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Entangled Photon Pairs in the
Weyl-Wigner Formalism
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A polarization correlation experiment with two maximally entangled photons created by

spontaneous parametric down-conversion is studied in the Weyl-Wigner formalism, that

reproduces the quantum predictions. A realistic stochastic interpretation is proposed

suggesting that an analysis of the experiments more detailed than the Bell approach

may be compatible with local realism. Entanglement appears as a correlation between

fluctuations of signal and vacuum fields.
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1. THE EMPIRICAL REFUTATION OF BELL´S LOCAL REALISM

In 2015, experiments were reported showing for the first time the loophole-free violation of a Bell
inequality [1, 2]. The result has been interpreted as the “death by experiment for local realism,”
this being the hypothesis that “the world is made up of real stuff, existing in space and changing
only through local interactions. . . about the most intuitive scientific postulate imaginable” [3].
This statement, and many similar ones, emphasize both the relevance of local realism for our
understanding of the physical world and the fact that it has been refuted empirically. Nevertheless,
it is worth studying the possibility of a loophole in the empirical refutation via a new definition of
locality weaker than Bell´s. In this article I search for such a weak locality, compatible with the said
experiments [1, 2], that involved photon pairs entangled in polarization produced via spontaneous
parametric down conversion. Thus I will analyze such experiments using the Weyl-Wigner
formalism of quantum optics, rather than the more usual Hilbert-space formalism. Previously I
revisit briefly the origin and meaning of the Bell inequalities [4].

Bell defined “local hidden variables” model, later named “local realistic,” to be any model of
an experiment where the results of all correlation measurements may be interpreted according to
the formulas

〈A〉 =
∫

ρ (λ) dλM (λ,A) , 〈B〉 =
∫

ρ (λ) dλM (λ,B) ,

〈AB〉 =
∫

ρ (λ) dλM (λ,A)M (λ,B) , (1)

where λ ∈ 3 is one or several random (“hidden”) variables, 〈A〉 , 〈B〉, and 〈AB〉 being the
expectation values of the results of measuring the observablesA,B or their productAB, respectively.
Here we will consider that the observables correspond to detection, or not, of some signals
(e.g., photons) by two parties named Alice and Bob, attaching the values 1 or 0 to these two
possibilities. In this case 〈A〉 , 〈B〉 correspond to the single and 〈AB〉 to the coincidence detection
rates respectively. The following mathematical conditions are assumed

ρ (λ) ≥ 0,

∫

ρ (λ) dλ = 1,M (λ,A) ∈ {0, 1} ,M (λ,B) ∈ {0, 1} . (2)
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Santos Local Realism of Entangled Photons

Equation (2) corresponds to a “deterministic model” where the
statistical aspects derive from the probabilistic nature of the
hidden random variables {λ} . More general models may be
constructed where the whole interval [0, 1] is substituted for
{0, 1} in Equation (2). A constraint of locality is included, namely
M (λ,A) is independent of M (λ,B) and ρ (λ) independent
of both M (λ,A) and M (λ,B)[5]. From these conditions it is
possible to derive empirically testable (Bell) inequalities [6, 7].
The tests are most relevant if the measurements performed
by Alice and Bob are specially separated in the sense of
relativity theory.

In the following sections, I shall shortly review the treatment
within the Weyl-Wigner formalism of the polarization
correlation measurement of two maximally entangled photons
produced via spontaneous parametric down conversion
(SPDC). Thus, I continue a theoretical interpretation of SPDC
experiments within the WW formalism in the Heisenberg
picture, that was initiated in the nineties of the past century
[8–18]. In many of those early studies the approach was heuristic
and one of the purposes of this article is to provide a more
formal foundation. The WW formalism suggests an intuitive
picture for photon entanglement and the interpretation of
SPDC experiments in terms of random variables and stochastic
processes. However, there are difficulties with the picture that
will be discussed in section 4 below.

2. THE WEYL-WIGNER FORMALISM IN

QUANTUM OPTICS

2.1. Definition
The WW formalism was developed for non-relativistic quantum
mechanics, where the basic observables involved are positions,
x̂j, and momenta, p̂j, of the particles [19–25]. It may be trivially
extended to quantum optics provided we interpret x̂j and p̂j

to be the sum and the difference of the creation, â†
j , and

annihilation, âj, operators of the j normal mode of the radiation.
That is

x̂j ≡ c√
2ωj

(

âj + â†
j

)

, p̂j ≡
ihωj√
2c

(

âj − â†
j

)

(3)

⇒ âj =
1√
2

(

ωj

c
x̂j +

ic

hωj
p̂j

)

, â†
j =

1√
2

(

ωj

c
x̂j −

ic

hωj
p̂j

)

.

Here h is Planck constant, c the velocity of light and ωj the
frequency of the normal mode. In the following, I will use units
h = c = 1. For the sake of clarity I shall represent the operators

in a Hilbert space with a “hat,” e.g., âj, â
†
j , and the amplitudes in

the WW formalism without “hat,” e.g., aj, a
∗
j .

The connection with the Hilbert-space formalism is made via

the Weyl transform as follows. For any trace class operator M̂ of
the former we define its Weyl transform to be a function of the

field operators
{

âj, â
†
j

}

, that is

W
M̂

= 1

(2π2)n

n
∏

j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dµj exp

[

−2iλjReaj − 2iµjImaj
]

×Tr
{

M̂ exp
[

iλj

(

âj + â
†
j

)

+ iµj

(

âj − â
†
j

)]}

.

The transform is invertible that is

M̂ = 1

(2π2)2n

n
∏

j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dµj exp

[

iλj

(

âj + â†
j

)

+ iµj

(

âj − â†
j

)]

×
n
∏

j=1

∫ ∞

−∞
dReaj

∫ ∞

−∞
dImajWM̂

{

aj, a
∗
j

}

exp[−2iλjReaj − 2iµjImaj].

