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Purpose:Neuromuscular diseases (NMDs) frequently cause severe disabilities. Magnetic

resonance imaging (MRI)–based calculation of the so-called fat fraction (FF) in affected

muscles was recently described as a reliable biomarker for monitoring progression of

NMDs. This is of high interest as newly available modern gene therapies, currently

subject to intensive investigations, may provide at least palliation of these severely

disabling diseases. In this retrospective study feasibility of advanced image analysis,

potentially extending the application of FF in lower limbs in patients suffering various

NMDs was investigated.

Methods: Patients receiving MRI due to manifestation of proven NMDs (amyotrophic

lateral sclerosis [n = 6], spinobulbar muscular atrophy [n = 4], limb girdle muscular

dystrophy [n= 5], metabolic myopathy [n= 2]) in lower limbs were compared to patients

without NMD [n = 9]. FF and new parameters derived from an advanced image analysis

with generation of standardized MRI feature–based matrices were correlated with clinical

grades of strength obtained using the MRC scale (Medical Research Council for Muscle

Strength). While FF displays the fat partition in muscles only, the advanced image

analysis considers the full MR-image information. Here, principal (PCA) and independent

component analyses (ICA) were employed to derive parameters describing the full data

obtained in more detail.

Results: PCA- and ICA-based full-image parameters remained strongly correlated

with FF (Spearman coefficient 0.96–0.59), but generally showed stronger correlations

with the MRC score in lower limbs (Spearman coefficient; FF = −0.71; PCA

& ICA parameters = −0.76–0.78). So far, age was no significant confounder in

full-image assessment.

Conclusion: The proposed advanced image analysis in NMDs is technically feasible

and seems to effectively extend the information of FF.

Keywords: neuromuscular disease imaging, skeletal muscle fibers, spinal and bulbar muscle atrophy, muscular

dystrophies, amyotrophic lateral sclerosis, water-fat distribution, magnetic resonance imaging
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INTRODUCTION

Neuromuscular diseases (NMDs), although low in prevalence
(1–3/100,000 persons), are known to show either slow or
sometimes fast progression of symptoms leading to severe
disabilities, currently without the opportunity of an effective
treatment. Disease-modifying therapies are subject to intensive
investigations in order to provide at least palliation of the
often heavily disabling symptoms of NMDs [1]. In parallel, this
requires the development of objective and sensitive methods
enhancing the diagnostic algorithm and reliably measuring
alterations in affected muscle tissue over time to prove
effectiveness and validity of therapeutic interventions.

Magnetic resonance imaging (MRI)–based high-resolution
myometry with quantification of the fat fraction (FF) was
validated as a sensitive biomarker for both myopathies and
neuropathies showing strong correlations with clinical and
functional scores [2, 3]. In this context, certain MRI techniques,
as described by Dixon [4], enable the direct determination of
signal contributions from either structurally bound or highly
mobile protons. This allows the differentiation of muscular
water and fat content, since signal from bound protons mainly
represents fat and signal from highly mobile protons is primarily
attributed to cellular and interstitial water components. In this
way, separate water and fat images can be generated, where FF
simply calculates the proportion of fat signal from the signal
totally gained from both, i.e., water and fat, proton pools [5].

FF proved useful especially in slowly progressing NMDs
leading to fatty infiltration of muscular tissue, but further
alterations in the muscle tissue texture attributed to edema, a
common pathological feature of neuropathies, may occur as
well [6]. So far, patterns of regional muscular affections in
various NMDs were analyzed. Typically, the specific appearance
of muscle tissue in regions of interest (ROIs) drawn in
representative MRI sections was rated by FF and compared with
clinical findings [5, 7, 8]. This way, FF was established as standard
parameter for MRI-based myometry and became a promising
tool to play an important role in the assessment of disease state
and progression [7, 9].

However, as FF displays the proportion of fat signal only, we
hypothesized that this does not fully account for all potentially
meaningful information about relevant shifts in the global
muscular water/fat distribution caused by NMDs. Therefore, we
propose a novel, extended quantitative voxel-based assessment
method for muscular tissue using principal component analysis
(PCA) and independent component analysis (ICA) to analyze
and describe the full, directlymeasured, muscular water/fat signal
distribution in MRI. So far, PCA and ICA have already been used
to extract certain features in (functional) MRI data. In contrast
to PCA, ICA can be used to find a linear representation also
of non-Gaussian data so that the components are statistically
independent, or as independent as possible. Such a representation
seems to be able to capture essential features of the data in various
applications, including feature extraction and signal separation

Abbreviations: ICA, independent component analysis; FF, fat fraction; MRC,
Medical Research Council; NMD, neuromuscular disease; PCA, principal
component analysis; ROI, regions of interest; WFD, water/fat distribution.

[10]. Although ICA is able to extract an unknown number of
components, depending on the quality and amount of data, the
exact or optimum number of components remains an issue [11,
12]. In our application, the number of components is known and
low, so we can expect robust results. This approach could provide
a deeper insight into muscular tissue alterations in NMDs, which
in turn could be used for a more detailed analysis of disease
progression and response of NMDs to therapeutic efforts.

METHODS

Patients
In total, 22 consecutive patients receiving 26 MRI examinations
due to suspected degenerative neuromuscular disease with
primary manifestation at the lower limbs were included in
this retrospective study. Five groups with two subgroups were
differentiated, where in the reference group patients initially
suspected for NMD, but during clinical workup identified as
articular induced pain syndromes without degenerative muscle
affection, were collected as controls (CO, control group; n = 9;
male:female = 7:2; age: 55.3 ± 16.8 years). Next to this, two
subgroups differentiating subjects from the cumulative control
group by age were created. One subgroup included subjects
younger than 50 years at the time of their examinations only
(control subgroup: CO<50; n= 4; male:female= 3:1; age: 33.2±
3.4 years), while the other subgroup included only subjects older
than 50 years (control subgroup: CO >50, n = 5; male:female =
4:1; age: 60.4± 4.0 years).

