on a clinical 3 Tesla MR scanner using
the k-t PCA technique.

PRECLINICAL CMR IMAGING
APPLICATION

Cardiac Function
The heart can be considered as a central circulatory pump,
generating the driving force to pump the blood through the
vascular system. The visualization and quantification of the
cardiac function are crucial, as many diseases have an impact on
the performance of the heart.

Global ventricular performance parameters such as end
diastolic/systolic volume (EDV/ESV), stroke volume (SV),
ejection fraction (EF), and left ventricle mass (LVM) are widely
used to evaluate cardiac function, which means the capability
of the ventricles to eject blood into the great vessels. To derive
accurate and reproducible volumetric quantification from a
stack of parallel slices entirely covering the whole ventricle, the
Simpson’s rule is applied (Figure 3). The CMR assessment of the
biventricular function is normally acquired with ECG-triggered
or self-gated bright-blood contrast gradient-echo techniques [7,
43, 50]. Recently, the concept of real-time imaging was translated
to preclinical research [64, 73, 91].

The assessment of systolic function in different mouse models
has been investigated and the impact on, e.g., the EF, has
been validated [92–94]. In contrast, the assessment of diastolic
function in rodents is challenging. Normally the quantification is
based on the filling rates at early left ventricular relaxation and
late atrial contraction derived from time-volume curves of the
left ventricle. Thus, a high temporal resolution acquisition (>60
frames per cardiac cycle) is highly recommended for reliable
assessment. Coolen et al. [52] investigated diastolic dysfunction
in diabetic mice with frame rates up to 80 frames per cardiac
cycle. Later, a temporal resolution of 1ms was reported by
Roberts et al. [95] and the diastolic function was comparable to
ultrasound analysis in normal mice.

Pharmacological Stress Imaging
Assessment of the left ventricular function under
pharmacological stress is widely used in cardiovascular research
to detect myocardial viability, ischemia or cardiac reserve and to
determine the risk of subsequent cardiovascular event. However,
due to the fast half-life and rapid metabolism of special drugs,
a rapid quantification technique is highly required to visualize
acute changes of cardiac morphology and function during
pharmacological stress in the preclinical research.

Vasodilator and dobutamine are the main pharmacological
agents used in stress CMR imaging [96]. By activating
the adenosine receptors, the vasodilator agents can trigger
coronary vasodilation and directly increase coronary flow
[97]. Dobutamine is a synthetic catecholamine that primarily
stimulates β1-adrenergic receptor and mildly stimulates α1,
β2-adrenergic receptor, and augments myocardial contractility
[98]. Wiesmann et al. [99] firstly used dobutamine stress MRI
to reveal the loss of inotropic and lusitropic response in
transgenic heart failure mice with myocardial infarction and
diastolic dysfunction as an early sign of cardiac dysfunction.
Since then, more and more studies using the dobutamine stress
MRI to investigate cardiac function in the mouse model have
been reported [93, 100, 101]. Different dobutamine doses and
ways of administration were reported (4 to 40 µg/min/kg
intravenous infusion [i.v.] or 1.5µg/g body weight, intra-
peritoneal bolus injection [i.p.]). To comply with the rapid
imaging demands, real-time techniques combined with tyGA
radial sparse MRI have been reported to characterize the
acute changes of murine cardiac function from baseline to
physiologically stress conditions in vivo without ECG and
respiration synchronization [102].
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FIGURE 3 | Imaging protocol for highly reproducible imaging of cardiac

function and anatomy (2/4CH: 2/4-chamber, SAX: short axes orientations).

After the acquisition of a fast survey in axial, sagittal, and coronal orientation a

long axis (LAX) scans are acquired in semi-2 chamber (2CH) and semi-4

chamber (4CH) orientation, which are used for accurate planning of the short

axis stack (SAX). The final 2CH and 4CH orientations are planned on the SAX

stack. Reproduced with permission from Zuo et al. [7].

Myocardial Strain
Myocardial strain is defined as the percentage change of
myocardial length compared with the initial state in a certain
direction by an internal or external force, and it is a well-
validated parameter for evaluating myocardial performance.
Several approaches are currently available for myocardial
strain assessments.

Tagging
With the introduction of myocardial tagging in the late 1980s
[103, 104], quantification of myocardial strain by CMR imaging

became possible. Later, it was introduced by de Crespigny et al.
[105] into rodent research. Tagging MRI applies a series of
short RF saturation pulses to spatially modulate the longitudinal
magnetization prior to the conventional image acquisition, which
generates regional tags with stripes or grids on the myocardium
(Figure 4). The measurement of myocardial strain is derived
from the tag deformation over the cardiac cycle.

Initially, spatial modulation of the magnetization (SPAMM)
was used to generate a one- or two-dimensional grid of saturated
spins [104]. However, due to longitudinal relaxation, tagging
contrast is weakened in later cardiac phases. A complementary
SPAMM technique (CSPAMM) was introduced by Fischer et al.
[107] to improve the grid contrast by using the difference image
of two acquisitions with inverted tagging grid phase.

After the tagged image acquisition, quantitative analysis of
the strain is achieved by a variety of fast and accurate analysis
methods, such as detecting and tracking the tag lines in the
images [108], assessing temporal and spatial changes in image
intensities by optical flow [109] and harmonic phase (HARP)
analysis [110].

Even though tagging MRI is the most validated CMR
technique to assess myocardial strain, the requirement for
extra image acquisition sequences, influence of tags fading (less
relevant for high field-strength and heart rates), and time-
consuming post-processing limits its application.

