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Chaotic systems are dynamical systems that are highly sensitive to initial conditions. Such

systems are used to model many real-world phenomena in science and engineering.

The main purpose of this paper is to present several efficient numerical treatments

for chaotic systems involving fractal-fractional operators. Several numerical examples

test the performance of the proposed methods. Simulations with different values of

the fractional and fractal parameters are also conducted. It is demonstrated that the

fractal-fractional derivative enables one to capture all the useful information from the

history of the phenomena under consideration. The numerical schemes can also be

implemented for other chaotic systems with fractal-fractional operators.

Keywords: chaotic attractors, computational efficiency, fractal-fractional operators, thomas attractor, Newton’s

method, product integration rule

1. INTRODUCTION

In recent decades numerical methods have been recognized as powerful mathematical techniques
for solving nonlinear equations that model real-world problems [1–5]. Numerical techniques have
been used to solve different classes of differential equations, including those of arbitrary order. Due
to the outstanding contribution of nonlinear models to human understanding of many phenomena
and the prediction of the future behavior of systems, many researchers are devoting their attention
to developing new and reliable numerical techniques that could be applied to more complex cases.
Chaotic behaviors are among the natural phenomena that have attracted the attention of many
researchers, who aim to replicate and predict those behaviors. To achieve this, differential operators
are often used as mathematical tools to construct the underlying models. Recently a new class of
differential operators was introduced, which are convolutions of fractal derivatives and fractional
kernels with different forms such as power law, exponential decay and the Mittag-Leffler function
[6]. These differential operators are able to represent complexities that cannot be described with
classical fractional differentiation and integration. One of the strengths of these operators is their
two orders, where one is considered a fractional order and the other is the fractal dimension [7–9].
With these efficient operators, a new class of nonlinear differential and integral equations can be
constructed, and existing chaotic models can be extended. Nevertheless, to verify the effectiveness
of such fractal-fractional operators in modeling chaotic attractors, one needs to solve the models
numerically as their exact solutions cannot be easily obtained by existing analytical methods. So
far, a few numerical methods have been used to discretize such models, and some numerical results
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for chaotic attractors have been obtained. A different numerical
scheme was suggested very recently [10–27] and was found
to be efficient for solving nonlinear differential equations.
Some articles have examined the analysis of errors and the
determination of error bands in the context of the possible deficit
differential equations [28–30]. Since the operators defined in this
paper are novel in the field, the numerical methods associated
with them are also very limited. One of the main motivations for
this article was to introducemethods for solving fractal-fractional
problems that have not been considered before. By using the
proposed methods, approximate solutions to these problems can
be determined more easily and with higher accuracy. In addition,
the methods can be applied to real-world problems. In this
work, we present applications of such numerical schemes in
solving chaotic models that involve the new class of differential
operators. We consider some well-known chaotic models with
fractal-fractional differential operators, so that we can compare
our results with those in the literature. The article is organized
as follows. In section 2, we give a brief overview of some
basic definitions of fractional differential calculus. Two efficient
and effective numerical methods for determining approximate
solutions to fractal-fractional problems are presented in section 3.
The first is for the Caputo derivative and the second is for
the Atangana-Baleanu-Caputo derivative. The kernels used in
these two definitions are singular and non-singular, respectively.
Several numerical simulations for chaotic systems are described
in section 4. The results obtained are accurate, interesting, and
meaningful. Finally, we present our overall conclusions.

2. PRELIMINARY DEFINITIONS

In this section, we give a brief review of some existing
definitions of fractal-fractional operators. These operators result
from the combination of two important concepts: fractional
differentiation and fractal derivatives. Most of the definitions
given here are taken from Atangana [6] and Atangana and
Qureshi [31].

