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We explore how to apply perturbation theory to complicated time-dependent Hamiltonian

systems that involve complex potentials. To do this, we introduce a generalized

time-dependent oscillator to which the complex potentials are connected through a

weak coupling strength. We regard the complex potentials in the Hamiltonian as the

perturbed terms. Quantum characteristics of the system, such as wave functions and

expectation values of the Hamiltonian, are investigated on the basis of the perturbation

theory. We apply our theory to particular systems with explicit choices of time-dependent

parameters. Through such applications, the time behavior of the quantum wave packets

and the spectrum of expectation values of the Hamiltonian are analyzed in detail. We

confirm that the imaginary parts of expectation values of the Hamiltonian are not zero

but very small, whereas the real parts deviate slightly from those of the unperturbed

system.

Keywords: perturbation theory, time-dependent Hamiltonian system, complex potential, Schrödinger equation,

wave function, expectation value

1. INTRODUCTION

In the case that we are unable to derive exact quantum solutions for a perturbed system,
perturbation theory is a useful tool for obtaining approximate quantum solutions. When we
apply perturbation theory, it should be supposed that the scale of the perturbed terms in the
potential is relatively small. The perturbation theory is valid only when the quantum solutions
of the system in which the perturbation potentials have been removed are exactly known or
derivable. The perturbation theory was originally developed for Hermitian systems in which the
potential is real. Hence, in conventional quantum mechanics, the perturbation theory has, in
large, been developed for the systems in which the potentials are real Hermitian that allows
only the spectrum of real expectation values for quantum observables. Whereas the eigenvalue
problem and the effects of perturbations on stationary Hamiltonian systems are well known in
non-relativistic quantum physics, the perturbation techniques for the time-dependent Hamiltonian
systems (TDHSs) with complex potentials have been investigated much less. This is partly due to
the difficulty of mathematical procedures when we apply perturbation techniques in TDHSs.

Time-independent perturbation theory is a mathematical tool for treating quantum systems
whose Hamiltonian involves small static perturbing terms which do not induce transitions to other
quantum states. In a case that the Hamiltonian is a function of time, transitions between quantum
states may take place. Then, we should consider time-dependent perturbation theory instead of
time-independent one. Provided that the perturbing Hamiltonian is differentiable with respect to
time in that case, the transition probability is determined from the time derivative of the perturbing
Hamiltonian [1]. Hence, if the perturbing Hamiltonian is slowly varying, we can adopt adiabatic
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theorem which assumes that the quantum system remains in
its instantaneous eigenstate [2]. This allows the use of time-
independent perturbation theory as an approximation in that
situation. For more details of time-dependent perturbation
theory and its relevance to time-independent perturbation
theory, refer to Mandal and Hunt [1, 3] and Langhoff et al. [4].

On account of recent attention to the quantum problem
of physical systems characterized by complex potentials, the
necessity for the extension of perturbation theory to complex
potential systems has gradually emerged. The data in some
of the processes of elastic scattering such as nucleus-nucleus
scattering [5] and electron scattering from solid crystals [6]
fit better if one adopts complex potentials involving a non-
positive imaginary part. Moreover, according to the advancement
of techniques for unfolding quantum theory, the necessity of
quantum manipulation with complex potentials takes place in
many different areas of physics and related topics such as
optics [7–11], statistical physics [12, 13], relativistic quantum
field theory [14–16], nuclear physics [17], condensed matter
physics [18–20], and biology [21]. To analyze the stability
and nonlinear modes of optical beams propagating along an
asymmetric waveguide, an imaginary potential has been adopted
[11]. The structures of the energy band in elastic scattering
processes governed by a periodic complex potential have also
been studied [22].

According to such a research trend, we will investigate, in this
work, how to apply perturbation theory to complex potential
systems. We will adopt a general Hamiltonian that corresponds
to a time-dependent harmonic oscillator to which complex
potentials are coupled as perturbation terms. We will consider
adiabatic evolution [23–25] of the states under slow variations
of parameters while the magnitudes of perturbation terms are
quite small compared to the unperturbed term at all times.
Then, there will be no transition between eigenstates and, as a
consequence, we can use usual time-independent perturbation
theory. The wave functions corrected by perturbed potentials
will be analytically evaluated. Using the wave functions involving
correction terms, quantum characteristics of the system will be
investigated. Furthermore, the spectrum of the expectation values
of the Hamiltonian (EVH) will be rigorously evaluated. We will
apply our development to some particular cases and analyze
the time evolution of the corresponding wave functions and
the EVH.