Tissue Phase Mapping
Velocity encoded tissue phase mapping (TPM) is a valuable
technique to evaluate myocardial strain, strain rate and
displacement with high spatial and temporal resolutions [111–
113]. TPM is based on bipolar gradients to encode myocardial
velocity and enables quantitative assessments of the myocardial
velocity in three directions over the whole cardiac cycle. TPM
is susceptible to eddy-currents and phase distortion induced by
concomitant gradient fields [114, 115], and several approaches
have been developed to minimize these errors [115–117].
However, TPM-encoded acquisitions are sensitive to flow- and
motion-related artifacts and require long acquisition times.
Several feasible methods have been developed to accelerate
image acquisition and compensate for motion artifacts. Espe
et al. [112] introduced in-plane rotation of the FOV in rats to
reduce directional-dependent artifacts by acquiring each slice
twice. Recently, McGinley et al. [118] investigated accelerated
TPM imaging by applying compressed sensing in the myocardial
infarction rat model.

Displacement Encoding With Stimulated Echoes
Displacement encoding with stimulated echoes (DENSE)
was introduced for high-resolution myocardial displacement
mapping via stimulated echoes with a bipolar gradient by
Aletras et al. [119]. It has the distinct advantage of encoding
tissue displacements into the pixel phase, thus encoding
motion over long periods while maintaining high spatial
resolution. However, due to the stimulated echoes, DENSE
has the disadvantage of a relatively low SNR. Kim et al. [120]
increased SNR of 15–34% by extracting a pair of subsampled
DENSE images with uncorrelated noise from the CSPAMM
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FIGURE 4 | Myocardial tagging in the mouse. Four-chamber, two-chamber, and short-axis views of a mouse heart at the end-diastole are shown in the top row, and

the end-systolic frames are depicted in the lower row. The movement of the tagged myocardial tissue can be tracked to calculate myocardial strain. Reproduced with

permission from Price [106].

image, and combined them during image reconstruction. After
initially being implemented as single-frame imaging, DENSE was
subsequently extended to cine imaging. In diet-induced obesity
mice, high reproducibility was reported in the quantification
of the LV function, including strain, torsion, and measures
of synchrony [121]. Zhong et al. [122] investigated a 3D cine
DENSE sequence with a spiral k-space trajectory in mice.
Vandsburger et al. [123] combined DENSE with pharmacological
stimulation to investigate the mechanics of endothelial nitric
oxide synthase and neuronal nitric oxide synthase in modulating
contractions and calcium influx in mice. DENSE has also been
shown to be benefited from acceleration techniques, such as
parallel imaging and compressed sensing [124, 125]. However,
the feasibility of acceleration techniques in preclinical research
needs further investigation.

Feature Tracking
Recently, CMR feature tracking (CMR-FT) was introduced for
deriving global and regional myocardial strain [126]. It is mainly
based on a block-matching approach. After manual defining
endocardial and epicardial borders at end-diastole, in CMR-
FT the borders are automatically tracked over the cardiac cycle
by correlation of similar regions in the subsequent images
(Figure 5). As CMR-FT is a promising novel method for the
quantification of myocardial strain from routinely acquired cine
CMR images without excessive post-processing times, it has

the potential for a fast assessment of myocardial mechanics. Its
clinical potential has recently been described [128–130], and
excellent inter- and intra-observer agreement and high inter-
study reproducibility were reported. However, to the best of our
knowledge, only one preliminary study with limited temporal
resolution of 15 phases per cardiac cycle has been reported
in preclinical research [131]. There, feature tracking showed
high reproducibility in left ventricle global circumferential and
longitudinal strain in healthy mice, whereas reproducibility of
radial strain was limited.

Perfusion
Assessment of myocardial perfusion is considered to be a key
parameter in the characterization of cardiac pathology, especially
in ischemic heart disease or microvascular dysfunction. In
normal conditions, a myocardial oxygen supply is balanced
to the continuously changing myocardial oxygen demand.
The imbalance of supply and consumption may result in
myocardial ischemia. Currently, myocardial perfusion in rodents
is typically assessed using arterial spin labeling (ASL) or first-pass
perfusion imaging.

Arterial Spin Labeling
ASL is a valuable CMR technique utilizing arterial blood water
protons as an endogenous diffusible tracer to non-invasively
quantify regional myocardial blood flow without contrast agents
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FIGURE 5 | Cine CMR images with CMR-FT myocardial strain curves in mouse. (A) 4-chamber at end-diastole; (B) 4-chamber at end-systole; (C) short axis at the

end-diastole; (D) short axis at the end-systole; (E) segmental strain for 4-chamber; (F) segmental strain for short axis. Stain analysis was done using Segment v3.0

R7732 [127].

[132]. RF pulses are applied to label arterial blood which then acts
as endogenous tracer. ASL requires the subtraction of two images.
One image is acquired after the labeled blood flow into the
target tissue and the other one is acquired without labeling. The
difference between both images can be utilized to calculate the
tissue’s blood perfusion. The signal difference depends on labeling
decays with the time-constant equal to the blood T1 relaxation
time. It can be made directly proportional to myocardial blood
flow in units of ml-blood per g-tissue per minute. However,
the contrast differences created by magnetic labeling of blood
are inherently limited, which results in relatively low SNR. To
compensate for low SNR, high field strength is beneficial.

ASL was firstly demonstrated in the rodent brain by Detre
et al. [133]. Later, it was applied to the perfused excised rat heart
by Williams et al. [134]. However, ASL suffers from relatively
long acquisition times and it is sensitive to variations in heart and
respiratory rates [135].