Definition 1. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Caputo sense as

FF-C
0 D

ρ,τ
t g(t) =

1

Ŵ(k− ρ − 1)

∫ t

0

dg(ω)

dtτ
(t − ω)k−ρ−1 dω,

k− 1 < ρ ≤ k, 0 < k− 1 < τ ≤ k, (1)

where

dg(ω)

dtτ
= lim

t→y

g(t)− g(ω)

tβ − ωβ
. (2)

Definition 2. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Caputo-Fabrizio sense as

FF-CF
0 D

ρ,τ
t g(t) =

L(ρ)

1− ρ

∫ t

0

dg(ω)

dtτ
exp

[

−
ρ

1− ρ
(t − ω)

]

dω,

n− 1 < ρ, τ ≤ n, (3)

provided K(0) = K(1) = 1.

Definition 3. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional derivative of g(t) in
the Atangana-Baleanu sense as

FF-AB
0 D

ρ,τ
t g(t) =

AB(ρ)

1− ρ

∫ t

0

dg(ω)

dtτ
Eρ

[

−
ρ

1− ρ
(t − ω)

]

dω,

n− 1 < ρ, τ ≤ n, (4)

where Eρ(.) is the Mittag-Leffler function, defined by

Eρ(ω) =

∞
∑

k=0

ωk

Ŵ(ρk+ 1)
, ρ > 0. (5)

This function is an essential function in the modeling of physical
processes using fractional calculus concepts. We know that
Equation (5) reduces to the exponential function ex if one takes
ρ = 1. Also, AB(·) is a function used for normalization, and
it satisfies the property AB(0) = AB(1) = 1. One of the most
popular definitions of AB(·) is

AB(ρ) = 1− ρ +
ρ

Ŵ(ρ)
.

Definition 4. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Caputo sense [31] as

FF-C
0 I

ρ,τ
t g(t) =

τ

Ŵ(ρ)

∫ t

0

ωτ−1g(ω) dω

(t − ω)1−ρ
. (6)

Definition 5. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Caputo-Fabrizio sense [31] as

FF-CF
0 I

ρ,τ
t g(t) =

τρ

M(ρ)

∫ t

0

g(ω) dω

ω1−ρ
+

τ (1− ρ)tτ−1g(t)

M(ρ)
. (7)

Definition 6. If g(t) is a differentiable function on a finite open
interval, then we define the fractal-fractional integral of g(t) in
the Atangana-Baleanu sense [31] as

FF-AB
0 I

ρ,τ
t g(t) =

τρ

AB(ρ)

∫ t

0

ωτ−1g(ω) dω

(t − ω)1−ρ
+

τ (1− ρ)tτ−1g(t)

AB(ρ)
.

(8)

3. THE PROPOSED NUMERICAL
METHODS

In what follows, the main aim is to construct two equations
involving fractal-fractional derivatives,

FF
0D

ρ,τ
t ξ (t) = N(t, ξ (t)), t ∈ [t0,T], (9)

with the initial condition ξ (0) = ξ0.
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3.1. The Caputo Fractal-Fractional
Derivative
From the results in Atangana and Qureshi [31], Equation (9)
reduces to the following Caputo fractional representation:

C
0D

ρ
t ξ (t) = τ tτ−1

N(t, ξ (t)). (10)

Now, taking into account the fundamental theorem of calculus,
one gets

ξ (t)− ξ (t0) =
τ

Ŵ(ρ)

∫ t

0

ωτ−1
N(ω, ξ (ω)) dω

(t − ω)1−ρ
. (11)

Then, inserting t = tn = t0+n1t into (17) leads to the following
expression:

ξ (tn) = ξ (t0)+
τ

Ŵ(ρ)

n−1
∑

i=0

∫ ti+1

ti

ωτ−1
N(ω, ξ (ω)) dω

(tn − ω)1−ρ
,

1 ≤ n ≤ N,

(12)

where 1t = T−t0
N is the time step for the discretization points.