2. THEORETICAL FRAMEWORK FOR A
COMPLEX POTENTIAL SYSTEM

In this section, we outline the quantum structure for a TDHS
which involves complex potentials as perturbations to the system.
The equation of motion for lots of actual physical models in
quantum mechanics are described not only by linear terms
which allow us to have exact mathematical solutions, but also by
nonlinear terms associated with interactions of the system with
various subsystems. If the coupling parameters of the nonlinear
parts are sufficiently small compared to others, we can treat them
as perturbation terms. Regarding this, we consider the system of

which Hamiltonian is represented as

Ĥ = Ĥ + ǫĤp, (1)

where Ĥ is a time-dependent quadratic Hamiltonian and Ĥp is a
perturbing Hamiltonian, while ǫ is a small coupling parameter.
In this case, the perturbation theory is available only when the
second term on the right hand side of Equation (1) is very small
relative to the first term. We assume that Ĥ and Ĥp are given by

Ĥ = f (t)
p̂2

2m0
+ g(t)(q̂p̂+ p̂q̂)+ 1

2
h(t)m0ω

2(t)q̂2, (2)

Ĥp =
∑

j

kR,j(t)q̂
j + i

∑

l

kI,l(t)q̂
l, (3)

where f (t), g(t), h(t), kR,j(t), and kI,l(t) are time functions that
are differentiable with respect to time, and f (t) 6= 0. m0 is the
mass and ω(t) is a time-dependent angular frequency. Although
this is a one-dimensional Hamiltonian, we can apply it to various
different kinds of oscillators depending on the choice of the
explicit formulae of time functions. As examples for such, we will
apply it to two special cases at later by choosing the time functions
being particular forms. In the case where the mass of the system
varies over time, we can regardm0 as the initial mass. Notice that
the additional term Ĥp in the Hamiltonian makes the system be
an anharmonic oscillator.

The Schrödinger solutions of the system are different
depending on the choice of the time functions in the
Hamiltonian. If we consider a discrete spectrum of solutions,
the Schrödinger equation for the overall Hamiltonian Ĥ can be
written as

ih̄∂9n(q, t)/∂t = Ĥ9n(q, t). (4)

To apply the perturbation theory at this stage, it is necessary
to know complete quantum solutions associated with the
unperturbed Hamiltonian Ĥ as mentioned in the introductory
part. For this reason, we first derive exact solutions of the
Schrödinger equation for Ĥ from

ih̄∂ψn(q, t)/∂t = Ĥψn(q, t). (5)

Let us take a moment to review the theory for solving this
equation exactly. Because Ĥ involves time functions, it is very
difficult to solve this equation relying on the conventional
method. For such TDHSs, it is known based on the invariant
operator theory that the Schrödinger solutions are expressed in
terms of the solutions of a classical equation associated with the
system [26, 27]. Hence, let us consider a time function ρ(t) which
is the solution of the following nonlinear equation

ρ̈(t)+ ω2
ρ(t)ρ(t)−

�2

ρ3(t)
= 0, (6)

where

ω2
ρ(t) = f (t)h(t)ω2(t)+ 2ḟ (t)g(t)

f (t)
+ f̈ (t)

2f (t)
− 3ḟ 2(t)

4f 2(t)
−4g2(t)−2ġ(t).