The flow-sensitive alternating inversion recovery (FAIR)
combined with the Look-Locker readout scheme is the most
widely used technique in ASL (Figure 6). Belle et al. [136]
employed an LLFAIR-FLASH sequence to quantify myocardial
blood flow (MBF) in rats. Due to blood flow, non-excited
spins enter the detection slice, which leads to an increase in
the relaxation rate. The relative difference in the apparent T1
relaxation times corresponding to selective and non-selective

inversion is related to perfusion via a two-compartment tissue
model. Kober et al. [137] improved MBF quantification using
a respiration and ECG gated LLFAIR single-gradient echo
technique in a mouse model. A nearly 10-fold increase in spatial
resolution was achieved with respect to previous study in rats
[138]. However, this led to a significantly increased acquisition
time of about 25min. Vandsburger et al. [139] investigated a
cardio-respiratory gated ASL sequence using a fuzzy C-means
algorithm to better cope with respiratory motion and heart rate
variations in a myocardial infarction mice model. Abeykoon et al.
[140] introduced an ASL method based on the signal intensity of
flow sensitized CMR to shorten scan time to 2–4min. In order to
benefit from sensitivity advantages of continuous ASL, Troalen
et al. [141] proposed cine-ASL, which is based on an ECG-gated
steady-pulsed labeling approach combined with simultaneous
readout over the cardia cycle. The cine-ASL led to shorter
acquisition time than the LLFAIR technique while preserving
spatial resolution and robustness with respect to cardiac motion.

First-Pass Perfusion
The basic principle of first-pass perfusion imaging involves
intravenous injection of a bolus of a suitable contrast agent (CA),
with subsequent monitoring of the passage of the CA through
the heart. However, the high heart rate (400–600 bpm) and fast
systemic blood circulation time limit its application in rodents.
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FIGURE 6 | The FAIR labeling scheme (upper part) consists of two inversion recovery measurements. In the first measurement the labeled zone is only around the

imaging slice, and in the second measurement the inversion is global. FAIR is the most commonly used ASL technique in the heart. The timing of the inversion and that

of the readout modules should be ECG-gated and occur in the same cardiac phase. The Look-Locker inversion-recovery readout (lower part) has been used mainly

in the rodent heart, where the rapid heart rate permits dense sampling of the magnetization recovery curve. Reproduced with permission from Kober et al. [132].

Recently, the major progress in data acquisition acceleration has
rendered small animal first-pass perfusion imaging feasible.

Makowski et al. [90] firstly proposed first-pass perfusion
imaging in mice using a k-t SENSE technique with an
acceleration factor of 10 on a clinical 3T scanner. Later, Coolen
et al. [142] introduced a segmented ECG-triggered acquisition
combined with parallel imaging acceleration to capture the first
pass of contrast agent in healthy and myocardial infarction mice.
A temporal resolution of one image per three heartbeats was
reached. The same group further investigated the quantification
of regional perfusion values using a dual-bolus approach in
combination with a Fermi-constrained deconvolution model
[143]. Later they applied this dual-bolus approach to test the
feasibility of first-pass perfusion in pressure overload induced
hypertrophy and heart failure mouse models after transverse
aortic constriction [144]. The hypertrophic mice revealed
reduced myocardial perfusion proportional to LV volume and
mass, and a related decrease in LV ejection fraction. Naresh
et al. [28] used k-t undersampled dual-contrast first-pass MRI
with motion-compensated compressed sensing reconstruction to
study myocardial blood flow in a high-fat diet mouse model.
They also investigated the repeatability and variability of first-
pass perfusion imaging and ASL. They concluded that first-
pass MRI shows better repeatability and variability in low MBF
conditions such as myocardial infarction. Due to better image
quality and lower user variability, ASL is more suitable at high
MBF. Recently, the tyGRASP sequence with block-wise cardiac
synchronization was reported for first-pass perfusion imaging in
nexilin knock-out mice [74]. During each cardiac cycle, a single
block of G7

4 = 15 projections with acquisition duration of t =

31.5ms was acquired. For suppression of the background signal
and coping with arrhythmic cycles, a non-selective saturation
pulse was additionally applied prior to each acquisition block
with a saturation recovery time TSAT of 60ms. The trigger delay
was chosen so that the acquisition was performed during end-
diastole to further minimize the motion artifacts (Figure 7). A
temporal resolution of one image per cardiac cycle was achieved.
Thus, an improved temporal fidelity of the inflow and washout
curves was shown.

Tissue Characterization
Because of its ability to provide superior soft tissues contrast in
exquisite detail, MRI has exceeded other imaging modalities in
its multi-parametric capabilities for a comprehensive myocardial
tissue characterization. It can provide superior and well-validated
biomarkers of important pathophysiological processes in cardiac
diseases based on intrinsic relaxation properties T1, T2, and T2∗

with or without contrast agent. Tissue contrast is tailored by
adjusting acquisition parameters such as flip angle, TE, repetition
time (TR), and inversion delay (TI). Mapping techniques can
further provide direct pixel-by-pixel quantitative myocardial
tissue characterization to depict small variations of relaxation
properties and to highlight tissue pathology.

T1 Mapping
The T1 relaxation time is the longitudinal relaxation time,
describing the return of the magnetization to thermodynamic
equilibrium after excitation. The native T1 value is a tissue
specific constant which changes in some pathologic conditions,
such as diffuse myocardial fibrosis, hemorrhage, edema,
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FIGURE 7 | (A) ECG signal during scan. According to the heart rate, a trigger delay was set after the detection of the R wave, then the blood and myocardial signal

were approximately nulled by a non-selective saturation pulse. The acquisition was performed during end-diastole. (B) Time series of myocardial first-pass perfusion

images of a nexilin wild-type mouse. From left to right: precontrast, RV arrival, LV arrival, myocardial influx, and washout.

inflammation, and acute infarction [145]. Thus, the quantitation
of T1 value can be used to distinguish different soft tissues and
pathologies. The general principle for T1 mapping is to acquire
multiple images at different inversion times in order to assess the
T1 recovery curve.