Patients with proven amyotrophic lateral sclerosis (ALS)
according to the revised El Escorial criteria (ALS group: n
= 5 [including 2 follow-up examinations]; male:female = 1:2;
age: 61.6 ± 0.01 years) were collected into another group [13].
Additionally, patients with genetically confirmed spinal and
bulbar muscular atrophy (SBMA group: n = 4 [including 1
follow-up examination]; male:female = 3:0; age: 33.9 ± 5.55
years), patients with genetically proven limb girdle muscular
dystrophy (LGMD group: n = 5 [including 1 follow-up
examination]; male:female = 3:1; age: 54.1 ± 14.43 years), and
patients suffering from metabolic myopathy (MMP group: n
= 2 male patients; age: 57 and 58 years) were gathered in
separate groups.

The clinical grade of muscle strength in the lower limbs
at the time of MRI was assessed according to the Medical
Research Council (MRC) scale for muscle strength in all patients
employing the commonly used six grades (i.e., 5–0) scoring
system, where grade 5 is assigned to full strength and grade 0 is
given in case of complete paralysis [14, 15].

The study was approved by the local institutional review
board (NÖ Ethikkommission, trial: GS1-EK-4/597-2019) and
conducted according to WMA guidelines in force at the time of
patient data acquisition [16].

Magnetic Resonance Imaging
MRI simultaneously depicting both legs was performed on a
clinical 1.5-T whole-body scanner (Magnetom Avanto, Siemens,
Erlangen, Germany) using the system’s standard peripheral
angiography coil set with full coverage of both legs (Tim
matrix coil system of about 1,000mm length). The scan
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protocol included T1-weighted (T1w), three-dimensional (3D)
gradient-echo (GE) imaging implemented as a two-point
Dixon volumetric interpolated GE sequence (3D-Dixon-VIBE-
sequence). The 3D-Dixon sequence offers fast, high-resolution
imaging of muscles through asymmetric k-space sampling and
interpolation (voxel size= 1.2× 1.2× 5.0mm; slices= 64; FOV
= 380mm; total scan time: 4:05min) and allows generation of
separate water- and fat-only images due to the incorporated dual
echo Dixon technique (TE1 = 2.39ms; TE2 = 4.78ms; TR =
10ms; NSA= 1).

Geometrically matched to the 3D-Dixon sequence, a short-τ
inversion recovery (STIR) sequence (TE = 89ms; TI = 150ms;
TR = 6,962ms; NSA = 2; voxel size = 0.7 × 0.7 × 15.0mm;
slices = 25) and a dual-echo inversion recovery proton echo
usage sequence (protoneus) with spectral fat suppression (TE1
= 7.8ms; TE2 = 62ms; TI = 49ms; TR = 2,950ms; NSA =
1; voxel size = 1.2 × 1.2 × 15mm; slices =25) were employed
[17]. Scan times for STIR and protoneus sequences were 2:56 and
2:28min, respectively.

Depiction of the MRI-Based Muscular
Water/Fat Distribution
All image data were translated to NIfTI-2 format for further
processing [18]. A representative slice at the mid-level of all
thighs and calves was selected from the 3D-Dixon sequences,
and separate regions of interest indexed by distinct numbers
for each depicted muscle (ROIm) on each side were drawn by
an experienced reader (U.K.) who was blinded to the respective
NMD. All examinations were presented to him in random order.
The respective slice was chosen in such a manner that as much of
the cross-sectional muscle tissue was visible as possible for the
assessment. The specific fascia defined the boundaries of each
muscle ROI, thereby excluding large nerves, vessels, the skin,
and the subcutaneous fat, as well as the bone structures from
the evaluations. In this way, in thighs ROIs showing the rectus
femoris muscle, the vastus medialis, intermedius and lateral
muscles, the semimembranosus, the semitendinosus, the biceps
femoris, the adductor magnus, and the sartorius and gracilis
muscles were drawn at each side. In calves, the anterior tibial,
the long peroneal, the lateral andmedial gastrocnemii, the soleus,
and the posterior tibial muscles were outlined on each side
(Supplementary Figure 1). Subsequently, scripts written for the
applied statistical software used the indexed ROIm to generate
virtual cumulative ROIs for thigh (ROIT) and calf muscles
(ROIC), which, in turn, were integrated into virtual cumulative
master ROIs for assessment of the whole lower limbs (ROILL).
Besides visual inspection of theROIm, they served also to correct
for potential Dixon inversion artifacts by testing the plausibility
of the signal relation between bone marrow and muscle signal
encountered in both legs.

Signal intensities from water- and fat-only images were then
normalized voxel-wise in all ROIT , ROIC, and ROILL to their
signal specific maximum:

wn =
ws

wmax
and fn =

fs

fmax
(1)

where wn and fn represent the normalized water and fat signal
intensities, ws and fs the original signal, and wmax and fmax

the respective ROI-specific maximum of water or fat signal. In
order to generate comparable images of ROI-specific water/fat
distributions (WFDROI), all values of wn and fn were resampled
within discrete intervals of i = 0.01 and adjusted to the
interval ]0, 1] by:

r(xn) : =

{

xn 7→ i if xn ≤ 0
⌈xn/i⌉ · i if xn > 0

(2)

where xn denotes the normalized water or fat signal values wn

or fn and r(xn) conforms to the rank of xn according to the used
resampling interval i. Note that replacing equal or less than zero
by i is a convenient way to correct for inconsistencies of the
previous Dixon water- and fat-only image calculations and that
these values were eliminated later by thresholding the noise in
the various ROIs.