(7)
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Then, we can define the annihilation operator of the system in
terms of ρ(t) as

â =
√

1

2h̄�

[

√

m0

f (t)

(

�

ρ(t)
+ iG(t)

)

q̂+ i

√

f (t)

m0
ρ(t)p̂

]

, (8)

where� is an arbitrary real positive constant, and

G(t) =
(

2g(t)− ḟ (t)

2f (t)

)

ρ(t)− ρ̇(t). (9)

Of course, the Hermitian adjoint of Equation (8), â†, is the
creation operator. These ladder operators obey the commutation
relation [â, â†] = 1. The time evolution of â(t) can be simply
represented as â(t) = â(0)e−i[η(t)−η(0)], where

η(t) = �

∫ t

0

dτ

ρ2(τ )
+ η(0). (10)

It is also possible to define an invariant operator using the ladder
operators, such that [27, 28]

Î = h̄�

(

â†â+ 1

2

)

. (11)

We can check that the direct differentiation of Î with respect to
time results in zero, which means that Î(t) is a time-invariant. If
we write the eigenfunctions of Î as φn(q, t), they can be derived
from the eigenvalue equation:

Îφn(q, t) = λnφn(q, t). (12)

This is analogous to the time-independent Schrödinger equation
in a stationary system. We can easily solve this equation from
a minor evaluation; the exact results are given in Appendix A.
According to the invariant operator theory, the wave functions
of the unperturbed system are expressed in terms of φn(q, t) as
[27, 28]

ψn(q, t) = φn(q, t)e
iθn(t), (13)

where

θn(t) = −(n+ 1/2)η(t)+ θ̃n, (14)

while θ̃n is an arbitrary constant phase. Because φn(q, t) given in
Appendix A are described by ρ(t), the wave functions are also
represented in terms of it. In fact, the reason why ρ(t) has been
introduced is that it is necessary in the expression of the quantum
solutions of the unperturbed system of which Hamiltonian Ĥ is
dependent on time.

We can easily check that the ladder operators yield

â|φn(t)〉 =
√
n|φn−1(t)〉, (15)

â†|φn(t)〉 =
√
n+ 1|φn+1(t)〉. (16)

The quantum theory for a TDHS represented above will be used
in the subsequent section in order to develop the perturbation
theory of the system associated with the complex potentials.

3. PERTURBATION THEORY WITH THE
COMPLEX POTENTIALS

Although perturbation theory does not give the spectrum of
exact analytical quantum solutions for a dynamical system, it
enables us to solve difficult problems in quantum mechanics
from a series of routine calculations. If we regard that we
cannot derive exact Schrödinger solutions in many cases of
quantum mechanical problems, perturbation theory is quite
useful in quantum mechanics. We will show how to manage
perturbation theory for the case where the Hamiltonian involves
time-dependent complex potentials on the basis of the associated
theory represented in the previous section.

By expressing Equation (8) and its Hermitian adjoint â†

inversely, we obtain the representation of canonical variables
q̂ and p̂ in terms of â and â†. Then we can easily derive the
expectation values of Ĥ using Equations (13), (15), and (16),
leading to

〈ψn|Ĥ|ψn〉 = h̄W(t)

(

n+ 1

2

)

, (17)

where

W(t) = 1

2�

[

G2(t)+ �2

ρ2(t)
+f (t)h(t)ω2(t)ρ2(t)−4g(t)ρ(t)G(t)

]

.

(18)
The purpose of using perturbation techniques is to find the effects
of small perturbed potentials on the whole system. In general,
perturbation expansion gives a power series representation of a
resultant quantity with respect to the perturbing parameter ǫ.
The results of a calculation considering perturbations agree quite
well with experimental data, but entails an infinite number of
minor terms. However, the higher orders of such minor terms
can, in general, be negligible from the perturbation corrections
because their numeric scales are small enough.

Our theory is based on time-independent perturbation theory
that is usually managed in terms of the eigenstates where the
phases are not considered [29], as mentioned earlier. Hence, if
we do not care about the minor phases of the wave functions
contributed from the perturbing Hamiltonian, we can represent
the overall wave functions of the system as

〈q|9n〉 = 〈q|8n〉eiθn(t), (19)

where 〈q|8n〉 are eigenstates and θn(t) are the phases. According
to the perturbation theory, the eigenstates take the form

〈q|8n〉 = 〈q|φn〉
+ ǫ

∑

n′,(n′ 6=n)

51〈q|φn′〉 + ǫ2
∑

n′,(n′ 6=n)

52〈q|φn′〉 + · · · ,

(20)

where 〈q|φn〉 = φn(q, t), which are given in Appendix A, and

51 = 〈φn′ |Ĥp|φn〉
〈φn|Ĥ|φn〉 − 〈φn′ |Ĥ|φn′〉

, (21)