Next, taking the linear Lagrange interpolation into account for
the function of f (ω) = ωτ−1

N(ω, ξ (ω)), we obtain

ωτ−1
N(ω, ξ (ω)) ≈ tτ−1

i+1 N(ti+1, ξi+1)

+
ω − ti+1

1t

(

tτ−1
i+1 N(ti+1, ξi+1)− tτ−1

i N(ti, ξi)
)

,

ω ∈ [ti, ti+1], (13)

where ξi = ξ (ti). At this point, the result obtained in formula
(13) can be used in relation (12). This substitution results in the
following relationship:

ξn = ξ0 + τ1tρ

(

ξnt
τ−1
0 N (t0, ξ0) +

n
∑

i=0

Dn−it
τ−1
i N(ti, ξi)

)

,

(14)
where

ξn =
(n− 1)ρ+1

− nρ(n− ρ − 1)

Ŵ(ρ + 2)
,

Dm =















1

Ŵ(ρ + 2)
, j = 0,

(m− 1)ρ+1
− 2mρ+1

+ (m+ 1)ρ+1

Ŵ(ρ + 2)
, m = 1, 2, . . . , n− 1.

(15)

3.2. The Atangana-Baleanu
Fractal-Fractional Derivative
In this case we can convert Equation (9) to the following
Atangana-Baleanu fractional form [31]:

AB
0D

ρ
t ξ (t) = τ tτ−1

N(t, ξ (t)). (16)

Upon applying the integral operator to both sides of
Equation (16), the following Volterra integral equation
is constructed:

ξ (t)− ξ (t0) =
τ − τρ

AB(ρ)
tτ−1

N(t, ξ (t))

+
τρ

AB(ρ)Ŵ(ρ)

∫ t

0
(t − ω)ρ−1ωτ−1

N(ω, ξ (ω)) dω.

(17)

Taking t = tn = t0 + n1t in (17), we have

ξ (tn) = ξ (t0)+
τ − τρ

AB(ρ)
tτ−1
n N(tn, ξ (tn))

+
τρ

AB(ρ)Ŵ(ρ)

n−1
∑

i=0

∫ ti+1

ti

(tn − ω)ρ−1ωτ−1
N(ω, ξ (ω)) dω.

(18)

Now, substituting (13) into (18), we get the following implicit
Atangana-Baleanu-Caputo scheme:

ξn = ξ0 +
τ − τρ

AB(ρ)
tτ−1
n N(tn, ξn)

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0 N (t0, ξ0) +

n
∑

i=0

Dn−it
τ−1
i N(ti, ξi)

)

,

(19)

where ξn and Dj are the coefficients defined in (15). A closer
look at relations (14) and (19) shows that these expressions are
implicit equations for determining yn. The Newton iteration
method is one of the most popular and efficient techniques
for solving such problems. In this article, as in Garrappa [32],
Ghanbari and Kumar [33], and Ghanbari et al. [34], we will use
the Newton method to solve these equations. By solving these
equations, approximate solutions to the original problem will
be determined.

4. NUMERICAL SIMULATIONS FOR SOME
CHAOTIC SYSTEMS

In this section, to show the validity of the proposed numerical
technique, three chaotic systems involving Atangana-Baleanu-
Caputo fractional derivatives are considered.

Example 1. Consider the following modified cyclically
symmetric Thomas attractor given by [35]

FF
0D

ρ,τ
t x(t) = sin

(

exp
(

y(t)
))

− Bx(t),

FF
0D

ρ,τ
t y(t) = cos

(

sin
(

z(t)
))

− By(t),

FF
0D

ρ,τ
t z(t) = exp

(

cos
(

x(t)
))

− Bz(t).

(20)

Now we take into account the iterative methods given by (14)
and (19) to solve (20). Taking (14) into account, we get the
iterative structure
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xn = x0 + τ1tρ

(

ξnt
τ−1
0

[

sin
(

exp
(

y0
))

− Bx0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

sin
(

exp
(

yi
))

− Bxi
]

)

,

yn = y0 + τ1tρ

(

ξnt
τ−1
0

[

cos
(

sin
(

z0
))

− By0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

cos
(

sin
(

zi
))

− Byi
]

)

,

zn = z0 + τ1tρ

(

ξnt
τ−1
0

[

exp
(

cos
(

x0
))

− Bz0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

exp
(

cos
(

xi
))

− Bzi
]

)

.

