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To further improve the detection sensitivity of surface-enhanced laser-induced

breakdown spectroscopy (SENLIBS), the number of repeating sample preparations

in a fixed area was increased. The trace elements in an aqueous solution were

quantitatively analyzed successfully. The results showed that the spectral intensities were

strengthened. The limit of detection (LoD) values of Cu, Pb, Cr, and Cd were reduced

from 0.072∼0.36 to 0.027∼0.057µg/mL by increasing the number of repeating sample

preparations from 1 to 8. This demonstrated that quantitative analytical sensitivity of

SENLIBS could be improved by repeating sample preparations without increasing the

cost of equipment.

Keywords: laser-induced breakdown spectroscopy, surface-enhanced, sensitivity, aqueous solution, sample

preparation

INTRODUCTION

Spectral analysis technology has been applied to the analysis of gas, solids, and liquids [1–4].
Laser-induced breakdown spectroscopy (LIBS) as a booming analysis technology has been proven
as a promising method for waste-water monitoring [5]. Although LIBS has unique advantages such
as micro-volume sample analysis, in situ, online, and stand-off analysis capabilities [6–10], it still
faces a technical bottleneck of poor sensitivity in determining trace elements in aqueous solutions
[11–13]. To improve the detection sensitivity, somemethods have been proposed, such as changing
the liquid samples from a static liquid to dynamic liquid using sampling equipment (e.g., meinhard
nebulizer, pump, and nozzle) [14–16], assisting LIBS with additional equipment (e.g., magnetic
field, electric field, and laser) [17–19], and converting the liquid samples from liquid phase to solid
phase using liquid nitrogen, adsorbent materials, electrodeposition, and non-absorbent materials
[20–23] etc.

Recently, surface-enhanced LIBS (SENLIBS), as a new liquid-to-solid phase transition method,
has been considered as a versatile analytical technique for liquid samples [24–35], power samples
[36], and solid samples [37]. The powder sample wasmixed with viscous liquid as the liquid sample.
The solid sample was changed to the liquid sample by chemical treatment. Next, the liquid sample
was dried as a solid layer or deposited as the gel-like layer on a non-absorbent substrate surface, and
then analyzed by LIBS. Up to now, manymethods have been proposed to further improve detection
sensitivity or the spectrum intensity of SENLIBS, which included the liquid microextraction (e.g.,
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single drop microextraction and dispersive liquid–liquid
microextraction) [29, 38, 39], chemical replacement [27],
and double-pulse LIBS (DP-LIBS) [35]. However, liquid
microextraction will introduce additional chemical agents, as
chemical replacement is only suitable for analysis of inert metal
ions, and DP-LIBS will increase the cost of equipment.

To further improve the detection sensitivity of SENLIBS,
a sample preparation method was introduced in this work,
which will increase the element concentration per unit area by
increasing the number of sample preparations in a fixed point.
Therefore, experimental conditions, spectral enhancement, and
quantitative analysis of the trace elements in aqueous solution
were investigated and discussed in detail.

EXPERIMENTAL

LIBS Instrument
The experimental setup for LIBS is schematically illustrated in
Figure 1A, which was described in our previous work [40].
Briefly, the Q-switched Nd:YAG laser was used as an ablation
source to ablate the samples. The laser beam was reflected and
focused on the sample by a reflector mirror and a plano-convex
lens (f = 100mm). The defocusing amount for ablation of the
sample is 4mm. The speed of the 2D motorized translation stage
loaded with samples is 5 mm/s. The plasma emission was coupled
into an echelle spectrometer (Andor Tech., Mechelle 5000)
through the light collector (f = 200mm) and optical fiber (50µm
× 200 cm). An intensified charge-coupled device camera (ICCD)
(Andor Tech., iStar 334T) was attached to the spectrometer,
which can convert the optical signal into an electrical signal
for analysis.

Sample Preparation
The stock solution was prepared with the analytical reagents
[CrCl3, CdCl2, CuCl2, and Pb(NO3)2]. The concentration of
each element (Cu, Pb, Cd, and Cr) in the stock solution was
500µg/mL. The stock solution was diluted with deionized water
to prepare 11 standard aqueous solutions. The concentration

FIGURE 1 | Schematic of the experimental setup (A) and the sample pretreatment (B).

range of each element in the standard solutions ranged from 0.1
to 10 µg/mL.

A zinc target, without analytical elements, was used as
a metallic substrate. To increase the sample preparation
repeatability, a 6mm diameter filter paper was placed on the
surface of the Zn-metal substrate as reported in our previous
work [40]. The sample pretreatment procedures of each aqueous
solution are shown in Figure 1B, which included: (1) the Zn-
metal substrate with filter papers was placed on a heating plate;
(2) amicrodroplet of standard solution was deposited on the filter
paper by a micropipette; (3) After drying, step 2 was repeated as
needed; (4) finally, the filter paper was taken off. The standard
aqueous solution was prepared as a 6mmdiameter solid prepared
layer on the surface of the Zn-metal substrate.

To further improve the LIBS spectral stability, the spectral
was obtained by concentric analysis of each droplet deposition
area as shown in our previous work [40]. Each spectrum was
accumulated for 90 shots. Figure 2 shows the optimization of
sample preparation conditions. As shown in Figure 2A, the
maximum spectral intensities of trace elements increased with
the sample volume. As shown in Figure 2B, the higher the
temperature is, the less time is needed for drying. In this work,
40 µL was selected as the sample volume for each microdroplet,
70◦C was chosen as the drying temperature, and the drying time
for each sample preparation was about 4 min.