52 = 5
(1)
2 +5(2)

2 , (22)
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with

5
(1)
2 =

∑

n′′ ,(n′′ 6=n)

〈φn′ |Ĥp|φn′′〉〈φn′′ |Ĥp|φn〉
(〈φn|Ĥ|φn〉 − 〈φn′ |Ĥ|φn′〉)(〈φn|Ĥ|φn〉 − 〈φn′′ |Ĥ|φn′′〉)

,

(23)

5
(2)
2 = − 〈φn′ |Ĥp|φn〉〈φn|Ĥp|φn〉

(〈φn|Ĥ|φn〉 − 〈φn′ |Ĥ|φn′〉)2
. (24)

By perturbation theory, the EVH are represented as

〈8n|Ĥ|8n〉 = ǫ030 + ǫ131 + ǫ232 + · · · , (25)

where

30 = 〈φn|Ĥ|φn〉, (26)

31 = 〈φn|Ĥp|φn〉, (27)

32 =
∑

n′ ,(n′ 6=n)

〈φn|Ĥp|φn′〉〈φn′ |Ĥp|φn〉
〈φn|Ĥ|φn〉 − 〈φn′ |Ĥ|φn′〉

. (28)

Up until now, we have developed perturbation theory for the
general time-dependent Hamiltonian system which involves
complex potentials. In order to see the applicability of our theory
to particular systems, let us consider the case where kR,1(t) 6= 0
and kI,3(t) 6= 0, while all other kR,j(t) and kI,l(t) are zero. In this
case, Equation (3) can be written in the form

Ĥp = kR,1(t)q̂+ ikI,3(t)q̂
3. (29)

Now, from Equations (20)–(22), the corresponding wave
functions are derived to be

〈q|8n〉 = 〈q|φn〉 + ǫ5̃1 + ǫ25̃2 + · · · , (30)

where, 5̃1 is given by

5̃1 =
1

h̄W(t)
[A(t)kR,1(t)ϕR,1 + iA3(t)kI,3(t)ϕI,3], (31)

with

A(t) =
√

h̄f (t)

2�m0
ρ(t), (32)

ϕR,1 =
√
n〈q|φn−1〉 −

√
n+ 1〈q|φn+1〉, (33)

ϕI,3 =
√
n(n− 1)(n− 2)

3
〈q|φn−3〉

−
√
(n+ 1)(n+ 2)(n+ 3)

3
〈q|φn+3〉

+3n3/2〈q|φn−1〉 − 3(n+ 1)3/2〈q|φn+1〉. (34)

Because 5̃2 in Equation (30) is a somewhat complicated form, we
have represented it in Appendix B.

On the other hand, the EVH become

〈8n|Ĥ|8n〉 = h̄W(t)

(

n+ 1

2

)

+ ǫ2

h̄W(t)
[A6(t)k2I,3(t)(30n

2 + 30n+ 11)

− A2(t)k2R,1(t)

− 6iA4(t)kR,1(t)kI,3(t)(2n+ 1)]+ · · · . (35)

If large-scale perturbation expansions regarding higher order
terms are required in the solutions, it is necessary to take the
aid of computer algebra [30]. The last term in Equation (35)
is an imaginary part of the energy. We can elucidate the time-
dependent evolution of the probability density in a quantum
state based on non-Hermitian quantum theory, where imaginary
terms of the energy levels take place [10, 31–34] as well as the real
ones. The novel outcome of non-Hermitian analyses is excluded
in the problem of conventional quantization methods relevant
to Hermitian Hamiltonians. The eigenvalues of Hermitian
Hamiltonians and/or Pseudo Hermitian Hamiltonians are always
real from a mathematical point of view. However, some
systems/subsystems can violate the requirement of Hermiticity
of Hamiltonians [35]. As can be seen from Equation (35), the
expectation values of the Hamiltonian are complex. The possible
existence of imaginary energy has a considerable interest from
several decades ago [33]. Zhu and Cukier [34] adopted an
imaginary energy method in order to formulate quantum rate
theories. They have obtained a rate constant that can be used to
explain theWKB quantum tunneling rate at low temperature and
the quantum state transition rate at high temperature. Further,
they have shown that their quantum rate constant has the same
structure as the Miller’s theory [36, 37] of quantum transition
state at high temperature limit. Meanwhile, imaginary energy
gaps between the complex eigenvalues of a system have been
used to analyze cooperative effects such as superconductivity and
superradiance [32]