Several T1 mapping methods have been proposed in
preclinical research. One of the most widely used methods for
measuring myocardial T1 is a single slice inversion recovery
Look-Locker technique [146–148]. With this technique, image
datasets are acquired repeatedly after an inversion pulse to create
multiple images along the recovery curve. However, this method
has several drawbacks. The long TR results in relatively long total
acquisition times. Poor ECG signals and variations in the heart
rate cause inversion times to differ for subsequent acquisition
thus causing k-space inconsistencies. In-plane and through-
plane motion between excitations reduce accuracy [54]. An
ECG-triggered saturation-recovery Look-Locker (SRLL) method
has been proposed by Li et al. [149] to acquire a single-
slice T1 map in about 3min. By combining the SRLL method
with a modified model-based compressed sensing method, a
50% reduction in imaging time was achieved for the in vivo
T1 mapping of the mouse heart [150]. Later, Jiang et al.
[151] further extended the method to multi-slice T1 mapping
(MRLL) allowing for more coverage without increasing scan
time. However, the SRLL sequence yields relatively low SNR

and a lower accuracy compared with the inversion recovery.
The single shot 2D modified Look-Locker (MOLLI) technique
has shown high reproducibility and high SNR in humans [152].
However, it is challenging in mice due to the high heart rates and
requirements on spatial resolution. Recently, Nezafat et al. [153]
proposed a multi-shot 2D modified Look-Locker sequence for
high-resolution T1mapping inmice at a 3TMRI clinical scanner.
A further method for myocardial T1 mapping in mice has been
proposed by Coolen et al. [54] using a 3D intra-gate FLASH
sequence in combination with a variable flip angle DESPOT1
(driven equilibrium single-pulse observation of T1) analysis.
With this protocol, 3D T1 maps of the heart ventricles could be
obtained in 20min with a sufficient spatial resolution (Figure 8).
Castets et al. [154] accelerated 3D T1 mapping measurements
using spiral encoding with a higher spatial resolution (208× 208
× 315 µm3) in a 10–12min acquisition time.

A promising application for T1 mapping is the quantification
of myocardial extracellular volume (ECV) fraction. ECV contains
the interstitial and intravascular spaces. Many disease processes
affecting the myocardium can be understood through ECV
changes, such as diffuse or interstitial myocardial fibrosis. ECV
can be measured by combining native and post-contrast T1
mapping of blood and myocardium. Neilan et al. [155] applied
and validated a Look-Locker FLASH sequence to quantify ECV
in juvenile and aged mice.
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FIGURE 8 | T1 mapping of the mouse heart resulting from DESPOT1 analysis of both black-blood (A) and bright-blood (B) data. T1 maps are shown for four different

slices covering the base to apex and for both the end-diastolic and end-systolic cardiac phases. Reproduced with permission from Coolen et al. [54].

T2 and T2∗ Mapping
The T2 relaxation time, also referred to as spin-spin or transverse
relaxation time, is describing the tissue-specific decay of the
transversal magnetization after excitation. Myocardial edema is
the main pathology responsible for changes in the T2 value, and
it was first demonstrated in a canine model of acute myocardial
infarction (AMI) by Higgins et al. [156].

Two variants of T2 mapping techniques are usually used in
CMR imaging: dark blood turbo spin-echo (TSE), and bright
blood T2 preparation. Schneider et al. [147] mapped T2 in mice
by acquiring the spin echo data with echo times ranging from
3.7 to 24ms. Later, Bun et al. [157] performed T2 measurements
with a similar sequence to quantify myocardial fibrosis in

diabetic mice at 11.75 T. However, the TSE-based T2 mapping
suffered from ghosting artifacts caused by blood flow and signal
loss due to through-plane motion [158]. The T2 preparation-
based method is less prone to TSE-associated artifacts [159]. It
mainly contains a T2 preparation module and a rapid imaging
sequence such as FLASH. The T2-preparation module contains
non-selective 90 and 180◦ pulses to create spin-spin relaxation
followed by a −90◦ restore pulse. After the restore pulse, the
longitudinal magnetization depends on the tissue T2 value.
Beyers et al. [55] proposed a T2 preparation module containing
a Carr-Purcell-Meiboom-Grill and Malcolm Levitt (CPMG-
MLEV) weighted series of composite 180◦ pulses, followed by a
multi-slice gradient echo readout. In this way, the resulting T2
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values are less sensitive to effects of B0 and B1 inhomogeneities.
Coolen et al. [160] extended this preparation module with
fast steady-state-free-precession (SSFP, FISP) readout. However,
the total acquisition time for one T2 measurement with three
slices was about 30min, which limited its application in fast
dynamic contrast agent enhanced MRI studies. Chen et al. [161]
performed rapid T2mapping of themouse heart using the CPMG
sequence and compressed sensing reconstruction, which allowed
T2 quantification at a temporal resolution of 1min per slice
(Figure 9).