The transform is linear, that is if f is the transform of f̂ and g the

transform of ĝ, then the transform of f̂ + ĝ is f + g.
It is standard wisdom that the WW formalism is unable to

provide any intuitive picture of the quantum phenomena. The
reason is that theWigner function, that may represent a quantum
state, is not positive definite in general and therefore cannot
be interpreted as a probability distribution (of positions and
momenta in quantummechanics, or field amplitudes in quantum
optics). However, we shall see that in quantum optics the
formalism in the Heisenberg representation, where the evolution
goes in the field amplitudes, allows the interpretation of the
experiments using theWigner function only for the vacuum state,
that is positive definite.

The use of the WW formalism in quantum optics
has the following features in comparison with the
Hilbert-space formalism:

1. It is just quantum optics, therefore the predictions for
experiments are the same.

2. The calculations using the WW formalism are generally no
more involved than the corresponding ones in Hilbert space,
and sometimes might be easier because no problem of non-
commutativity arises.

3. The formalism suggests a physical picture in terms of
random variables and stochastic processes. In particular the
counterparts of creation and annihilation operators look like
random amplitudes.

Here we shall use the formalism in the Heisenberg picture,
where the evolution appears in the observables. On the other
hand the concept of photon, as a particle, does not appear in
the WW formalism.

2.2. Properties
All properties of the WW transform in particle systems may be
translated to quantum optics via Equation (3). The transform
allows getting a function of (c-number) amplitudes for any trace-
class operator (e.g., any function of the creation and annihilation
operators of “photons”). In particular we may get the (Wigner)
function corresponding to any quantum state. For instance
the vacuum state, represented by the density matrix |0〉〈0| , is
associated with the following Wigner function
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W0 =
∏

j

2

π
exp

(

−2
∣

∣aj
∣

∣

2
)

. (4)

This function might be interpreted as a (positive) probability
distribution. Hence the picture that emerges is that the quantum
vacuum of the electromagnetic field (also named zeropoint field,
ZPF) consists of stochastic fields with a probability distribution
independent for every mode, having a Gaussian distribution with
mean energy 1

2hω per mode.
Similarly there are functions associated with the observables.

For instance the following Weyl transforms are obtained

âj ↔ aj, â
†
j ↔ a∗j ,

1

2

(

â†
j âj + âjâ

†
j

)

↔ aja
∗
j =

∣

∣aj
∣

∣

2
,

â†
j âj = 1

2

(

â†
j âj + âjâ

†
j

)

+ 1

2

(

â†
j âj − âjâ

†
j

)

↔
∣

∣aj
∣

∣

2 − 1

2
,

(

â†
j + âj

)n
↔

(

aj + a∗j
)n

,
(

â†
j − âj

)n
↔
(

aj − a∗j
)n

, n an integer.

(5)

I stress that the quantities aj and a∗j are c-numbers and therefore

they commute with each other. The former Equation (5) mean
that in expressions linear in creation and/or annihilation operator
the Weyl transform just implies “removing the hats.” However
this is not the case in nonlinear expressions in general. In fact
from the latter two Equations (5) plus the linearity property it
follows that for a product in theWW formalism the Hilbert space
counterpart is

akj a
∗l
j ↔ (âkj â

†l
j )sym, (6)

where the subindex sym means writing the product with all
possible orderings and dividing for the number of terms. Hence
the WW field amplitudes corresponding to products of field
operators may be obtained putting the operators in symmetrical
order via the commutation relations. Particular instances that will
be useful latter are the following

â†
j âj →

∣

∣aj
∣

∣

2 − 1

2
, âjâ

†
j →

∣

∣aj
∣

∣

2 + 1

2
, âj

2 → a2j , â
†2
j → â∗2j

â†
j âjâ

†
j âj →

∣

∣aj
∣

∣

4 −
∣

∣aj
∣

∣

2
, âjâ

†
j âjâ

†
j →

∣

∣aj
∣

∣

4 +
∣

∣aj
∣

∣

2
, (7)

â†
j â

†
j âjâj →

∣

∣aj
∣

∣

4 − 2
∣

∣aj
∣

∣

2 + 1

2
, âjâjâ

†
j â

†
j →

∣

∣aj
∣

∣

4 + 2
∣

∣aj
∣

∣

2 + 1

2
.

Other properties may be easily obtained from well known results
of the standard Weyl-Wigner formalism in particle quantum
mechanics. I will present them omitting the proofs.

Expectation values may be calculated in the WW formalism
as follows. In the Hilbert-space formalism they read Tr(ρ̂M̂), or
in particular 〈ψ | M̂ | ψ〉, whence the translation to the WW
formalism is obtained taking into account that the trace of the
product of two operators becomes

Tr(ρ̂M̂) =
∫

Wρ̂

{

âj, â
†
j

}

WM̂

{

âj, â
†
j

}

∏

j

dReajdImaj.

That integral is the WW counterpart of the trace operation in the
Hilbert-space formalism. Particular instances are the following
expectations that will be of interest later on

〈

∣

∣aj
∣

∣

2
〉

≡
∫

dŴW0

∣

∣aj
∣

∣

2 = 1

2
,
〈

anj a
∗m
j

〉

= 0 if n 6= m.