RESULTS AND DISCUSSION

Optimization of the Analytical Parameters
For high detection sensitivity, a higher signal-to-noise ratio
(SNR) is needed. The laser energy and gate delay time were
optimized for the highest SNR. Figure 3 shows the evolution
trends of SNRs of analytical lines (Cu I 324.75 nm, Pb I
405.78 nm, Cd I 508.58 nm, and Cr I 520.84 nm) on laser pulse
energies (gate delay: 3 µs; and gate width: 0.5 µs) and gate
delay times (laser energy: 40 mJ; and gate width: 0.5 µs).
The SNR values were calculated based on the ratio of the
maximum analytical line intensities and the noise calculated by
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the background near the analytical lines. The 369.43–369.61 nm
for Cu, 398.66–398.55 nm for Pb, and 537.23-537.33 nm for
both Cd and Cr were chosen as the background. As shown

in Figure 3, the SNRs of all analytic lines increased first and
then decreased with increasing laser energy and gate delay time,
respectively. Therefore, 40 mJ of laser energy, the 2 µs of

FIGURE 2 | Optimization of sample preparation conditions: the effect of sample volume on the spectral intensity (A); the drying temperature on the drying time (B).

FIGURE 3 | Evolution trends of SNRs for analytical lines (Cu I 324.75 nm, Pb I 405.78 nm, Cd I 508.58 nm, and Cr I 520.84 nm) on laser energy (A) and gate delay

time (B).

FIGURE 4 | Evolution trends of spectral intensity for analytical lines (A) and substrate element lines (B) on the number of repeating sample preparations.
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FIGURE 5 | Calibration curves with linear fit (short dash dots line) and a quadratic fit (solid line) of trace elements [Cu (A), Pb (B), Cd (C), and Cr (D)] in the standard

samples analyzed by SENLIBS with different number of repeating sample preparations.

both gate delay and gate width were selected as the optimum
experimental parameter.

Spectral Enhancement
As is widely known, as the element concentration per unit area
on the metal surface enlarged, the spectral intensity will be
enhanced. With an increase in the number of repeating sample
preparations within a fixed range, the element concentration
per unit area will be enlarged. As the results, the spectral
intensity will be strengthened. Figure 4A shows the relationship
between spectral intensities and the number of repeating
sample preparations. As shown, the spectral intensities for
each element were increased with the number of repeating
sample preparations. However, the spectral intensities of the
substrate element lines (Zn II 250.19 nm, Zn II 255.79 nm,
and Zn I 472.21 nm) decreased with the number of repeating
sample preparations, as shown in Figure 4B. For SENLIBS,
the prepared layer and the metallic substrate were ablated
simultaneously. The ablation amount of the substrate decreased
with the increase of prepared layer thickness, with the increase
of the number of repeating sample preparations under the same
experimental conditions.

Calibration Curves and Limits of Detection
As is well-known, the detection sensitivity will be improved with
the spectral intensity enhancement. For SENLIBS, the ablation
amount of the substrate will be reduced with the increase in
thickness of the prepared layer under the same experimental
conditions. To reduce the effect of different thicknesses of
the prepared layer, the substrate element Zn was selected
as the reference element for quantitative analysis as shown
in our previous work [40]. Figure 5 shows the calibration
curves of analytical lines (Cu I 324.75 nm, Pb I 405.78 nm,
Cd I 508.58 nm, and Cr I 520.84 nm) analyzed by SENLIBS
with different number of repeating sample preparations. As
shown the slope of the calibration curve (S) with linear fit,
increased with the number of repeating sample preparations.
The self-absorption effect increased with the number of
repeating sample preparations, which was evident from the
bend of calibration curves with the quadratic fit. As shown
in Figure 6, the LoDs for SENLIBS were decreased with
the number of repeating sample preparations. And the LoDs
were improved from 0.072∼0.36 to 0.027∼0.057µg/mL. The
results demonstrate that the sensitivity of SENLIBS could be
improved by increasing the element concentration per unit area
through increasing the number of sample preparations, and the
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FIGURE 6 | Evolution trends of LoDs for analytical lines (Cu I 324.75 nm, Pb I

405.78 nm, Cd I 508.58 nm, and Cr I 520.84 nm) on the number of repeating

sample preparations.

saturation of sensitivity would be reached owing to the self-
absorption effect.

As reported, sensitivity of LIBS for analysis of aqueous
solution could be improved by use of supplementary
instrumentation [16–18], e.g., DP-LIBS, LIBS-LIF, LIBS
combined with magnetic field etc. Therefore, those reported
methods could be introduced to reduce the sample preparation
time and to improve the sensitivity of SENLIBS. Although the
sample preparation time with repeating sample preparations
is about 16min, both the cost and complexity of equipment
was reduced compared to those of reported methods. As is
generally known, the sample preparation time of SENLIBS
depends on the liquid volume and spreading area. Therefore, the
number of repeating sample preparations, with the same element
concentration per unit area, could be reduced by reducing the
spreading area with the same liquid volume. As the results, the

sample preparation time will be decreased. These results showed
that the introduced method is a feasible method in improving
the sensitivity of SENLIBS.

CONCLUSIONS

A new sample preparation method for improving the sensitivity
of SENLIBS was proposed, by repeating sample preparations in
a fixed point. Using this method, both the spectral intensity and
detection sensitivity of trace elements (Cu, Pb, Cd, and Cd) in
aqueous solution, using SENLIBS, were improved by increasing
the number of sample preparations in a fixed point. The unique
advantages of this method include the low cost of equipment
and its higher sensitivity. Accordingly, this proposed method is
an economical method for the analysis of trace elements in a
liquid sample.
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