T2∗ relaxation refers to decay of transverse magnetization
caused by a combination of spin-spin relaxation and magnetic
field inhomogeneity. Gradient-echo MRI with T2∗-based
contrast can be used to depict different lesions in diseased mouse
heart. T2∗ cardiac MRI has been utilized to evaluate myocardial
iron overload and collagen deposits. T2∗ is reduced in iron-
and collagen-laden tissues due to increased magnetic field
inhomogeneity. Jackson et al. [162] measured T2∗ relaxation
using two multi-echo gradient echo sequences with 15 echo
times in the range of 0.9–14.9ms at 1ms intervals in a mouse
model of β-thalassemia. Over 10-fold decreased myocardial
T2∗ (0.7 ± 0.2ms) was observed in the iron-loaded thalassemia
group, which was consistent with histological results. van Nierop
et al. [163] reported reduced T2∗ value in myocardial infarction
(MI) and transverse aortic constriction (TAC) mice using an
ECG-triggered T2∗-weighted 3D center-out radial sequence
with TE ranging from 21 µs to 4ms. T2∗-shortening contrast
agents, such as iron oxide nanoparticles (IONPs), have been
used to exploit T2∗ contrast in mouse cardiovascular system
[164, 165]. Sosnovik et al. [164] reported an iron oxide–based
particle targeted at apoptotic cells in an ischemia/reperfusion
injury mice model. Significantly decreased signal intensity was
observed in T2∗-weighted FLASH images. Zhou et al. [166]
used the Sweep Imaging with Fourier Transformation (SWIFT)
technique to visualize iron oxide particle labeled stem cells in the
rat heart. Due to its zero echo-time properties, SWIFT images
showed reduced blooming artifacts compared to gradient-echo
images, and enhancement of off-resonance signals relative to the
background. However, a major remaining challenge for IONPs
application is to distinguish regions of signal void due to IONPs
from those due to low signal tissues or susceptibility artifacts.
Even though several bright-iron methods such as off-resonance
techniques [167], gradient-compensation techniques [168],
and post-processing methods to identify IONP-introduced
magnetic field inhomogeneities [169] have been introduced,
IONP-induced off-resonances can hardly be distinguished
from other sources. This yields a rather low specificity of the
IONP approach. Similar to SWIFT, ultrashort echo time (UTE)
techniques have been used for providing endogenous T2∗

contrast [163, 170].

Contrast Enhanced MRI
Contrast enhanced MRI (CE-MRI) is a widely used imaging
technique to investigate microvascular structure and function by
injecting a contrast agent. MR contrast agents work by modifying
the tissue relaxation properties and thus directly affect the image
contrast. This effect is known as relaxivity and enables better

visualization of tissues in which the agent accumulates. The
contrast agents can be classified as T1-weighted (i.e., gadolinium
chelates, manganese chelates) or T2∗-weighted (i.e., iron oxide
particles). Here, we mainly discuss T1-weighted CE-MRI.

Late Gadolinium Enhancement MRI
Late gadolinium enhancement (LGE) CMR is a non-invasive
reference standard for investigating myocardial viability. In AMI,
cellular necrosis, lysis, and edema are the main pathological
changes. In chronic infarcted tissues, fibrous scar tissues with
increased extracellular space form. Compared with healthy
tissues, the Gd-agent was slowly washed in and washed out in
pathological tissues with expanded extracellular space. Analysis
of the CA dynamics allows to distinguish between healthy and
high-risk tissues and myocardial scars [171].

Kim et al. [172] initially applied LGE to study myocardial
viability in a rabbit model. A clear difference in contrast
kinetics between normal tissue, infarct rim, and infarct core
regions could be observed. Yang et al. [173] validated the LGE
technique for accurate assessment of infarct size inMImice. After
intravenously injecting a 0.3–0.6 mmol/kg bolus of Gd-DTPA,
CA-enhanced images of the entire heart were acquired in 15 to
30min. Great agreements were achieved for infarct size between
LGE images and 2,3,5-triphenyl tetrazolium chloride (TTC)
staining. The results were in excellent concordance with many
other studies [174–176], which clearly demonstrated LGE cardiac
imaging to be a reference standard to follow up myocardial
viability in vivo.

Two main methods for LGE imaging are the inversion
recovery (IR) fast gradient echo sequence and the T1-weighted
cine FLASH sequence. Due to the ability to null the signal
of remote myocardium, IR shows better contrast between the
infarcted and non-infarcted myocardium and is widely used in
humans. In preclinical research, Price et al. [177] applied LGE
in small animals using a multi-slice IR gradient-echo sequence
in combination with a Look-Locker sequence for assessing
the optimal inversion point to null the signal from healthy
myocardium (300–450ms for rats, around 330ms for mice,
Figure 10). Thomas et al. [174] and Protti et al. [178] compared
IR LGE and T1-weighted cine FLASH LGE imaging at 4.7 and
7 T. Both protocols produced reliable results for the assessment of
infarction size. Cine FLASHwas found to be a more robust, faster
and less user dependent method for visualizing infarct size and
recommended as the more promising technique in small rodents.

Manganese-Enhanced MRI (MEMRI)
Unlike gadolinium, which only allows extracellular space imaging
for assessment of myocardial viability, manganese provides T1-
weighted intracellular contrast through calcium handling.
During myocardial contraction, Ca2+ enters cardiomyocytes
primarily by conduction through voltage-gated L-type calcium
channel that causes increase in cytosolic Ca2+ concentration,
which then binds to troponin C and activates myocardial
contraction (excitation-contraction coupling) [179]. After
systolic contraction, Ca2+ is actively transported into the
sarcoendoplasmic reticulum (SR) by Ca-ATPase and excreted
from the cell through the sarcolemmal Na+-Ca2+ exchanger
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FIGURE 9 | In vivo T2 mapping of a mouse heart using a fully-sampled dataset. (A) Full FOV image of the first echo (TE: 4.4 msec). (B,C) Enlarged images of the

heart from the first and sixth echo, respectively. Red and green circles represent endocardial and epicardial contours drawn from the first echo image, respectively. (D)

The corresponding T2 map for the whole image. (E) Enlarged T2 map for the mouse heart. (F) Map of squared correlation coefficient for the exponential T2 fitting.

Reproduced with permission from Chen et al. [161].