〈

0
∣

∣

∣
â†
j âj

∣

∣

∣
0
〉

=
∫

dŴ(a∗j aj −
1

2
)W0 = 0,

〈

0
∣

∣

∣âjâ
†
j

∣

∣

∣ 0
〉

=
∫

dŴ(
∣

∣aj
∣

∣

2 + 1

2
)W0 = 2

〈

∣

∣aj
∣

∣

2
〉

= 1, (8)

〈

∣

∣aj
∣

∣

4
〉

= 1/2,
〈∣

∣aj
∣

∣

n |ak|m
〉

=
〈∣

∣aj
∣

∣

n〉 〈|ak|m
〉

if j 6= k.

where W0 is the Wigner function of the vacuum (Equation
4). This means that in the WW formalism the field amplitude
aj (coming from the vacuum) behaves like a complex random
variable with Gaussian distribution and mean square modulus
〈

∣

∣aj
∣

∣

2
〉

= 1/2. I point out that the integral for any mode

not entering in the function M
({

aj, a
∗
j

})

gives unity in the

integration due to the normalization of the Wigner function
(Equation 4). An important consequence of Equation (8) is
that normal (antinormal) ordering of creation and annihilation
operators in the Hilbert space formalism becomes subtraction
(addition) of 1/2 in the WW formalism. The normal ordering rule
is equivalent to subtracting the vacuum contribution.

2.3. Evolution
In the Heisenberg picture of the Hilbert-space formalism the
density matrix is fixed and any observable, say M̂, evolves
according to

d

dt
M̂ = i

(

ĤM̂ − M̂Ĥ
)

, M̂ = M̂ (t) ,

where Ĥ is the Hamiltonian. Translated to the WW formalism
this evolution of the observables is given by the Moyal equation
with the sign changed. The standard Moyal equation applies
to the evolution of the Wigner function, that represents a
quantum state being the counterpart of the density matrix in the
Schrödinger picture of the Hilbert space formalism. Thus, in the
WW formalism we have

∂WM̂

∂t
= 2{sin

[

1

4

(

∂

∂Rea′j

∂

∂Ima′′j
− ∂

∂Ima′j

∂

∂Rea′′j

)]

×WM̂

{

a′j, a
∗′
j , t

}

H
(

a′′j , a
∗′′
j

)

}aj , (9)

where {}aj means making a′j = a′′j = aj and a∗′j = a∗′′j = a∗j after
performing the derivatives.

A simple example is the free evolution of the field amplitude
of a single mode. The Hamiltonian in the WW formalism may
be trivially obtained translating the Hamiltonian of the Hilbert-
space formalism, that is

Ĥfree = ωjâ
†
j âj =

1

2
ωj(â

†
j âj + âjâ

†
j )−

1

2
ωj
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→ Hfree = ωj(
∣

∣aj
∣

∣

2 − 1

2
) = ωj

[

(Reaj)
2 + (Imaj)

2 − 1

2

]

,

where we have taken the first Equation (8) into account. This
leads to

d

dt
aj =

1

2
ωj

[

2(Imaj)− 2
(

Reaj
)

i
]

= −iωjaj ⇒ aj (t) = aj (0) exp
(

−iωjt
)

(10)

Another example is the down-conversion process in a nonlinear
crystal. Avoiding a detailed study of the physics inside the
crystal [12, 26] we shall study a single mode problem with the
model Hamiltonian[27]

ĤI = Aâ†
s â

†
i exp (−iωPt)+ A∗âsâi exp (iωPt) , (11)

when the laser is treated as classically prescribed, undepleted,
and spatially uniform field of frequency ωP. The parameter
A is proportional to the pump amplitude and the nonlinear
susceptibility. In the WW formalism this Hamiltonian becomes
(see Equation 5)

HI = Aa∗s a
∗
i exp (−iωPt)+ A∗asai exp (iωPt) ,

whence taking Equation (9) and (10) into account we have

d

dt
as = −iωsas − iAa∗i exp (−iωPt) , (12)

d

dt
ai = −iωiai − iAa∗s exp (−iωPt) .

We shall assume that the vacuum field as evolves as in Equation

(10) before entering the crystal and then according to Equation

(12) inside the crystal, that is during the time T needed to cross it.
In order to get the radiation intensity to second order in AT ≡ C
(see below section 2.4) wemust solve these two coupled equations
also to second order. After some algebra this leads to

as(t) =
(

1+ 1

2
|C|2

)

as(0) exp (−iωst)− iCa∗i (0) exp [i (ωi − ωP) t]

= [

(

1+ 1

2
|C|2

)

as(0)− iCa∗i (0)] exp (−iωst) , (13)

and the latter equality takes the “energy conservation” into
account, that in the WW formalism looks like a condition of
frequency matching, ωP = ωs + ωi, with no reference to
photon energies.

Equation (13) gives the time dependence of the relevant mode
of signal after crossing the crystal, but we should take account of
the field dependence on position including a factor exp (iks · r) ,
that is a phase depending on the path length. Therefore, the
correct form of Equation (13) would be, modulo a global phase,

as(r,t) = [

(

1+ 1

2
|C|2

)

as(0)− iCa∗i (0)] exp (iks·r− iωst) .

(14)

A similar result is obtained for ai (t) , that is

ai(r,t) = [

(

1+ 1

2
|C|2

)

ai(0)− iCa∗s (0)] exp (iki·r− iωit) .

(15)
Equations (14) and (15) may be interpreted saying that the
interaction of the vacuum signal with the pumping laser produces
an additional field that travels in the direction of the idler.
Similarly the vacuum idler produces a field that travels in the
direction of the signal. Therefore, it has sense adding the initial
vacuum signal plus the amplification of the idler.

We may perform a change from C to the new parameter

D =
(

1+ 1
2 |C|2

)−1
C, whence Equation (7) become, to order

O
(|D|2

)

,

E+s =
(

1+ 1

2
|C|2

)

[

as + Da∗i
]

exp (iks·r− iωst) , (16)

E+i =
(

1+ 1

2
|C|2

)

[

ai + Da∗s
]

exp (iki·r− iωit) , |D| << 1,

and I will ignore the constant global factor
(

1+ 1
2 |C|2

)

∼ 1
because we will be interested in calculating relative
detection rates.