Equation 2 was used to assign a distinct pair of ranks
(

r(wn), r(fn)
)

to each voxel of the given ROI. Then, the absolute

frequency of each
(

r(wn), r(fn)
)

combination was determined
leading to WFDROI . After normalization of WFDROI to its
maximum, a k × l matrix Mw/f was built from the normalized

frequencies p(

r(wn) ,r(fn)
) using their ranks

(

r(wn), r(fn)
)

as subscripts:

Mw/f =
(

pr(wn)i ,r(fn)j

)

∈ R
k×l

with
r(wn)i ∈

(

Rwn

)

k=1/i,...,1 =
{

1, . . . , i · k
}

r(fn)j ∈
(

Rfn
)

l=1,...,1/j
=

{

j · l, . . . , 1
} (3)

In Equation (3), Mw/f denotes the squared ROI-specific
standardizedWFDmatrix. The number of rows k and columns l,
where k = l, depends on the interval steps i defined in Equation
2. Symbols

(

Rwn

)

k=1/i,...,1 and
(

Rfn
)

l=1,...,1/j
denote the ordered

sequences of ranks r(wn) and r(fn), which were used as subscripts of
the elements of Mw/f . All other symbols have the same meaning
as in Equations 1 and 2. A full summary of the Mw/f workup is
given in Figure 1.

For further assessment of Mw/f , the subscript or rank order,
respectively, was set descending for water signal and ascending
for fat signal. This is owed to the fact that in the following
standardized WFD matrices Mw/f were interpreted like images
depicting the specific water/fat distribution of the various ROIs.
These images may be visualized directly to depict a specificWFD
in a certain NMD or can be stored in a database for further
statistical image analysis.

In order to set any results derived from Mw/f images in
relation to established parameters, also the FF, as proposed in the
literature [19], was calculated for all ROIT , ROIC, and ROILL:

FF =
fs

fs + ws
(4)

where all symbols have the same meaning as in Equations (1–3).
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FIGURE 1 | Flow chart showing the generation of standardized ROI-specific WFD matrices Mw/f . The described process is essentially based on the normalization to

the corresponding maximum of (1) water signal, (2) fat signal, and (3) the frequency of observed normalized water/fat signal pairs in the analyzed ROIs. Technically, this

procedure may be applied to any combination of MR sequences without, in their effect, co-linear signal components.

Analysis of the Muscular Water/Fat
Distribution
First, PCA was performed on all matrices Mw/f of ROIs:
ROIT , ROIC, and ROILL in the various groups. Matrices Mw/f

were noise-thresholded, and using the water- and fat-signal
ranks, r(wn) and r(fn), as dimensions, the quantity P(rwn ,rwn)

=
{

p(

r(wn) ,r(fn)
) ∈ Mw/f

∣

∣

∣
p(

r(wn) ,r(fn)
) ≥ 0.1

}

was generated. From

PCA performed on P(rwn ,rwn)
, the rotation angle ϕ(w/f ) (unit:
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radiant) of the normalized first principal component eigenvector
Ee1 relative to the unit vector Eu:

ϕ(w/f ) = acos (Eu · Ee1)with : Eu =

(

0
1

)

(5)

and the related scattering defined by the coherence

function c
(

ϕ(w/f ), σn
)

:

c
(

ϕ(w/f ), σn
)

: = ϕ(w/f ) · σ1 · σ2 · ck×l with : ck×l = k · l (6)

were derived. In Equation (6), σn denotes the components’
standard deviations σ1 and σ2, with n = 2 according to the
number of dimensions of the PCA. All other symbols have
the same meaning as in Equation (3). The constant ck×l is the
product of the matrix dimensions of Mw/f (here: ck×l = 1002).
Note that only measurements with the same values for ck×l are
directly comparable.

Assuming distinct shapes of WFD related either to regular or
to non-regular (NMD) muscle tissue as depicted in Mw/f , PCA

and derived angles ϕ(w/f ) and scattering c
(

ϕ(w/f ), σn
)

were

used to identify these two conditions constituting the shape of
Mw/f in the various groups and regions (cumulative groupWFDs
are displayed in Figures 2, 3, and Supplementary Figures 2–4).

As PCA suggested distinctly different WFD patterns for (1)
regular and (2) non-regular muscle tissue in matrices Mw/f ,
ICA with separation of two components was performed to test
the automatic separation of these. Similar to general image
pattern recognition [20], we first transformed all matrices Mw/f

of dimension: k× l to one-dimensional vectors Ev(wn/fn) of length:
k · l. Vectors Ev(wn/fn) were then used to generate separate s ×
(

k · l
)

matrices Sw/f for thighs, calves, and whole lower limbs,
where the number of rows s conforms to the number of subjects
(=observations) involved. To warrant a reproducible strength
of pattern separation, correlation (Spearman’s Rho, ρ ) of the
two obtained component-vectors Ei1 and Ei2 derived from ICA
was tested and ICA was performed repetitively until condition
ρ < 0.3 was true. Component-vectors Ei1 and Ei2 were sorted
such, that Ei1 always applied to regular (1) and Ei2 to non-regular
(2) muscle tissue. Sorting was achieved by testing the location of
the median crossing point

(

m̃(wn), m̃(fn)
)

after re-transformation

of Ei1 and Ei2 to their corresponding matrix Mw/f (Figure 4;
Supplementary Figure 5).

After this, vectors Ev(wn/fn) of each case and region (thighs,
calves, lower limbs) were analyzed for their correlation with
Ei1 and Ei2 using Spearman rank correlation tests (Spearman’s
Rho: ρ) with calculation of ρEi1 and ρ

Ei2
. To gain the same

effect direction for ρEi1 and ρEi2 , correlations were always given
as ρ1 = 1 − ρEi1 (complement of ρEi1 ) and ρ2 = ρEi2 .
Muscular MRI examinations using ICA were described by ρ1
and ρ2, or, more comprehensively, by the scalar neuromuscular
index NMi : = ρ1 + ρ2.

Statistical Analysis of the Muscular
Water/Fat Distribution
Since, clinically, no noticeable differences between left and right
legs were assessable, and with respect to the small number
of cases, only one MRC score was given for both lower
limbs. Accordingly, image parameters also represent cumulative
evaluations of both legs. Additionally, we assessed age as a
possible confounder of FF and the newly introduced full image–
related parameters using robust linear regression analysis (LRA)
and calculation of group-differences with conservative correction
for multiple comparisons.

Conformity of WFDs in the various ROIsm with the normal
distribution was found in <5% of all cases (Shapiro–Wilk
test, testing ROIsm: WFD conform with normal distribution:
water signal = 4.62%, fat signal= 3.85%; p < 0.05). Thus,
median-based tests were used for inferential statistics and the
median, the median absolute deviation (MAD), and range [min–
max] for descriptive statistics. Single subject analysis and group
testing were based on rank correlation tests with calculation of
Spearman’s Rho.