[179]. Alterations in calcium handling may impair the Ca2+

cycling between the extracellular space, cytosol, and SR, resulting
in systolic or diastolic dysfunction. Manganese is a T1 shortening
compound taken up through voltage-gated calcium channels
into cells with active calcium handling. It has the ability to
measure Ca2+ channel activity and myocardial viability, and has
been validated in various clinical [180–182] and preclinical [183–
185] studies. However, its application in clinical routine was
limited by its potential toxicity causing myocardial depression.
Manganese formulations using chelation or linkage to a calcium
compound [186] were developed. Spath et al. [184] investigated
manganese-based contrast media in healthy and infarcted rat
models (Figure 11). The investigated manganese agents resulted
in calcium channel-dependent myocardial T1 shortening. A
good agreement between infarct size on MEMRI T1 mapping
and Masson’s trichrome (MTC) staining (bias 1.4, 95% CI −14.8
to 17.1, p > 0.05) was reported. In contrast, standard gadolinium
delayed enhancement MRI (DEMRI) with the inversion recovery
technique overestimated the infarct size (bias 11.4, 95% CI −9.1
to 31.8, p= 0.0002), as did DEMRI T1 mapping (bias 8.2, 95% CI
−10.7 to 27.2, p = 0.008). Recently, Toma et al. [183] proposed
a dual contrast MEMRI and DEMRI technique to evaluate the
physiologically unstable peri-infarct region and to track the

therapeutic effects of telmisartan on the injured myocardium
longitudinally with attenuation of the peri-infarct region.

Diffusion Tensor Imaging
The myocardial fiber anatomy underlies the mechanical and
electrical properties of the heart [187]. Within the normal LV,
the myofibers follow left-handed helices in the epicardium, and
transit smoothly through a circumferential orientation at the
mesocardium to right-handed helices in the endocardium. A
feasible and accurate technique to characterize and identify fiber
structure changes can contribute to elucidating the complex
cardiac structure-function relationships. MR diffusion tensor
imaging (DTI) has been validated as a valuable tool to obtain
non-invasive measures of myocardial microstructure in both
clinical and preclinical studies [187–189]. Several quantitative
parameters derived from DTI, such as mean diffusivity (MD)
and fractional anisotropy (FA), helix angle (HA) and second
eigenvector angulation (E2A), can be used to describemyocardial
microstructural organization.

After first developed in 1990s [190], DTI has been widely used
in brain imaging to study the spatial organization of white matter
fiber tracts [191, 192]. The preclinical application of cardiac
DTI is more challenging, due to cardiac and respiratory motion,
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FIGURE 10 | Pulse sequence diagrams for LGE imaging. (A) Look-Locker pulse sequence and gating strategy used to acquire multiple inversion time (TI). Images

from TI1–TI6 time points are shown for both mouse and rat, where the indices are related to the number of R-wave triggers given the double gated inversion pulse. (B)

The LGE IR sequence diagram follows the same gating and acquisition scheme but acquires a 90◦ flip angle multislice GRE stack at the nearest TI value to null healthy

myocardium. TRs is the time between slice acquisition pulses, TRIR is the time between inversion pulses, NPE is the number of phase-encoding steps, and Nslices is

the number of slices. Reproduced with permission from Price et al. [177].

the diffusion signal attenuation, and a short T2 relaxation time
causing low SNR condition. Further, high-resolution DTI of the
mouse heart is more complicated due to a low degree of diffusion
anisotropy in the tissue [188]. With the developments of pulse
sequence design and gradient systems, cardiac DTI has become
feasible for in vitro and in vivo applications.

In the beginning, cardiac DTI was mainly performed on
isolated hearts. Scollan et al. [193] introduced two-dimensional
stimulated echo acquisition mode (STEAM) in perfused rabbit
hearts using standard and fast spin-echo pulse sequence with
half-sine diffusion gradients in six non-collinear directions. The
inclination angle derived from both protocols showed high
agreement with histological results. Jiang et al. [188] firstly
extended a similar protocol to acquire 3D diffusion-weighted
images of 12 directions in a fixed mouse heart. High spatial
resolution (isotropic 100µm) images were acquired in 9.1 h and
allowed the quantification of the myocardial structure at more
than 170,000 locations throughout the mouse heart, which is
about 10 times better than histological studies. The FA value
of 0.27 ± 0.06 and the mean diffusion tensor eigenvalues of
0.75 ± 0.13, 0.60 ± 0.13, and 0.51 ± 0.13 x 10−3 mm2/s
are in good agreement with other studies [193, 194]. Huang
et al. [195] firstly investigated in vivo DTI-tractography of the
mouse heart to follow myocardial microstructural changes in
ischemia/reperfusion mouse models. It showed increased MD
and FA in acute ischemia (24 h after injury), but decreased
values during myocardial healing (2–3 weeks after reperfusion)

(Figure 12). Later, the same group applied 3D DTI-tractography
in vivo to study ischemic myocardium and assessed the cell
therapy effect [196]. With the velocity-compensated Stejskal-
Tanner diffusion sequence, they were able to obtain high-
resolution 3D reconstructions of the myofibrillar tracts in
the mouse heart. The derived parameters clearly showed that
DTI could non-invasively reveal the microstructural features of
the myocardium.

Magnetic Resonance Spectroscopy and
Multi-Nuclei Imaging
CMR spectroscopy (CMRS) is a non-invasive technique to
investigate the myocardial metabolism. It can use the signal
from different endogenous nuclei, including 31phosphorus
(31P), 1Hydrogen (1H), 23Sodium (23Na), and 13Carbon (13C),
to quantify myocardial metabolism in vivo [197]. As the
resonance frequency of nuclei is dependent on its molecular
environment, different metabolites exhibit slightly different
frequencies (chemical shift), thus leading to MR frequency
spectra according to the chemical composition of the investigated
voxel. An analysis of the frequency response (the MR spectrum)
allows quantification of different metabolites [198].