(21)

Moreover, from (19) we get

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[

sin
(

exp
(

yn
))

− Bxn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

sin
(

exp
(

y0
))

− Bx0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

sin
(

exp
(

yi
))

− Bxi
]

)

,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[

cos
(

sin
(

zn
))

− Byn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

cos
(

sin
(

z0
))

− By0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

cos
(

sin
(

zi
))

− Byi
]

)

,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[

exp
(

cos
(

xn
))

− Bzn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

exp
(

cos
(

x0
))

− Bz0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

exp
(

cos
(

xi
))

− Bzi
]

)

.

(22)

In Figures 1–4we plot the results of numerical simulations using
the two iterative schemes (21) and (22) with B = 0.2. For the
numerical implementations we took (x0, y0, z0) = (0, 3, 11) as
the initial condition. The results of the iterative scheme (21)
are plotted in Figures 5–8. In each figure we have taken a fixed
value of τ and different values of ρ. In these experiments we set
1t = 10−3 and T = 800.

Example 2. In this example we consider the chaotic system

FF
0D

ρ,τ
t x(t) = x(t)z(t)− Bx(t)− Dy(t),

FF
0D

ρ,τ
t y(t) = Dx(t)+ y(t)z(t)− By(t),

FF
0D

ρ,τ
t z(t) = C+ Az(t)− z(t)3

3 − x(t)2 + Ez(t)x(t)3,

(23)

To solve this chaotic system, we use the following iterative
scheme obtained from (14):

xn = x0 + τ1tρ

(

ξnt
τ−1
0

[

x0z0 − Bx0 − Dy0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

xizi − Bxi − Dyi
]

)

,

yn = y0 + τ1tρ

(

ξnt
τ−1
0

[

Dx0 + y0z0 − By0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

Dxi + yizi − Byi
]

)

,

zn = z0 + τ1tρ

(

ξnt
τ−1
0

[

C+ Az0 −
z30
3

− x20 + Ez0x
3
0

]

+

n
∑

i=0

Dn−it
τ−1
i

[

C+ Azi −
z3i
3

− x2i + Ezix
3
i

]

)

.

(24)

Using (19) one gets

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[

xnzn − Bxn − Dyn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

x0z0 − Bx0 − Dy0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

xizi − Bxi − Dyi
]

)

,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[

Dxn + ynzn − Byn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

Dx0 + y0z0 − By0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

Dxi + yizi − Byi
]

)

,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[

C+ Azn −
z3n
3

− x2n + Eznx
3
n

]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

C+ Az0 −
z30
3

− x20 + Ez0x
3
0

]

+

n
∑

i=0

Dn−it
τ−1
i

[

C+ Azi −
z3i
3

− x2i + Ezix
3
i

]

)

.

(25)

The approximate solutions obtained from (24) are plotted
in Figures 5, 6, and those obtained from (25) are plotted in
Figures 7, 8. The parameter values used in the model are A =

0.95, B = 0.7, C = 0.6, D = 3.5, and E = 0.1. We used the
initial guess (x0, y0, z0) = (0.1, 0, 0) for different fractional orders
of ρ and τ .

Example 3. Consider the chaotic system given by [31]

FF
0D

ρ,τ
t x(t) = A

(

y(t)− x(t)
)

,

FF
0D

ρ,τ
t y(t) = (C− A) x(t)−

[

S0z(t)− S1 sin(z(t))
]