Equations (14) and (15) , although good enough for
calculations, are bad representations of the physics. In fact a
physical beam corresponds to a superposition of the amplitudes,
a∗
k
, of many modes with frequencies and wavevectors close to ωs

and ks, respectively. For instance we may represent the positive
frequency part of the idler beam created in the crystal, to first
order in D, as follows

E
(+)
i (r, t) = −iD

∫

fi (k) d
3
ka∗

k
exp [i (k− ks)

·r− i (ω − ωs) t]+ E
(+)
ZPF , (17)

where ω = ω (k) and fi (k) is an appropriate function, with

domain in a region of k around ks. The field E
(+)
ZPF is the sum of

amplitudes of all vacuum modes, including the one represented
by as in Equation (14) . (We have neglected a term of order |C|2
so that E

(+)
i is correct to order |C| or what is equivalent order

|D|). These vacuum modes have fluctuating amplitudes with a
probability distribution given by the vacuum Wigner function
(Equation 4). It may appear that the amplitude as is lost “as a
needle in the haystack” within the background of many radiation
modes, but it is relevant in correlation experiments. In fact the
vacuum amplitude as in Equations (13) or (14) is fluctuating
and the same fluctuations appear also in the signal amplitude a∗s
of Equation (15). Therefore, coincidence counts will be favored
when large positive fluctuations of the fields (Equations 13, 15)
arrive simultaneously to Alice and Bob detectors. In the Hilbert-
space formalism this fact is named “entanglement between a
signal and the vacuum.” In theWW formalism of quantum optics
this entanglement appears as a correlation of fluctuations between
a signal and a vacuum field in distant places.

The mentioned properties of theWW formalism are sufficient
for the interpretation of experiments involving pure radiation
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field interacting with macroscopic bodies, these defined by
their bulk electric properties like the refraction index or the
nonlinear electrical susceptibility. Within the WW formalism
the interaction between the fields (either signals or vacuum
fields) and macroscopic bodies may be treated as in classical
electrodynamics. This is for instance the case for the action
of a laser on a crystal with nonlinear susceptibility, studied
elsewhere [12, 26].

3. PHOTON PAIRS ENTANGLED IN

POLARIZATION

In this section, I will apply the WW formalism to the
description of the polarization correlation of entangled photon
pairs produced via spontaneous parametric down-conversion
(SPDC). I will assume that the experimental set-up is made so
that the fields arriving at the detectors correspond to so called
“photon pairs maximally entangled” in polarization. These fields
are obtained in the outgoing channels of a beam splitter after
sending the signal and idler beams produced by SPDC to the
incoming channels. The electromagnetic radiation is a vector
field with two possible polarizations and I should take into
account this fact including vectors in the description, that we
have omitted till now. Thus, I will write the beams produced
as follows

E
+
A =

(

as + Da∗i
)

exp (−iωst) v+ i
(

ai + Da∗s
)

exp (−iωit) h,

E
+
B = −i

(

as + Da∗i
)

exp (−iωst) h+
(

ai + Da∗s
)

exp (−iωit) v,

(18)

where h is a unit vector horizontal and v vertical. We have
not written explicitly the dependence on position, that could
be restored without difficulty (see Equation 17). Furthermore,
from now on I will ignore all spacetime dependence that usually
contributes phase factors irrelevant for our argument. The
complex conjugate of the above fields will be labeled as follows

(E+A )
∗ ≡ E

−
A , (E

+
B )

∗ ≡ E
−
B

The “two photons entangled in polarization,” represented by
Equation (18) in the Weyl-Wigner formalism, will arrive at the
Alice and Bob polarization analyzers put at angles θ and φ with
the vertical, respectively. Hence the beams emerging from them
will have field amplitudes

E+A =
(

as + Da∗i
)

cos θ + i
(

ai + Da∗s
)

sin θ ,

E+B = −i
(

as + Da∗i
)

sinφ +
(

ai + Da∗s
)

cosφ, (19)

and polarizations at angles θ and φ with the vertical, respectively.
For later convenience I define the partial fields

E+A0 = as cos θ + iai sin θ ,E
+
B0 = −ias sinφ + ai cosφ, (20)

E+A1 = D
[

a∗i cos θ + ia∗s sin θ
]

,E+B1 = D
[

−ia∗i sinφ + a∗s cosφ
]

.

The single, PA, PB, and coincidence, PAB, detection rates in the
WW formalism may be obtained by comparison with the rates

calculated in the Hilbert-space formalism. Thus, in the following
we revisit briefly the Hilbert-space treatment of the entangled
photon pairs. I will start with the quantum fields arriving at
Alice and Bob, respectively, that are the counterparts of the WW
(Equation 19). It is trivial to get them either from Equation (11)
or, taking Equation (5) into account, that is “putting hats” in the
WW (Equation 20). We get the field operators

Ê+A = Ê+A0 + Ê+A1, Ê
+
B = Ê+B0 + Ê+B1, (21)

Ê+A0 = âs cos θ + iâi sin θ , Ê
+
B0 = −iâs sinφ + âi cosφ,

Ê+A1 = D[â†
i cos θ + iâ†

s sin θ], Ê
+
B1 = D[−iâ†

i sinφ + â†
s cosφ],

and similar for the Hermitian conjugates. Alice’s single detection
rate is proportional to the following vacuum expectation (with

Ê−A =
(

Ê+A
)†
)

PA = 〈0 | Ê−A Ê+A | 0〉 = |D|2 〈0 | Ê−A1Ê+A1 | 0〉
= |D|2 〈0 | (âi cos θ − iâs sin θ)(â

†
i cos θ + iâ†

s sin θ) | 0〉
= |D|2 〈0 | âiâ†

i cos
2 θ + âsâ

†
s sin

2 θ | 0〉 = |D|2 , (22)

where in the former equality, I have neglected creation Ê−A0
(annihilation Ê+A0) operators appearing on the left (right). A
similar result may be obtained for the single detection rate of
Bob, that is

PB = 〈0 | Ê−B Ê+B | 0〉 = |D|2 , Ê−B =
(

Ê+B
)†

. (23)

We are assuming ideal detectors, but for real detectors PA and PB
should be multiplied times the detection efficiencies ηA and ηB,
and the coincidence rate PAB times ηAηB.