31P-MRS is most widely used to quantify high-energy
phosphates in the heart, including adenosine triphosphate (ATP)
and phosphocreatine (PCr). The mutual transformation of ATP
and PCr are necessary to meet the energy consumption required
to maintain normal cardiac function. The impairments in energy
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FIGURE 11 | T1 shortening with different manganese contrast media over time. (A) Normalized T1 maps acquired subsequent to infusion of MnCl2, EVP1001-1, and

mangafodipir at 20min intervals up to 60min. A clear decreased myocardial T1 value could be observed in all groups. (B) Reduction in mean left ventricular T1 values

over 60min with MnCl2, EVP1001-1 and different concentrations of mangafodipir. Two-way ANOVA confirmed a dependence of mean myocardial T1 shortening

between each of the contrast agents (P < 0.0001). Reproduced with permission from Spath et al. [184].

metabolism reveal pathological processes in cardiac disease.
Various preclinical studies showed reduced concentrations of
ATP, PCr, and PCr/ATP ratios in cardiomyopathy or heart

failure [199–201]. CMRS needs to localize signal to a certain
voxel and to exclude signal from nearby structures (e.g., liver,
chest skeletal muscle). Localization methods for cardiac MRS
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FIGURE 12 | (A–I) In vivo DTI-tractography of mouse heart at baseline, 24 h after injury and 2–3 weeks after ischemia-reperfusion. The mean diffusivity (MD) maps

clearly showed that MD in the injured anterolateral wall increased acutely (24 h after injury) and subsequently returned toward baseline as the myocardium healed

(A–C,E). Fractional anisotropy (FA) decreased acutely and returned to baseline 2–3 weeks after injury (F). (C,D) The left coronary artery, when present in the image,

can be used for internal standardization and control. MD in the vessel and its branches (red arrow, C,D) will be significantly higher than MD in normal or healing

myocardium. Myofibers passing through a region of interest placed in the anterolateral wall are shown in (G–I). (G) Normal mouse heart. The characteristic

arrangement of myofibers into an array of crossing helices is clearly visible. (H) Mouse exposed to ischemia-reperfusion with severe hypokinesis in the anterolateral

wall. However, MD has remained <1.3 × 10× mm2/s and fiber architecture remains reasonably organized. (I) Mouse exposed to ischemia-reperfusion, also

presenting with severe hypokinesis of the anterolateral wall. MD in this mouse, however, is <1.3 × 10−3 mm2/s and fiber architecture is severely perturbed.

Reproduced with permission from Huang et al. [195].

mainly contain two approaches, single-voxel and chemical shift
imaging (CSI). Both contain advantages and limitations. Single-
voxel localization is usually performed with image selected in
vivo spectroscopy (ISIS), which consists of three slice-selective
180◦ pulses for localization and a single nonselective 90◦ pulse
for signal detection [202]. Bakermans et al. [203] assessed
myocardial energy status in vivo using single-voxel ISIS-localized
31P-MRS. Accurate localization and decreased PCr/γ-ATP ratios
were observed in TAC mice (Figure 13). The 31P-CSI can be
performed in 1D (column of voxel), 2D (plane of voxel), or
3D (block of voxels) mode [200, 204, 205]. CSI employs phase-
encoding gradients in different directions and resolves spectra
from different locations across the myocardium.

The 1H represents the MR-active nuclei with the highest
natural abundance and sensitivity in living tissues, and ensures
cardiac 1H-MRS to be a useful target for quantifying myocardial

metabolites, such as triglycerides, lactate, carnitine, myoglobin,
and creatine (Cr) levels [206]. Since creatine plays a key role
in the creatine kinase system, its measurement can provide
additional information about myocardial energy transportation
and storage. The high lipid concentration is associated with
atherosclerosis and type 2 diabetes mellitus, which results in
impaired cardiac function. Due to the technical restriction,
it took decades for translating to in vivo imaging after first
implemented 1H-CMRS in a perfused rat heart in Ugurbil et al.
[207]. Schneider et al. [208] reported cardiac 1H-MRS in a
guanidinoacetate N-methyltransferase (GAMT) deficient mouse
model in vivo using a single-voxel point resolved spectroscopy
sequence (PRESS). Various cardiac metabolites were detected in
voxels of 2 µl and a clear decreased myocardial creatine level
was observed. PRESS is the dominant method for 1H-MRS,
containing three slice-selective RF pulses (90–180–180◦) applied
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FIGURE 13 | End-diastolic left ventricular MR images obtained from a control mouse (A) and a mouse with a transverse aortic constriction (TAC) (B). The constriction

is indicated by the arrow. Dilated hypertrophic cardiomyopathy is evidenced by increased LV wall thickness and LV cavity volume in the TAC mouse. Rectangles

indicate the voxels selected for localized 31P-MRS with 3D ISIS. (C,D) display 31P MR spectra acquired in vivo with 3D ISIS in a healthy mouse heart and a TAC heart,

respectively. Myocardial PCr/γ-ATP was lower in TAC mice (n = 8) compared to healthy controls (n = 9) (E). Data are expressed as mean ± SD. **P < 0.01. α-, β-,

γ-ATP, α-, β-, and γ-phosphate groups in ATP; 2,3-DPG, 2,3-diphosphoglycerate; PCr, phosphocreatine; Pi, inorganic phosphate. Reproduced with permission from

Bakermans et al. [203].
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concurrently with three mutually orthogonal field gradients
[209]. Another technique for 1H-MRS is STEAM. It is similar to
PRESS, but uses three 90◦ RF pulses. However, 1H-MRS remains
technically challenging due to the superabundance of 1H in the
water molecule, and it will result in baseline distortion and affect
the quantification.

23Na is an important component in the myocardial signal
transduction pathway. The 23Na signal is increased in myocardial
ischemia. Thus, 23Na-MRS can measure intracellular and
extracellular Na+ changes to investigate myocardial viability
without external contrast agents [210, 211]. Combination with
acceleration methods such as CS has been shown [212].