Now let’s turn to a special case where the unperturbed
Hamiltonian corresponds to the Caldirola-Kanai oscillator [38,
39]:

Ĥ = eβt
p̂2

2m0
+ 1

2
e−βtm0ω

2
0 q̂

2, (36)

which can be obtained from the choice of time functions as
f (t) = h−1(t) = eβt , g(t) = 0, and ω(t) = ω0, where β and
ω0 are real positive constants. In addition, we choose

kR,1(t) = a kI,3(t) = b, (37)

where a and b are real constants. Then, the solution of the
nonlinear equation, Equation (6), is given by

ρ(t) = [c1 cos
2(�̄t)+ c2 sin

2(�̄t)]1/2, (38)

provided that � = (c1c2)
1/2�̄, where �̄ = (ω2

0 − β2/4)1/2, and
c1 and c2 are arbitrary real positive constants.

We have depicted the probability density |〈q|9n〉|2 for the
system described above in Figure 1. Due to the choice of
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FIGURE 1 | The probability densities |〈q|ψn〉|2 (for the wave functions

Equation 13) and |〈q|9n〉|2 (for the wave functions Equation 19) for the system

described in Equations (36)–(38), where t is 0.5 for (A), 1.5 for (B), and 2.5 for

(C). The characters 1st and 2nd in the figure legends mean that the

corresponding figure has been plotted with the consideration up to the first

order and up to the second order of ǫ, respectively. The parameters are

chosen as h̄ = 1, β = 0.3, ω0 = 1, m0 = 1, n = 8, c1 = c2 = 1, ǫ = 0.0035,

and a = b = 1.

FIGURE 2 | (A) The time evolutions of the real and the imaginary parts of the

expectation values, Equation (35), for the system described in Equations

(36)–(38), for three different values of β. The parameters are chosen as h̄ = 1,

ω0 = 1, m0 = 1, n = 0, c1 = c2 = 1, ǫ = 0.0001, and a = b = 1. (B)

Enlargement of the real parts in (A). The reference solid red line is the

expectation value of the Hamiltonian without the perturbation term, given in

Equation (17), under the choice of β = 0.5. (C) Enlargement of the imaginary

parts in (A). The reference solid red line indicates zero of the vertical axis.
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c1 = c2 = 1 in this figure, ρ(t) is a uniform function
having the value 1. This figure shows that the deviation of the
probability densities for the perturbed wave functions, Equation
(19), at an initial time can be negligible and, as a consequence,
they are almost the same as |〈q|ψn〉|2 which are probabilities
associated to the unperturbed wave functions. However, such
deviation increases gradually as time goes by. We can also
confirm from this figure that |〈q|9n〉|2 considered ǫ up to
the second order are nearly the same as those considered ǫ
up to the first order. This means that we can neglect the
terms which are higher order in ǫ in the wave functions,
as expected.

Figure 2 shows the time evolution of the real and the
imaginary parts of the expectation values of the Hamiltonian
Ĥ considering up to the second order of ǫ for the system
described by Equations (36)–(38). From Figure 2A, we can
confirm that the deviation of both the real and the imaginary
parts of the EVH from those of the unperturbed Hamiltonian
is, largely, not so significant, but is not zero. Figures 2B,C

are enlarged graphs of the real and the imaginary parts
of |〈8n|Ĥ|8n〉|2, respectively. If β is large, the expectation
values of the real part of the Hamiltonian are also large.
Real parts deviate toward the positive direction whereas
imaginary parts toward the negative one and such deviations
increase over time.