In order to get the detection rule for single rates in the WW
formalism we should translate Equation (22) taking Equation (8)
into account. We get

PA =
[

(
〈|ai|2

〉

− 1

2
) cos2 θ + (

〈|as|2
〉

− 1

2
) sin2 θ

]

+ |D|2
[

(
〈|as|2

〉

+ 1

2
) cos2 θ + (

〈|ai|2
〉

+ 1

2
) sin2 θ

]

= |D|2
[

cos2 θ + sin2 θ
]

= |D|2 ,
〈

aia
∗
s

〉

=
〈

asa
∗
i

〉

= 0, (24)

that agrees with the result calculated in the Hilbert-space
formalism (Equation 22). Now we compare Equation (24) with
the average of the field intensity arriving at Alice (see Equation
19), that is

〈IA〉 =
〈

∣

∣E+A
∣

∣

2
〉

=
〈|ai|2

〉

cos2 θ +
〈|as|2

〉

sin2 θ (25)

+ |D|2
[〈|as|2

〉

cos2 θ +
〈|ai|2

〉

sin2 θ
]

= 1

2

(

1+ |D|2
)

.

We see that going from Equation (26) to Equation (24) the
signal terms (those of order |D|2) are multiplied times 2, whilst
those coming from the vacuum (of order unity) are eliminated.
This may be seen as a subtraction of the vacuum (ZPF) and
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multiplication of the signal times 2, which leads to the following
rule for the single detection rate in the WW formalism:

PA = 2 〈IA〉−2 〈IA0〉 , IA = E+AE
−
A =

∣

∣E+A
∣

∣

2
, IA0 =

∣

∣E+A0
∣

∣

2
. (26)

The Hilbert-space rule for the coincidence rate is the vacuum
expectation value of the product of four field operators in normal
order. Here we have two terms

PAB = 1

2
〈0 | Ê−A Ê−B Ê+B Ê+A | 0〉 + 1

2
〈0 | Ê−B Ê−A Ê+A Ê+B | 0〉, (27)

that would be equal if Ê+A and Ê+B commute. The former
expectation may be evaluated to order |D|2 as follows

〈0 | Ê−A Ê
−
B Ê

+
B Ê

+
A | 0〉 = 〈0 | Ê−A1Ê−B Ê+B Ê+A1 | 0〉 = 〈0 | Ê−A1Ê−B0Ê+B0Ê+A1 | 0〉

= 〈0 | Ê−A1Ê−B0 | 0〉〈0 | Ê+B0Ê+A1 | 0〉 =
∣

∣

∣〈0 | Ê+B0Ê+A1 | 0〉
∣

∣

∣

2

= |D|2
∣

∣

∣〈0 |
(

−iâs sinφ + âi cosφ
)

(

â†
i cos θ + iâ†

s sin θ
)

| 0〉
∣

∣

∣

2
,

where the former equality, similar to Equation (22) , removes
creation operators on the left and annihilation operators on
the right, the second one removes terms of order |D|4 and the
rest is trivial. The latter term of Equation (27) gives a similar
contribution so that we get

PAB = 1

2

∣

∣

∣〈0 | Ê+B0Ê+A1 | 0〉
∣

∣

∣

2
+ 1

2

∣

∣

∣〈0 | Ê+A0Ê+B1 | 0〉
∣

∣

∣

2

= |D|2 cos2(θ − φ). (28)

Here the creation operators are placed to the right and those
of annihilation to the left, so that no subtraction is required
in passing to the WW formalism. It is enough to substitute
c-number amplitudes multiplied times 2 for the field operators,
in order to get the rule for the coincidence rate in the WW
formalism. That is

〈

E+A0E
+
B1

〉

+
〈

E+A1E
+
B0

〉

=
〈

E+AE
+
B

〉

= D cos(θ − φ) (29)

⇒ PAB =
∣

∣

〈

E+AE
+
B

〉∣

∣

2 = |D|2 cos2(θ − φ),

where we have taken Equations (20) and (8) into account. Here
the vacuum subtraction is not explicit because the vacuum term
would be zero, that is

〈

E+A0E
+
B0

〉

= 0.
It is interesting to get the coincidence detection rate in

terms of field intensities, rather than amplitudes. To do that we
start calculating

〈IAIB〉 =
〈

E+AE
−
AE

+
B E

−
B

〉

. (30)

In the WW formalism the field amplitudes are c-numbers,
therefore they commute, and the averages should be performed as
in Equation (8). The expectation (Equation 30) may be obtained
taking into account that the fields have the mathematical
properties of Gaussian random variables (see Equation 4)
(although this section is devoted to calculations and for the

moment I am not committed to any physical interpretation).
Thus, I apply a well-known property of the average of the product
of four Gaussian random variables, that is

〈IAIB〉 =
〈

E+AE
−
A

〉 〈

E+B E
−
B

〉

+
〈

E+AE
−
B

〉 〈

E−AE
+
B

〉

+
〈

E+AE
+
B

〉 〈

E−AE
−
B

〉

= 〈IA〉 〈IB〉 +
∣

∣ 〈E+AE−B 〉
∣

∣

2 +
∣

∣

〈

E+AE
+
B

〉∣

∣

2
. (31)

A similar procedure but involving the vacuum intensities, gives

〈IA0IB0〉 = 〈IA0〉 〈IB0〉 +
∣

∣

〈

E+A0E
−
B0

〉∣

∣

2 +
∣

∣

〈

E+A0E
+
B0

〉∣

∣

2
. (32)

Here the third term does not contribute and the second one
equals the second term of Equation (31) to order |D|2 . Hence,
we get the rule for the coincidence rate in the WW formalism
that in the following I write both in terms of fields and in terms
of intensities.