Differences between groups were evaluated using Kruskal–
Wallis tests (K-W test) with Dunnett’s modified Tukey–
Kramer pairwise multiple comparison tests (DTK) for post-hoc
analysis [21]. Conservative correction for multiple comparisons
(Bonferroni) was performed. A p < 0.05 was considered
significant. Linear regression analysis was performed using least
trimmed squares robust (high breakdown point) regression. All
computations and statistical evaluations were performed using
scripts written for cran-R involving packages AnalyzeFMRI,
robustbase, fastICA, and DTK [21–25].

RESULTS

Testing the relation between disability (MRC score) in
lower limbs (ROILL) and FF revealed a strong correlation,
independently of the underlying disease (−0.71 [Spearman’s

Rho]). PCA-based angle ϕ(w/f ) and scattering c
(

ϕ(w/f ), σn
)

showed even stronger correlations with the MRC score in
ROIsLL (both: −0.76 [Spearman’s Rho]). The ICA-derived
coefficients ρ1 and ρ2 and the index NMi exhibited the strongest
correlations with the MRC score in the lower limbs (ρ1: −0.78,
ρ2: −0.76, NMi: −0.78 [Spearman’s Rho]). In thighs (ROIT),
correlations of PCA- and ICA-derived parameters with MRC
scores were generally strong, with rather heterogeneous results
in calves (ROIC). Throughout all regions, i.e., ROIT , ROIC, and
ROILL, nearly all parameters were significantly different between
clinically healthy patients (MRC score: 5) and those with MRC
scores 4 or 3 (K-W test [ROILL], post-hoc: DTK, groups = 3

[corr.], FF: p = 0.0005; ϕ(w/f ): p = 0.0001, c
(

ϕ(w/f ), σn
)

: p =

0.0001, ρ1: p = 0.00009, ρ2: p = 0.0002, and NMi: p = 0.0001).
Since only one patient presented with MRC score 2, this patient
was not included in the score-group comparison (detailed data
are provided in Table 1).

FF, PCA-derived angle ϕ(w/f ), and scattering c
(

ϕ(w/f ), σn
)

in lower limbs (ROILL) were correlated strongly with ρ =
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FIGURE 2 | Cumulative standardized WFD matrices Mw/f of lower limbs from subjects without NMD. The left image displays subjects younger than 50 years, while on

the right side subjects older than 50 years are shown. The area including 95% of all cases without NMD is marked in green color with green lines denoting the median

of water and fat signals of all non-NMD cases. Generally, the WFDs in these subjects represent regular muscle tissue, which seems rather homogeneous and shows a

greater variance of the water signal with, in its effect perpendicular to this, only minimal fat signal variances. Accordingly, eigenvectors in Mw/f were nearly parallel to

the main signal axes (blue and red arrows: eigenvectors multiplied by corresponding standard deviations arbitrarily drawn in the middle of Mw/f showing the variance

size and direction of the principal components). Also, the PCA-derived angle ϕ(w/f) and scattering c
(

ϕ(w/f ), σn
)

are given. The slightly higher scattering in older

subjects was not significantly different from younger ones.

0.888 and 0.886 (Spearman’s Rho), respectively. Correlations

between FF, ϕ(w/f ), and c
(

ϕ(w/f ), σn
)

in thighs (ROIT) were

even stronger with ρ = 0.962 and ρ = 0.938 (Spearman’s
Rho), respectively. In calves (ROIC), the correlations between

FF, ϕ(w/f ), and c
(

ϕ(w/f ), σn
)

were still strong with ρ = 0.745

and 0.742 (Spearman’s Rho), respectively. Also, the ICA-based
parameters ρ1, ρ2, and NMi were strongly correlated with FF
in lower limbs with ρ = 0.819, 0.826, and 0.828 (Spearman’s
Rho), respectively. The same was true in thighs, where strong
correlations of FF with ρ1, ρ2, andNMiwith ρ = 0.849, 0.875, and
0.878 (Spearman’s Rho), respectively, were found. Correlations
between FF and ρ1, ρ2, and NMi in calves were rather moderate
with ρ = 0.621, 0.611, and 0.588 (Spearman’s Rho), respectively.

The already visually different WFD patterns of regular
and non-regular muscle tissue were investigated further, and
the relation between the ICA-derived coefficients ρ1 and ρ2
was assessed using a robust linear regression model after
transformation of ρ2 to the logarithmic scale. Using the model
ρ1 : = a · log(ρ2) + b, regression analysis revealed that the
loss of regular muscular tissue was strongly correlated with an
exponential increase in non-regular muscular tissue (LRA; log-
linear model; R2[adjusted]: ROIT : 0.981, ROIC: 0.964, ROILL:
0.966; p < 2.2 × 10−16) (Figure 5; Supplementary Figure 6).
Additionally, depending on the MRC score, PCA-derived angles

ϕ(w/f ) and scattering c
(

ϕ(w/f ), σn
)

showed distinctly different

distributions of NMDs with primary neuronal degeneration

and those primary leading to fatty degeneration of the muscle
tissue (Figure 6).

Concerning disability, the MRC score in LGMD patients was
significantly lower compared to the control groups (K-W test:
MRC, post-hoc: DTK [corr.], p = 0.002), while for the rest of
the NMD groups no significant differences were found. In lower
limbs, FF was also significantly different between the LGMD
and control groups only (K-W test: FF, post-hoc: DTK [corr.],
p = 0.004). The same was found for PCA-derived angle ϕ(w/f )

and scattering c
(

ϕ(w/f ), σn
)

(K-W test: (ϕ(w/f ),c
(

ϕ(w/f ), σn
)

),

post-hoc: DTK [corr.], p = (0.0003, 0.0003). The ICA-based
coefficients ρ1 and ρ2 and index NMi showed a comparable
behavior (K-W test: (ρ1,ρ2,NMi), post-hoc: DTK [corr.], p =
(0.0006, 0.0007, 0.0007).