Let us show that the results, Equations (30)–(35), becomewell-
known ones for a particular case. For this purpose, we put β = 0
from Equation (36) and b = 0 from Equation (37) while a 6= 0.
Then, the system becomes a simple one that is described by the
Hamiltonian

Ĥ = p̂2

2m0
+ 1

2
m0ω

2
0 q̂

2 + δq̂, (39)

where δ = ǫa. Then, under the choice c1 = c2 = 1, we have
ρ = 1, W = � = ω0, G = 0, and A = [h̄/(2m0ω0)]

1/2. From
these, we easily confirm that Equations (30) and (35) reduce in
this situation to

〈q|8n〉 = 〈q|φn〉 +
δ

ω0

√

1

2ω0m0h̄
(
√
n〈q|φn−1〉

−
√
n+ 1〈q|φn+1〉)

+ δ2

4h̄m0ω
3
0

(
√
n+ 1

√
n+ 2〈q|φn+2〉

+
√
n
√
n− 1〈q|φn−2〉)+ · · · , (40)

〈8n|Ĥ|8n〉 = h̄ω0

(

n+ 1

2

)

− δ2

2m0ω
2
0

+ · · · , (41)

where

〈q|φn〉 = 4

√

m0ω0

h̄π

1√
2nn!

Hn(Q)e
−Q2/2, (42)

with Q =
√

m0ω0/h̄q. The results Equations (40) and (41)
are well-known in the literature [see, for example [40]]. If we

choose c1 6= 1 and/or c2 6= 1, the quantum solutions for the
unperturbed Hamiltonian Ĥ are somewhat different from the
standard ones and the result given in Equation (41) becomes
different; however, the quantum solutions for Ĥ still satisfy
the Schrödinger equation in that case and the corresponding
solutions approximated by the perturbation theory for the
entire Hamiltonian are also allowed. Although we have chosen
a simple reduced Hamiltonian, Equation (39), in order to
show that our results become well-known ones for a particular
case, the quantum solutions of the system described by this
Hamiltonian can also be derived completely without using
perturbation theory.

Now let us see another special case where the unperturbed
Hamiltonian is given by

Ĥ = p̂2

2m0
+ 1

2
m0ω

2
0t

4q̂2. (43)

This corresponds to the case where the time functions are given
by f (t) = h(t) = 1, g(t) = 0, and ω2(t) = ω2

0t
4. Meanwhile, we

put the time functions in Equation (29) as

kR,1(t) = e−αt kI,3(t) = c+ d cos(γ t), (44)

where c ≥ d. Then the solution of the nonlinear equation given
in Equation (6) can be written in the form

ρ(t) = [ρ21 (t)+ ρ22 (t)]1/2, (45)

with

ρ1(t) = ρ1,0t
1/2Jν

(

1

3
ω0t

3

)

, (46)

ρ2(t) = ρ2,0t
1/2Nν

(

1

3
ω0t

3

)

, (47)

provided that � = ρ1(t)ρ̇2(t) − ρ̇1(t)ρ2(t), where ρ1,0 and ρ2,0
are real positive constants, Jν and Nν are Bessel functions of the
first and second kind, respectively, while ν = 1/6.

In Figure 3, we have plotted the EVH for the system described
in Equations (43)–(47) considering up to the second order of
ǫ. The imaginary part of the EVH does not vary much over
time, whereas the real part increases as time goes by. This
shows that the imaginary part is small but not zero, while the
real part does not significantly deviate from the unperturbed
one. We have enlarged the real and the imaginary parts of the
expectation value in Figures 3B,C, respectively. It is interesting
that both the real and the imaginary parts of the EVH oscillate
over time, provided that γ is sufficiently large. The period
of such oscillation becomes short as the angular frequency
γ increases. In the case of α → ∞, we have kR,1(t) →
0, while the spectrum of the EVH is real and positive as
conjectured by Bessis from numerical studies [see [41] and
references therein].
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FIGURE 3 | (A) The time evolutions of the real and the imaginary parts of the

expectation values, Equation (35), for the system described in Equations

(43)–(47) for three different values of γ . The parameters are chosen as h̄ = 1,

ω0 = 1, m0 = 1, n = 10, ρ1,0 = ρ2,0 = 1, α = 1, c = 1, d = 0.5, and

ǫ = 0.001. (B) Enlargement of the real parts in (A). The reference solid red line

is the expectation value of the unperturbed Hamiltonian, given in Equation (17).

(C) Enlargement of the imaginary parts in (A). The reference solid red line

indicates zero of the vertical axis.