PAB =
∣

∣

〈

E+AE
+
B

〉∣

∣

2 = 〈IAIB〉 − 〈IA〉 〈IB〉 − 〈IA0IB0〉 + 〈IA0〉 〈IB0〉 .
(33)

4. LOCALITY IN THE EXPERIMENTS WITH

ENTANGLED PHOTON PAIRS

4.1. Realistic Interpretation of the Vacuum

Radiation Field
I emphasize again that theWW formalism provides an alternative
formulation of quantum optics, physically equivalent to the more
common Hilbert-space. But it suggests a picture of the optical
phenomena quite different from the latter, where photon is the
fundamental concept. Indeed the WW picture may provide a
local realistic interpretation in terms of random variables and
stochastic processes. In the following, I present the main ideas of
this interpretation. It rests upon several assumptions as follows.

The fundamental hypothesis is that the electromagnetic
vacuum field is a real stochastic field (the zeropoint field, ZPF).
If expanded in normal modes the ZPF has a (positive) probability
distribution of the amplitudes given by Equation (4). According
to that assumption any photodetector would be immersed in an
extremely strong radiation, infinite if no cut-off existed. Thus,
how might we explain that detectors are not activated by the
vacuum radiation? Firstly the strong vacuum field is effectively
reduced to a weaker level if we assume that only radiation within
some (small) frequency interval is able to activate a photodetector,
that is the interval of sensitivity (ω1,ω2). However, the problem
is not yet solved because signals involved in experiments have
typical intensities of order the vacuum radiation in the said
frequency interval so that the detector would be unable to
distinguish a signal from the ZPF noise. Our proposal is to
assume that a detector may be activated only when the net
Poynting vector (i.e., the directional energy flux) of the incoming
radiation is different from zero, including both signal and vacuum
fields. More specifically I will assume that the detector possesses an
active area and the probability of a photocount is proportional to
the net radiant energy flux crossing that area from the front side
during some activation time, the probability being zero if the net
flux crossing the area is in the reverse direction.
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These assumptions allow to understand qualitatively why the
signals, but not the vacuum fields, activate detectors. Indeed the
ZPF arriving at any point (in particular the detector) would be
isotropic on the average, whence its associated mean Poynting
vector would be nil, therefore only the signal radiation should
produce photocounts. A problem remains because the vacuum
fields are fluctuating so that the Poynting vector also fluctuates.
Hence we may predict the existence of some dark rate even
at zero Kelvin. The problems derived from the fluctuations
diminish taking into account that photocounts are not produced
by an instantaneous interaction of the fields with the detectors
but the activation requires some time interval, a known fact in
experiments. Therefore the effective activating energy flux is a
time average whose fluctuations are plausibly small.

Of course these arguments are qualitative and a quantitative
estimate should be worthwhile. However making such an
estimate is rather involved and in the following I will just sketch
the steps required. We should start calculating the probability
distribution of the Poynting vector P due to the ZPF at a point
r in space at time t. If we expand the ZPF in plane waves as usual,
the probability of the Z component of Pmay be written as a sum
involving all radiation modes, that is

Prob (Pz) =





∑

j

∑

k

ajakProb
(

aj, ak
)

Ej (r,t)× Bk (r,t)



 · uz ,

(34)
where aj (ak) is the amplitude of the mode j

(

k
)

, Ej (Bk) its
associated electric (magnetic) field and uz is a unit vector in
the Z direction. The probability density Prob

(

aj, ak
)

is related
to Equation (4). We assume that only field components with
frequencies in the sensitivity interval (ω1,ω2) are effective for
detection, whence we should restrict the double sum to modes
with frequencies in that interval. Hence we might obtain the
probability distribution of the integrated energy flux,8, crossing
the active area of the detector during the activation time
T. Finally we may assume that a detection event takes place
whenever8 surpasses a threshold80 > 0 related to the detection
efficiency, η, of the detector. If the ZPF is isotropic the flux
crossing the active area of the detector might be positive or
negative with equal probabilities but the ratio 8/T, would be
smaller as T is larger, zero for T → ∞. We may choose 80,
as a function of T, so that the ZPF 8 surpasses 80 very rarely.
However for any finite T there will be a finite probability that
8 > 80 thus producing photocounts even in the absence of
signals. These spurious counts give a dark rate r usually attributed
to thermal fluctuations. Indeed the experimental dark rate is
known to decrease with temperature, but we propose that rwould
remain finite at zero Kelvin. Now we study the case when there
is a signal, superimposed to the ZPF, arriving at the detector.
The signal may be weak with respect to a typical short-time
fluctuation of the ZPF, but it is positive at all times because signals
arrive at the detector in the positive Z direction. Thus, a positive
quantity should be added to the fluctuating energy flux due to
the ZPF, calculated via Equation (34). In a particular experiment
we should choose T, the sensitivity interval and the threshold
80 such that we have high detection efficiency η and small dark

rate r, but there are obvious constraints. For instance in order to
have a small r we need high T and/or high 80, but in this case
some signals will become undetected leading to a decrease of η.
I propose that these constraints are the physical reason for the
difficulty of manufacturing very efficient photon counters.