Generally, age in the ALS (median ± MAD: 61.6 ± 0.5,
range: [45.5–62.2], unit: years), and MMP groups (55.1 ± 3.0,
[52.1–58.1]) was significantly higher than in the young control
group CO <50 (33.2 ± 3.4, [23.6–38.6]), while patients in the
SBMA group (37.9± 2.1, [33.9–52.5]) were significantly younger
than subjects in the older control group CO >50 (60.4 ± 4.0,
[55.3–72.4]) (K-W test: age, post-hoc: DTK [corr.: Bonferroni],
p = 0.028). Otherwise, there were no significant differences
found between the various groups, especially when testing the
cumulative and the young and older control groups separately
against the NMD groups. Additionally, linear regression analysis
testing the influence of age on the various muscle parameters
in the cumulative control group CO revealed that age was no
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FIGURE 3 | Cumulative WFD matrices Mw/f of lower limbs of subjects with proven NMD overlaid with the corresponding 95th quantile area of the cumulative regular

reference group (green area). Lines show the median of normalized water and fat signals of NMD (blue) and reference patients (green). Blue and red arrows drawn in

the middle of the respective Mw/f show the standard deviation and direction of the principal components in each group-WFD. Compared to theWFD in regular muscle

tissue of control patients, group-WFDs of patients suffering from ALS (left upper image), MMP (right upper image), SBMA (left lower image), or LGMD (right lower

image) were clearly more inhomogeneous and rotated into the direction of the fat signal, which is also supported by angles ϕ(w/f) and scatteringc
(

ϕ(w/f ), σn
)

. Note

that the latter two parameters are clearly higher in NMD patients than in controls.

significant confounder, neither of FF (LRA: FF × age, R2
adj.=

0.359 [thighs], −0.143 [calves], −0.166 [lower limbs], n.s.) nor
of the PCA-derived parameters ϕ(w/f ) (LRA: ϕ(w/f )×age, R2

adj.=

0.345 [thighs], 0.391 [calves], 0.084 [lower limbs], n.s.), and

c
(

ϕ(w/f ), σn
)

(LRA: c
(

ϕ(w/f ), σn
)

×age, R2
adj.= 0.159 [thighs],

−0.119 [calves], 0.307 [lower limbs], n.s.), respectively. The same

was true for the ICA-based correlation coefficients ρ1 (LRA:
ρ1×age, R2

adj.= −0.015 [thighs], 0.135 [calves], 0.108 [lower

limbs], n.s.) and ρ2 (LRA: ρ2×age, R2
adj.= −0.139 [calves],

−0.026 [lower limbs], n.s.), as well as the NMi (LRA: NMi×age,
R2
adj.= 0.02 [thighs], −0.112 [calves], 0.06 [lower limbs], n.s.),

where the influence of age was not significant. The only
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FIGURE 4 | WFD matrices Mw/f generated from component vectors Ei1 (right image) and Ei2 (left image) derived from model-free ICA with differentiation of two

components. Cumulative ROIs of both lower limbs of all cases included in this study were assessed for distinct WFD patterns: regular (Ei1) and non-regular (Ei2) muscle

tissue. Note that Mw/f of vector Ei1 virtually resembles the same WFD as depicted in the control group (compare Figure 2), while Mw/f of vector Ei2 strongly correlates

with WFDs found in patients with proven NMD.

significant relation between age and any of the tested parameters,
was found for ρ2 in thighs (LRA: ρ2×age, R2

adj.= 0.772 [thighs],

p = 0.013). A full summary of the results for all ROIs, i.e.,
ROIT , ROIC, and ROILL concerning angle ϕ(w/f ), scattering

c
(

ϕ(w/f ), σn
)

, coefficients ρ1 and ρ2, and index NMi is given in

Tables 2–4.

DISCUSSION

PCA and ICA were used to extend the widely accepted and
validated MRI-based scalar quantity FF. Though FF is a robust
biomarker, reliably assessing progression and stage of NMDs
[2, 3, 26], we aimed to demonstrate the feasibility of statistical
methods known from image analysis and pattern recognition
to provide an even deeper insight into pathological alterations
depicted by MRI in muscles. In contrast to FF, the quantitative
methods proposed in this study rely on the assessment of the
entire water- and fat-related signal acquired by muscular MRI
in the lower limbs considering a wider range of MRI-accessible
information. The proposed PCA- and ICA-derived parameters
remained related to FF, but exhibited stronger correlations with
muscle strength in lower limbs indicating a potentially higher
clinical relevance of these methods in the assessment of the
course and progression of NMDs.

FF considers the relative amount of the fat-attributed
muscular tissue partition in MRI only, while the full range of the
water/fat signal is used to correct for possible signal variations
of the measurement. Though this warrants robust results [27],

on the one hand, this could mask meaningful information about
subtle shifts in the water/fat relation in muscles, on the other
hand. Thus, the complete distribution of all water/fat signal
pairs, the so-called WFD, encountered in MRI of lower limb
muscles was evaluated in this study. In case of a high number
of voxels with strong signal from stationary protons, much of
theWFD is explained by muscular fat content, which rotates the
preferential axes of theWFD inMw/f into the direction of the fat
signal, and vice versa (Figures 2, 3). Consequently, the specific
information of the FF-correlated fat content is conserved in PCA
and ICA, while all the water-attributable signal information is
added to the analysis. This assertion is clearly supported by the
strong correlation between PCA- or ICA-derived parameters and
the corresponding FF. Nevertheless, the correlation between the
MRC score and PCA- and ICA-derived parameters was in large
part stronger than that found for FF (Table 4), which indicates
that FF may not reveal all the information about subtle but
relevant alterations in the muscular texture depicted in MRI.
Thus, the advanced analysis of muscular MRI stressed in this
study seems to further extend the accuracy of FF.