4. CONCLUSION

The properties of the quantum states for perturbed
Hamiltonian systems involving complex potentials were
investigated. We have considered time-dependence of
the imaginary part of the perturbing potentials as well
as that of the real part, which are both coupled to a
generalized harmonic oscillator through a weak coupling
constant. The solutions of the Schrödinger equation of
the system in the Fock state have been obtained using
the perturbation theory. The effects of the perturbation
on time behavior of the system have been analyzed. The
perturbation corrections on the wave functions and on
the EVH have been analytically investigated. Because we
have considered complicated time-dependent Hamiltonian
systems as a generalization, the EVH for each particular
case is nonconservative. However, when we remove the time
dependence of the Hamiltonian, our quantum solutions reduce
to stationary states where the corresponding energy spectrum
is conservative.

We have applied our theory to particular cases, such as the
perturbed systems of which the unperturbed part is described
by the Caldirola-Kanai Hamiltonian, and by a potential in
which the angular frequency increases in proportion to the
square of time. We see that the deviation of the probability
densities and the EVH from those of the unperturbed system
is, in large, not significant due to the weakness of the coupling.
However, the deviation of the probability densities from those
of the unperturbed system becomes large with the lapse of
time. The imaginary part of the EVH is very small, but not
zero, whereas the real part deviates slightly from that of the
unperturbed system. In the case where the unperturbed part of
the Hamiltonian corresponds to the Caldirola-Kanai oscillator,
such deviation increases as the damping factor β grows. We
have confirmed that the EVH for the system whose angular
frequency is proportional to the square of t oscillate over time
due to the time-variation of the chosen perturbing term in
the Hamiltonian. The period of such oscillation becomes short
as the angular frequency γ that appears in the perturbing
term increases.

The development of the perturbation theory represented
here may also be possibly applied to diverse different quantum
systems which contain time-dependent complex perturbation
potentials beyond those studied in the text. Some insights for
characterizing complex potential systems are necessary in the
light of the fact that a complex potential is receiving due
attention in analyzing actual physical states, such as elastic
scattering processes [5, 6], gain and loss in waveguides [11],
band structures [22], and tunneling in absorptive media [42].
In a unified description of resonance and decay phenomena
in open quantum systems, imaginary energy implies decay
widths of resonance states, while decay widths are inversely
proportional to resonance lifetimes [31, 43]. On the other hand,
in a description of quantum and/or classical waves propagating
across a complex potential, the imaginary energy plays the role
of gain which is the degree of amplification of the transmitted
waves [10]. Model-independent investigations of usual and
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unusual quantum features of complex potential systems may
be a very interesting topic for subsequent research as a further
generalization of conventional quantum mechanics. In addition,
PT based study for a perturbation theory of time-dependent
Hamiltonian systems may also be a good research topic as a
next task.
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APPENDIX A: SOLUTIONS OF EQUATION
(12)

The eigenstates of the invariant operator for the system are
obtained by directly solving Equation (12) or by using the
properties of Equations (15) and (16) [28, 44, 45]. In our case,
the results are given by

φn(q, t) =
(

m0�

f (t)ρ2(t)h̄π

)1/4

(2nn!)−1/2Hn

[

(

m0�

f (t)ρ2(t)h̄

)1/2

q

]

× exp

[

− m0

2f (t)ρ(t)h̄

(

�

ρ(t)
+ iG(t)

)

q2
]

, (A1)

λn = h̄�

(

n+ 1

2

)

. (A2)

APPENDIX B: THE FORMULA OF 5̃2 IN
EQUATION (30)

5̃2 is obtained by evaluating the summation 5̃2 =
∑

n′ ,(n′ 6=n)52〈q|φn′〉. Since 52 given in Equation (22) is

composed of two terms, let us express 5̃2 in the form

5̃2 = 5̃
(1)
2 + 5̃(2)

2 , (B1)

where

5̃
(1)
2 =

∑

n′ ,(n′ 6=n)

5
(1)
2 〈q|φn′〉, (B2)

5̃
(2)
2 =

∑

n′ ,(n′ 6=n)

5
(2)
2 〈q|φn′〉. (B3)

The second term 5̃
(2)
2 is zero because the expectation values

〈φn|Ĥp|φn〉 which are involved in it are zero. On the other
hand, a rigorous evaluation of the first term using Equation
(23) gives
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