x(t)+ Cy(t),

(26)
FF
0D

ρ,τ
t z(t) = x(t)y(t)− Bz(t),
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FIGURE 1 | Evolution of the chaotic system (20) for τ = 0.93 and different values of ρ, using the iterative scheme (21).
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FIGURE 2 | Evolution of the chaotic system (20) for τ = 0.97 and different values of ρ, using the iterative scheme (21).
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FIGURE 3 | Evolution of the chaotic system (20) for τ = 0.93 and different values of ρ, using the iterative scheme (22).
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FIGURE 4 | Evolution of the chaotic system (20) for τ = 0.97 and different values of ρ, using the iterative scheme (22).
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FIGURE 5 | Evolution of the chaotic system (23) for τ = 0.96 and different values of ρ, using the iterative scheme (24).
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FIGURE 6 | Evolution of the chaotic system (23) for τ = 0.98 and different values of ρ, using the iterative scheme (24).
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FIGURE 7 | Evolution of the chaotic system (23) for τ = 0.96 and different values of ρ, using the iterative scheme (25).
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FIGURE 8 | Evolution of the chaotic system (23) for τ = 0.98 and different values of ρ, using the iterative scheme (25).
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FIGURE 9 | Evolution of the chaotic system (26) for τ = 0.7 and different values of ρ, using the iterative scheme (27).
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FIGURE 10 | Evolution of the chaotic system (26) for τ = 0.9 and different values of ρ, using the iterative scheme (27).
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FIGURE 11 | Evolution of the chaotic system (26) for τ = 0.7 and different values of ρ, using the iterative scheme (28).
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FIGURE 12 | Evolution of the chaotic system (26) for τ = 0.9 and different values of ρ, using the iterative scheme (28).
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For this system, from (14) we obtain the following
iterative scheme:

xn = x0 + τ1tρ

(

ξnt
τ−1
0

[

A
(

y0 − x0
)]

+

n
∑

i=0

Dn−it
τ−1
i

[

A
(

yi − xi
)]

)

,

yn = y0 + τ1tρ

(

ξnt
τ−1
0

[

(C− A) x0 −
[

S0z0 − S1 sin(z0)
]

x0 + Cy0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

(C− A) x0 −
[

S0zi − S1 sin(zi)
]

xi + Cyi
]

)

,

zn = z0 + τ1tρ

(

ξnt
τ−1
0

[

x0y0 − Bz0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

xiyi − Bzi
]

)

.

(27)
Moreover, from (19), the approximate solution is obtained as

xn = x0 +
τ − τρ

AB(ρ)
tτ−1
n

[

A
(

yn − xn
)]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

A
(

y0 − x0
)]

+

n
∑

i=0

Dn−it
τ−1
i

[

A
(

yi − xi
)]

)

,

yn = y0 +
τ − τρ

AB(ρ)
tτ−1
n

[

(C− A) x0 −
[

S0zn − S1 sin(zn)
]

xn + Cyn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

(C− A) x0 −
[

S0z0 − S1 sin(z0)
]

x0 + Cy0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

(C− A) x0 −
[

S0zi − S1 sin(zi)
]

xi + Cyi
]

)

,

zn = z0 +
τ − τρ

AB(ρ)
tτ−1
n

[

xnyn − Bzn
]

+
τρ1tρ

AB(ρ)

(

ξnt
τ−1
0

[

x0y0 − Bz0
]

+

n
∑

i=0

Dn−it
τ−1
i

[

xiyi − Bzi
]

)

.

(28)

Figures 9–12 show the portraits corresponding to the chaotic
system in (26) obtained using (27) and (28). The parameters for
the model are A = 50,B = 2,C = 30, S1 = 1, and S2 = 20. We

used the initial guess (x0, y0, z0) = (2, 1, 1) for different fractional
orders of ρ.

5. CONCLUSION

Although many numerical methods are available, the
development of new efficient numerical schemes has always been
one of the most important concerns in applied mathematics
and engineering. A foremost reason for the widespread interest
in new numerical methods is that they may reveal new facts
about real-world phenomena. This paper has presented some
efficient approximate methods for solving chaotic systems that
use new definitions for the derivative, called fractal-fractional
derivatives. The concept of memory is one of the most important
features of these types of derivatives. With this valuable feature,
the evolution of the phenomena modeled by such systems can be
more accurately predicted. The proposed new techniques have
been tested by using them to solve several important practical
problems. Application of the methods to these problems revealed
very interesting behaviors of the systems that have meaningful
interpretations. The numerical methods presented in this article
have the potential to be used for solving similar models. Since

any new numerical method should be validated in terms of
convergence, stability and consistency of solutions, these are
important research directions left to future work.
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