4.2. Interpretation of the Photon

Experiments
Our aim is to achieve a realistic local interpretation of the
experiments measuring polarization correlation of entangled
photon pairs, that we studied with the WW formalism in the
previous section. Thus, I will consider two vacuum beams
entering the nonlinear crystal, where they give rise to a “signal”
and an “idler” beams. After crossing several appropriate devices
they produce fields that will arrive at the Alice and Bob detectors.
I do not attempt to present a detailed model, that should involve
many radiation modes, in order to represent the signals as
(narrow) beams (see Equation 17). I will study only detection
rates, that may be illustrated with just 2 vacuum modes.

In agreement with our previous hypotheses a photodetection
should derive from a relatively large integrated energy flux
crossing the active surfaces. In actual experiments the pumping
laser is pulsed and it is a fact that the detection rates are far
smaller than the pulsing rate. In our interpretation this means
that only in a tiny fraction of laser pulses, the flux 8 becomes
greater than80. Thus, I will replace the threshold assumption of
the previous subsection, i.e., detection when8 > 80, by another
assumption, more convenient for the simplicity of calculations,
namely that the detection probability is proportional to 8 if
8 > 0, zero otherwise. I believe that the new assumption might
be derived from the old one but I omit the proof. In the following
it will be convenient to write everything in terms of the Poynting
vector EI rather than the integrated flux, 8, assuming that the
single detection probability per time window, T, by Alice is
given by

PA =
〈

[MA]+
〉

,MA ≡ T−1

∫ T

0
EnA · EIAtotal (rA,t) dt, (35)

where [M]+ = M if M > 0, [M]+ = 0 otherwise, and EnA is a
unit vector in the direction of the incoming signal beam, assumed
normal to the active area of the detector. The experimental
time window has a duration of the order of a laser pulse, and
may be different from the activation time of the detector but I
will use the same label T. I shall use units such that both the
intensities and the detection rates are dimensionless defining the
rate as probability of a photodetection within one time window
T. In Equation (35) , I include a positivity constraint that I
will ignore in the following substituting MA for [MA]+. This
approximation underestimate the rate. In fact the quantity MA

defined in Equation (35) will be positive in a fraction, say f < 1,
of the samples and negative in the fraction 1 − f . In the former
case [MA]+ = MA, in the latter [MA]+ = 0. Therefore 〈MA〉 <
〈

[MA]+
〉

, but we assume that the error is small if the activation
time is large as commented in the previous subsection.

In order to provide a quantitative argument, I will consider
a simplified model involving just two radiation modes, as and
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ai, and follow closely the calculation of the section 3. The
fields emerging from the nonlinear crystal, after crossing several
appropriate devices, will arrive at the Alice and Bob detectors.
Each one of these fields consists of two parts, one large, of order
unity and another of order |D| << 1. The former, given in
Equation (20) , is what would arrive at the detectors if there was
no pumping laser and therefore no signal. It is just a part of
the ZPF, whilst the rest of the ZPF consists of radiation that did
not appear explicitly in the equations of section 3 because it was
not needed in the calculations. As discussed above the total ZPF
should have the property of isotropy, therefore giving an energy
flux that may be positive or negative, nil on the average. The
terms of order |D| , given by Equation (20) , correspond to the
signal produced in the nonlinear crystal after the modifications
introduced by beam splitters and polarizers (and other devices
like apertures, filters, lens systems, etc. whose action is not
detailed in our simplified model). In summary the Poynting
vector of the radiation at the (center of the) active area of Alice´s
detector may be written

Alice :EIAtotal (t) = EIAZPF (t)+ EIA (t) . (36)

EIA corresponding to the field EA, Equation (19) and EIAZPF (t)
comes from the rest of the ZPF. EIA (t) has the direction of
EnA, (Equation 35), whence the radiation intensity equals the
modulus of the Poynting vector. Furthermore, its intensity is time
independent (the time dependence of the signal fields derives
from the sum of many modes as in Equation 17), so that we
may write

MA = IAZPF + IA, I
A
ZPF ≡ T−1

∫ T

0
EnA · EIAZPF (rA,t) dt, (37)

and similar for Bob´sMB.
In order to get the Alice single detection rate we need the

average ofMA, that we will evaluate by comparison with the case
when there is no pumping on the nonlinear crystal. In this case
IA becomes the intensity IA0, Equation (26) , and the Poynting
vector of all vacuum fields arriving at the detector of Alice, i.e.,
EIAZPF (t) + EIA0 (t) , should have nil average due to the isotropy of
the ZPF. And similar for Bob. As a consequence the intensities
IA0 and IB0, Equation (26) , should fulfill the following equalities

〈

IAZPF + IA0
〉

=
〈

IBZPF + IB0
〉

= 0. (38)

It would appear that this relation could not be true for all values
of the angles θ ,φ (Equation 20) because the ZPF Poynting vector
ÎAZPF and ÎBZPF should not depend on our choice of angles whilst
IA0 and IB0 do depend. However, this is flawed, the positions of
the polarizers may influence also the ZPZ arriving at the detectors
and it is plausible that the total Poynting vector has always zero
mean. From Equation (35) to (38) we may derive the single rates
of Alice and Bob, that is

PA = 〈MA〉 = 〈IA〉 − 〈IA0〉 , PB = 〈MB〉 = 〈IB〉 − 〈IB0〉 . (39)

The result agrees with the quantum calculation in the WW
formalism except for a factor 2 that derives from a different

definition of field amplitudes. I point out that no dark rate
appears in Equation (39) due to our approximation [M]+ = M,
see comment after Equation (35).

An analysis should be also made for the coincidence detection
rates, but it is more involved and will not be included in the
present paper (for a preliminary approach see [28]). A sketch is
as follows. The coincidence detection probability in a given time
window would be given by an extension of Equation (35), that is

PAB =
〈

[MA]+ [MB]+
〉

.