As many metabolites contain carbon, 13C-MRS is particularly
suited to study myocardial metabolism. However, traditional
13C-MRS is limited by low inherent sensitivity. In the last
10 years, in vivo cardiac 13C-MRS has become feasible
with the development of dynamic nuclear hyperpolarization
(DNP) technique. DNP is based on transferring electron to
nuclear spins thus achieving substantially higher polarization
through DNP. It requires the presence of unpaired electrons
homogeneously distributed within the sample, which can be
achieved by mixing the sample with radicals. To achieve
almost 100% polarization of the electrons, DNP works at
low temperature and high magnetic fields. Electron-nuclear
spin transitions are induced through microwave irradiation.
In the solid state, the nuclear polarizations of 13C can be
increased to over 40% [213]. Subsequently, the solid sample
is dissolved rapidly to yield a solution of molecules with
hyperpolarized nuclear spins [214]. The sensitivity of 13C-MRS
can be increased over 10,000-fold and the metabolism of infused
hyperpolarized compounds be visualized in vivo [210]. 1-13C-
pyruvate has been the most widely used DNP hyperpolarized
molecules. Pyruvate is the primary metabolites of carbohydrates.
After being transported into mitochondria, it is irreversibly
converted to acetyl-CoA by the pyruvate dehydrogenase enzyme
complex (PDH), then participated into the tricarboxylic acid
(TCA) cycle [215]. By labeling pyruvate in a unique carbon
position and investigating its metabolism by MRS, insights
into myocardial metabolism can be derived. Dodd et al. [216]
investigated in vivo metabolism of [1-13C]pyruvate in the
mouse heart and revealedmetabolic differences between different
mouse strains. Atherton et al. [217] used [2-13C]pyruvate to
evaluate Krebs cycle metabolism in hyperthyroidism rats and
increased anaplerosis was observed in the hyperthyroid heart.
With infused hyperpolarized pyruvate, myocardial metabolic
processes have been quantified in different rodent models,
including diabetes [218], ischemia [219], cardiac inflammation
[220], etc.

CONCLUSIONS

MRI is a tremendously versatile and flexible imaging modality
and provides high-resolution images in any arbitrary plane
without the risk of ionizing radiation. Especially its accuracy
and high reproducibility have made CMR the non-invasive
reference modality for deriving myocardial structure, global

and regional function, perfusion, tissue characterization and
myocardial metabolism in small animal research.

Even though well-established, cardiac imaging in small
animals is still challenging especially due to high cardiac
and respiratory rates and the small anatomical structures,
often demanding dedicated hardware components for providing
sufficient image quality in acceptable imaging times. Especially
dedicated multielement receiver coils either placed under the
chest of the animal or wrapped around its thorax ensure
sufficient SNR and reduction of the acquisition time by parallel
imaging approaches.

According to the nature of MRI, reliable and highly
reproducible information on the cardiac condition of
the animal can be obtained. However, the impact of the
required general anesthesia and rather long acquisition
times on the investigated parameters have to be carefully
considered during data interpretation. Inhalation anesthesia
is highly recommended, since it provides greater safety, lesser
cardiovascular depression, and rapid recovery, and convenient
adjustments and maintenance during scanning. The body
temperature control of the animal seems mandatory to avoid
the deterioration of the derived functional parameters by
cardiovascular depression due to cooling out of the animal.

With the availability of reliably working self-gating
techniques, assessment of global cardiac function has been
proven to be an excellent tool for reliable quantification of
systolic dysfunction. However, due to the high heart rates,
the assessment of diastolic dysfunction is still challenging
and demands long acquisition times to provide sufficient
temporal resolution. As in human imaging, regional cardiac
function has been addressed by several approaches, and the
use of conventional cine images in combination with feature
tracking show the potential to enable efficient regional wall
motion analysis.

One of the strengths of CMR is its capability for tissue
characterization. Identification of scarred tissue by means of
delayed contrast enhancement imaging is straight forward
using (black-blood) self-gating techniques. Although mapping
of relaxation parameters by different means has been reported,
it is technically more challenging and well-trained operators
are required especially for ensuring accurate and reproducible
numbers. More advanced techniques such as (first-pass)
perfusion, diffusion-weighted imaging or DTI for deriving
myocardial fiber orientation must still be seen as experimental.

Further important information on tissue composition and
metabolism can be retrieved from MR spectroscopy and
multinuclei imaging. Due to its high natural abundance and
sensitivity, 1H spectroscopy has been efficiently applied to
quantifying triglycerides, lactate, carnitine, myoglobin, and
creatine (Cr) levels. However, to make full use of the technique,
different nuclei like phosphorus (31P), Sodium (23Na), and
Carbon (13C) need to be investigated to quantify myocardial
metabolism in vivo. 31P-MRS can be used to quantify high-energy
phosphates in the heart, 23Na is an important component in
the myocardial signal transduction pathway, and 13C-MRS is
particularly suited to study myocardial metabolism. In general,
the multinuclei techniques can be extended to imaging thus
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providing the chemical composition of each voxel. Due to the
low sensitivity and the need to spectrally separate the signal from
the different metabolites, multinuclei MRS and MRI are mainly
performed at ultra-high field strengths. Even though available
in research for decades, due to the long scan times and the
expertise required to performing multi-nuclei MRS and MRI in
the heart, this technique must still be seen as experimental with
unfortunately only little utilization. With the recent introduction
of hyperpolarized 13C imaging, limitations from the intrinsic
low sensitivity may be solved and rapid access to 13C-labeled
metabolites may be enabled at the expense of high related costs.

CMR imaging and spectroscopy is still one of the most
promising noninvasive tools for the staging and longitudinal
monitoring of cardiovascular diseases in small animals. Due to
its versatility, it can be applied to a wide range of translational
applications and provide quantitative data from global functional
assessment to metabolic characterization of the underlying

myocardial substrate. Due to its complexity, the application
is currently often limited to global functional assessment and
scar imaging. More challenging techniques such as assessing
metabolism or the structural organization of the myocardial
fibers are still limited by long scan times and may need further
technical developments before finally becoming routine in small
animal applications.
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