As the WFD constitutes from the linear combinations of
the underlying water/fat signal, PCA was used to calculate
eigenvectors and values of the specific distribution. From the
eigenvector of the main principal component, the rotation angle
ϕ(w/f ) relative to the virtual y-axis of Mw/f was computed to

quantify the excursion of the measured signal distribution in the
direction of either the water or fat signal. Additionally, scattering

described by the coherence function c
(

ϕ(w/f ), σn
)

was evaluated

in order to estimate the impact of variances of the acquired water

Frontiers in Physics | www.frontiersin.org 8 June 2020 | Volume 8 | Article 195

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nasel et al. Advanced MRI in Neuromuscular Disease

TABLE 1 | Summary of FF, ϕ(w/f), c
(

ϕ(w/f ), σn
)

, ρ1, ρ2, and NMi grouped by the corresponding MRC score in lower limbs.

Groups by MRC score

Score 5 (n = 15) 4 (n = 8) 3 (n = 2) 2 (n = 1)

Thighs

FF (Rho = −0.738) 6.5 ± 1.2 [5.0–11.1] 40.1 ± 25.4
†5

[7.1–77.6] 75.7 ± 8.1*5 [67.6–83.8] 16.0

ϕ(w/f) (Rho = −0.789) 0.04 ± 0.02 [0.01–0.18] 2.21 ± 1.78‡
5
[0.17–4.02] 4.03 ± 0.01*5 [4.02–4.03] 0.31

c
(

ϕ(w/f ), σn
)

(Rho = −0.783) 0.53 ± 0.33 [0.09–5.23] 342.3 ± 333.9‡
5
[4.99–1001.7] 803.3 ± 180.7*5 [622.6–983.9] 23.39

ρ1 (Rho = −0.79) 0.27 ± 0.08 [0.18–0.49] 0.69 ± 0.16‡
5
[0.46–0.9] 0.87 ± 0.1*5 [0.77–0.97] 0.67

ρ2 (Rho = −0.788) 0.08 ± 0.02 [0.04–0.16] 0.53 ± 0.28‡
5
[0.16–0.85] 0.65 ± 0.02*5 [0.63–0.67] 0.18

NMi (Rho= −0.79) 0.36 ± 0.11 [0.23–0.65] 1.22 ± 0.45‡
5
[0.63–1.75] 1.52 ± 0.13*5 [1.4–1.65] 0.85

Calves

FF (Rho = −0.696) 6.4 ± 1.1 [4.2–10.8] 26.0 ± 14.7
†
5 [5.5–62.1] 65.4 ± 1.1*5 [64.3–66.5] 11.2

ϕ(w/f) (Rho = −0.714) 0.12 ± 0.02 [0.02–0.61] 2.22 ± 1.76
†
5 [0.14–4.04] 4.05 ± 0.01*5 [4.04–4.06] 0.43

c
(

ϕ(w/f ), σn
)

(Rho = −0.74) 2.89 ± 1.30 [0.27–36.21] 371.1 ± 362.6
†
5 [4.73–929.7] 1112.8 ± 193.6*5 [919.2–1306.4] 25.87

ρ1 (Rho = −0.632) 0.4 ± 0.07 [0.23–0.54] 0.63 ± 0.1
†
5 [0.3–0.82] 0.79 ± 0.01*5 [0.77–0.8] 0.53

ρ2 (Rho = −0.631) 0.21 ± 0.05 [0.09–0.4] 0.44 ± 0.16*5 [0.16–0.86] 0.6 ± 0.09*5 [0.51–0.69] 0.39

NMi (Rho= −0.649) 0.62 ± 0.05 [0.38–0.94] 1.07 ± 0.27*5 [0.46–1.68] 1.39 ± 0.07*5 [1.31–1.46] 0.92

Lower Limbs

FF (Rho = −0.709) 6.5 ± 0.5 [5.7–10.6] 38.5 ± 15.7
†
5 [6.3–65.5] 70.6 ± 4.6*5 [65.9–75.2] 13.6

ϕ(w/f) (Rho = −0.759) 0.10 ± 0.05 [0.01–0.48] 3.87 ± 0.16‡
5
[0.17–4.04] 4.05 ± 0.00*5 [4.04–4.05] 0.33

c
(

ϕ(w/f ), σn
)

(Rho = −0.764) 2.27 ± 1.44 [0.13–30.98] 796.5 ± 248.7‡
5
[6.63–1071.9] 1128.8 ± 138.7*5 [990.2–1267.5] 28.12

ρ1 (Rho = −0.781) 0.34 ± 0.05 [0.23–0.52] 0.7 ± 0.09‡
5
[0.46–0.83] 0.78 ± 0.01*5 [0.77–0.79] 0.60

ρ2 (Rho = −0.756) 0.19 ± 0.04 [0.1–0.35] 0.66 ± 0.14‡
5
[0.23–0.84] 0.73 ± 0.03*5 [0.7–0.76] 0.35

NMi (Rho = −0.777) 0.54 ± 0.1 [0.33–0.87] 1.36 ± 0.2‡
5
[0.69–1.66] 1.51 ± 0.04*5 [1.47–1.54] 0.95

Significant differences were found nearly throughout all parameters between clinically healthy patients (score: 5) and those with scores 4 and 3. Only one patient presented with score 2,

who was not included in the comparisons (DTK test [corr.], 3 groups; sig. *P < 0.05,
†
p < 0.01, ‡p < 0.001). In brackets beside each parameter (1st column), the correlation coefficient

Rho (Spearman) is given, which displays the correlation between the respective parameter and the MRC score. Generally, the PCA-related parameters ϕ(w/f) and scattering c
(

ϕ(w/f ), σn
)

showed stronger correlations with the MRC score than the FF, which, except in the calves, was also true for ICA-derived parameters ρ1, ρ2, and NMi. (Values in columns 2–4 are given

as Median ± MAD and [range]).

and fat signals on the respective WFD. Further investigation of

ϕ(w/f ) and c
(

ϕ(w/f ), σn
)

revealed that all patients with regular

muscle strength, independently of their diagnosis, presented

with small values for ϕ(w/f ) and c
(

ϕ(w/f ), σn
)