This will give rise to many correlations between the field
intensities arriving at Alice and Bob detectors. Determining
the correct values of the correlations is a subtle matter, but I
hope that an appropriate choice might reproduce the quantum
predictions and the empirical results. The relevant achievement
in the experiments is the strong correlation, that is the fact that
PAB is of the same order as PA and PB. Such a strong correlation
is crucial for the violation of a Bell inequality. A qualitative
argument for that correlation in our model is the following.
The vacuum fields arriving at the nonlinear crystal are enhanced
by the action of the laser, thus producing the socalled signal
and idler fields. That enhancement is rarely strong enough to
produce detection events in Alice and Bob detectors. However,
from time to time a combination of high values of both relevant
(fluctuating) vacuum fields, as and ai, will give a relatively intense
signal and idler fields that combined in the form of Equation

(18) produce high field intensities arriving at both Alice and
Bob detectors, giving rise to a coincidence count. The point is
that a detection event requires simultaneous high values of as
and ai and in this case the signal intensities arriving at Alice
and Bob are both large, whence detections are most probably
produced in coincidence (provided the angles θ ,φ in Equation
19 are appropriate).

TheWW formalism suggests a quite different picture from the
Hilbert-space one in terms of photons. We should not assume
that the small value of the coupling parameter |D|2 implies that
the production probability of “entangled photon pairs” during
a time window is small, but that the probability of detection,
conditional to the photon production, is of the order of unity.
(The latter probability is defined as the detection efficiency). In
the WW formalism the probability of a photocount by Alice or
Bob does not factorize that way. Furthermore, the concept of
photon does not appear at all, but there are continuous fluctuating
fields including a real ZPF arriving at the detectors that are
activated when the arriving signal intensities are large enough.

Finally I stress that the hypothesis that the quantum vacuum
fields are real allows a more detailed model of the experiments
than Bell´s approach and the model is local. Indeed, as in the
interpretation of single detections rates (Equation 39), the signals
(accompanied by vacuum) travel causally from the source to
the detectors.

5. DISCUSSION

Bell´s work of 1964 put forward an acute conflict in theoretical
physics. The derived Bell inequalities are currently seen as
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necessary conditions for any local realistic theory of physics.
On the other hand the inequalities are incompatible with some
predictions of quantum mechanics. The conclusion is that either
local realism does not hold in nature or that quantum mechanics
is not valid in all circumstances. Both alternatives are hard
to accept.

Realims is a principle that may be stated saying that: In science
we ought to be concerned with what nature does, not just with
predictions of empirical results, so that wemay get a picture of the
natural world. In physics the picture should be quantitative, and
we should interpret the observed phenomena in terms of general
laws. In the microscopic domain the laws are those of quantum
mechanics. The problem is that for some experiments, like those
mentioned in section 1 [1, 2], the evolution of particles and/or
fields, seems to require influences traveling at a superluminal
velocity. This means a violation of “locality.”

Locality (or relativistic causality) was defined and emphatically
supported by Einstein. For instance in his authobiographical
notes [29] Einstein wrote “On one supposition we should, in
my opinion, absolutely hold fast: the real factual situation of
the system S2 is independent of what is done with the system
S1, which is spatially separated from the former.” Thus, the
violation of locality by experiments might look as a contradiction
between quantum theory and relativity. The present wisdom is
that locality has been indeed violated by the recent experiments
but the conflict with relativity is minimized by the fact that
quantum mechanics does not predict the possibility of sending
superluminal signals (no-signaling theorem). However, in the
views of many people including this author, a violation of locality
is highly unsatisfactory.

In this paper, I offer a possible solution, namely that the Bell
analysis sketched in the Introduction section does not apply to
the commented experiments. In fact the standard method to do
with a system of entangled photon pairs, or entangled quantum
subsystems in general, is to start with the quantum representation
of the whole system by a quantum state, that is a vector | ψ〉
of the Hilbert space. In the case of two photons entangled in
polarization a representation of the quantum state may be

| ψ〉 = 1
√

1+ |c|2
(

| V(a)〉 | H(b)〉 − c | H(a)〉 | V(b)〉
)

, (40)

where c is a (nonzero) complex number, V(a)
(

H(a)
)

means
that Alice´s photon has vertical (horizontal) polarization and
similar for Bob. Checking that the representation (Equation 40)

is correct is obtained by several measurements performed, in
particular the single rates and the coincidence rate by Alice
and Bob for detections after the photons cross polarizers at
appropriate angles. The relevant result is that those rates violate a
Bell inequality for appropriate choices of angles. Thus assuming
that Bell analysis was correct (see section 1), people concludes
that local realism has been empirically refuted.

Our criticism to that conclusion is that Bell analysis is not
valid for the commented experiments. It is necessary to study in
detail all elements involved in the production of the entangled
“photon” pairs. (Actually we should speak of entangled radiation
modes rather than photons). In particular the action of the
quantum vacuum electromagnetic radiation. In some sense the
ZPF is taken into account when one studies quantum optics
using the standard Hilbert-space formalism in the Heisenberg
representation, as revisited in section 2, where a comparison
is made with the treatment in the Weyl-Wigner formalism. In
the former the quantum vacuum fields are represented by linear
combinations of creation and annihilation operators of photons.
This abstract treatment leads people to take the vacuum fields
as “virtual,” that is purely formal devices useful for calculations
but devoid of reality. The novelty of the present paper is to
assume that the vacuumfields are real stochastic fields, something
that appears as quite plausible in the Weyl-Wigner formalism.
Thus, I propose that it is possible to interpret the experiments
[1, 2] assuming that all quantum fields involved, including
the vacuum ones, are real fluctuating (stochastic) fields that
propagate causally in space.
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