. This induced a

certainWFD pattern of water/fat signal pairs densely packed near
the virtual y-axis of Mw/f , where the eigenvector of the major
component was nearly parallel to this axis and pointed clearly
into the direction of the water signal (Figure 2). In patients
with reduced strength grades, the WFD patterns were more
heterogeneous. They presented with a more or less widespread
distribution of water/fat signal pairs around the virtual diagonal
spanned between the extremes of Mw/f . Due to the clearly
stronger excursions of their WFD into the direction of the fat-
related signal with much larger variations of the encountered

signal components, values found for ϕ(w/f ) and c
(

ϕ(w/f ), σn
)

were significantly higher than those in patients with regular
muscle strength. Compared to FF, differentiation of patients with
various MRC scores in thighs and lower limbs was in favor of the
PCA-derived parameters, since correlations were stronger and
the ability to separate patients from different groups was better

defined using angles ϕ(w/f ) and/or scattering c
(

ϕ(w/f ), σn
)

(Table 4). According to this, PCA parameters were strongly

correlated with the MRC score and were significantly different
in patients grouped by this score. This implies an improved
discrimination of various stages of disease by the PCA parameters
with preservation of the properties of FF, as the correlation with
FF was strong. In this way, angles ϕ(w/f ) and an inherent part of

the coherence function c
(

ϕ(w/f ), σn
)

, the product of standard

deviations (σ product), theoretically, could serve automatic
classification of NMDs in future trials on big data using artificial
intelligence based approaches (Figure 6).

Generally, two distinct WFD patterns, one typical for regular
and the other for non-regular muscular tissue, with only a small
overlap between the two patterns, were found (Figures 2, 3,
Supplementary Figures 2–4). This encouraged the use of ICA
for automatic separation of these distinctly different patterns. A
WFD can be seen as an image displaying a specific distribution of
regular and non-regular muscle components, or, more precisely,
it is a combination of at least two “sub-images” each depicting
either regular or non-regular muscle tissue. These sub-images
are represented by component vectors, which neither share a
collinear statistical effect, as shown by ϕ(w/f ), nor conform

to the normal distribution in statistical testing. Thus, both
components or sub-images may be assumed as non-Gaussian
linear representations of water/fat signals of different disease
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FIGURE 5 | Relation between the WFD-derived regular (component 1) and

non-regular (component 2) muscular tissue fractions in ROIs of the lower limbs

from all patients after extracting two components from matrices Mw/f using

ICA (NMD groups are indicated by different colors; numbers indicate the MRC

score). Note that non-regular tissue seems to increase exponentially with loss

of regular muscle tissue.

conditions, which can be decomposed by ICA as statistically
independent components hidden in the full WFD image.
This assumption is proven by our results exhibiting a robust
decomposition of the postulated two—characteristic—patterns
using ICA.

The match of individual WFD image vectors with regular
or non-regular muscle tissue component vectors Ei1 and Ei2 was
quantified by computing the rank correlation coefficients ρ1 and
ρ2 and their sum: NMi. In patients with reduced MRC scores
suffering from long-lasting, i.e., already progressed NMDs (e.g.,
SBMA and LGMD patients), an exponential increase in non-
regular muscle tissue was found. Patients with reduced muscle
strength in rapidly progressing NMDs (e.g., ALS) and, therefore,
shorter disease durations showed by far less reorganization of
the muscle texture. However, both conditions were significantly
different from patients without strength constraint. Accordingly,
the ICA-derived parameters showed much stronger correlations
with MRC scores than FF, though FF was still strongly correlated
to ρ1, ρ2, andNMi. These findings emphasize the ability of ICA to
robustly decompose regular and non-regular muscle components
depicted inMw/f with preserving the information inherent to FF.
However, the MRC scores were explained better by ICA-based
parameters than by FF. Since the number of cases in this study
was rather small, we did not try to separate other components by
ICA, especially from the non-regular sub-image pattern ofWFD.
Nevertheless, separation of other components appears promising
in larger and more homogenous (sub)samples, where ICA could

FIGURE 6 | Behavior of PCA-derived parameters: ϕ(w/f) (y-axis) and the

so-called σ -product (x-axis), an inherent part of scattering defined by the

coherence function c
(

ϕ(w/f ), σn
)

, in the various NMD groups (indicated by

different colors; numbers indicate the MRC score). Alterations in the muscular

water/fat texture with higher fat partitions shift the measurements to the right

and upward. Especially, an increased heterogeneity of the WFD indicated by

the σ product was related to reduced MRC scores in muscles of lower limbs.

As this suggests an excellent differentiation of alterations attributed

predominantly to fatty infiltration from those primarily caused by denervation,

this could serve automatic classification of NMDs in future trials. Note that

younger and older controls share the same behavior suggesting nearly no

effect of age on the measurements.

be used to objectively explore conceivable further subtypes of
NMD-induced muscle alterations.

It has to be noted that standardized Mw/f matrices
may contain—in principle—any combination of different MR
signals. Three-point-, proton-density-, or T2-weighted Dixon
techniques, which seem to offer more stable results for
quantification of the muscular fat content [27], could also help to
differentiate the various muscular conditions in NMDs, like fatty
degeneration, denervation edema or fibrosis, which could further
expand the power of our methods.

Though our preliminary results underline the advantages of
sampling the fullWFD, several limitations have to be considered.
The sample size of our NMD cohort is quite small and most
of our observations remain yet to be proven in larger NMD
cohorts. Our results may, therefore, suffer from heterogeneity,
where effects from, e.g., age, training state, or the body mass
index, could not be considered entirely. On the other hand, given
the very low prevalence of the investigated NMDs, the number of
cases presented here appears at least fair to prove the feasibility
of the proposed analysis methods. Even in our small sample
of NMD patients, assessment using the proposed standardized
matrices Mw/f seemed to offer a valuable extension to FF.
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TABLE 2 | Summary of age, MRC scores in lower limbs, and FF in thighs, calves, and lower limbs per NMD group.

CO

n = 9

CO < 50

n = 4

CO > 50

n = 5

ALS

n = 6

SBMA

n = 4

LGMD

n = 5

MMP

n = 2

Age [years]

Subjects 55.3 ± 16.8

[23.6–72.4]

33.2 ± 3.4*C+

[23.6–38.6]

60.4 ± 4.0*C−

[55.3–72.4]

61.6 ± 0.5*C−

[45.5–62.2]

37.9 ± 2.1*C+

[33.9–52.5]

56.9 ± 5.5

[37.4–77.3]

55.1 ± 3.0*C−

[52.1–58.1]

MRC-scores in lower limbs [score 5–0]

Lower limbs 5 [5] 5 [5] 5 [5] 4 ± 1 [2–5] 5 ± 0 [3–5] 4 ± 0
†
Ca [3–4] 5 ± 1 [4–5]

Fat fraction [%]

Thighs 6.2 ± 1.0

[5.0–11.1]

5.8 ± 0.6

[5.0–8.8]

6.5 ± 0.4

[5.3–11.1]

10.4 ± 3.3

[7.1–18.0]

9.4 ± 2.3

[5.2–67.6]

68.9 ± 15.0
†
Ca

[51.1–83.8]

19.1 ± 10.0

[9.1–29.1]

Calves 6.4 ± 1.0

[4.2–10.3]

6.9 ± 0.8

[4.2–8.0]

6.4 ± 0.9

[5.3–10.3]

11.0 ± 2.7

[4.8–16.1]

7.6 ± 1.4

[6.1–64.3]

44.2 ± 17.9*Ca

[18.9–66.5]

21.8 ± 11.3

[10.4–33.1]

Lower limbs 6.4 ± 0.4

[5.7–9.5]

6.5 ± 0.6

[5.7–7.4]

6.4 ± 0.1

[6.0–9.5]

10.8 ± 3.7

[6.0–17.1]

7.8 ± 0.4

[7.1–65.9]

48.4 ± 2.4
†
Ca

[46.0–75.2]

20.4 ± 10.7

[9.8–31.1]

Note that disease affection was always symmetrical; thus, no differentiation between left and right sides is given (DTK test [corr.]; sig. *p < 0.05,
†
p < 0.01, Ca. Different from all control

groups; C−, Different from control group younger than 50 years only; C+, Different from control group older than 50 years only). No significant differences between the various control

(sub)groups were found. Age was not significantly different between the various NMD groups and controls; only when controls were split into subjects under and over 50 years a

significant difference was found. For the tested parameters, age was no significant confounder. (Values are given as Median ± MAD and [range] till not denoted otherwise).

TABLE 3 | Summary of PCA-derived parameters ϕ(w/f) and scattering s
(

ϕ(w/f ), σn
)

per NMD group.

CO

n = 9

CO < 50

n = 4

CO > 50

n = 5

ALS

n = 6

SBMA

n = 4

LGMD

n = 5

MMP

n = 2

PCA: ϕ(w/f) [rad]

Thighs 0.02 ± 0.01

[0.01–0.17]

0.02 ± 0.01

[0.01–0.04]

0.04 ± 0.02

[0.02–0.17]

0.20 ± 0.09

[0.09–0.44]

0.12 ± 0.06

[0.01–4.03]

4.01 ± 0.01
†Ca

[3.87–4.02]

0.32 ± 0.23

[0.09–0.55]

Calves 0.11 ± 0.02

[0.02–0.21]

0.14 ± 0.04

[0.02–0.21]

0.1 ± 0.01

[0.09–0.12]

0.40 ± 0.10

[0.10–0.57]

0.24 ± 0.06

[0.16–4.06]

4.01 ± 0.03‡
Ca

[0.5–4.04]

2.23 ± 1.63

[0.61–3.86]

Lower limbs 0.07 ± 0.04

[0.01–0.12]

0.05 ± 0.03

[0.01–0.12]

0.1 ± 0.0

[0.03–0.11]

0.32 ± 0.11

[0.07–0.55]

0.21 ± 0.05

[0.14–4.04]

4.01 ± 0.04‡
Ca

[3.90–4.05]

2.15 ± 1.67

[0.48–3.82]

PCA: s
(

ϕ(w/f ), σn
)

[rad·%2
max]

Thighs 0.5 ± 0.2

[0.1–5.2]

0.4 ± 0.1

[0.1–0.5]

0.7 ± 0.4

[0.3–5.2]

8.5 ± 5.5

[1.9–31.2]

3.9 ± 2.3

[0.1–983.9]

900 ± 102
†Ca

[607.4–1,002]

40.1 ± 37.2

[2.9–77.3]

Calves 2.3 ± 1.0

[0.3–4.9]

2.6 ± 1.3

[0.3–4.9]

2.3 ± 1.0

[1.2–4.0]

24.7 ± 10.6

[1.7–97.1]

6.7 ± 2.2

[3.8–1,306]

908 ± 22
†Ca

[12.2–929.7]

341 ± 305

[36.2–645.1]

Lower limbs 1.4 ± 0.9

[0.1–4.3]

1.1 ± 0.6

[0.1–3.1]

2.3 ± 1.4

[0.7–4.3]

22.7 ± 10.7

[1.7–89.2]

6.3 ± 1.0

[5.2–1,268]

990 ± 28‡
Ca

[860.3–1,072]

382 ± 351

[31.0–732.7]

Like for FF, significant differences were found only between the various CO (sub)groups and LGMD patients (DTK test [corr.]; sig *p < 0.05,
†
p < 0.01, ‡p < 0.001; Ca, Different from all

CO (sub)groups; C−, Different from CO (sub)group younger than 50 years only; C+, Different from CO (sub)group older than 50 years only). Note that differences between the control

groups were not significant for the PCA-derived parameters indicating that the presented assessment was robust against an influence from age. (Values are given as Median ± MAD

and [range] till not denoted otherwise).

As the PCA- and ICA-derived parameters remained strongly
correlated to FF, the proposed methods should still compare to
FF. Despite this, we were able to demonstrate that, for instance,
age was no significant confounder in our analysis, though some
studies reported a relevant, but mostly weak, influence from
age on FF. However, several other studies did not confirm this
finding [3, 28] and, accordingly, no significant influence from
age on the assessed parameters was found in this study (compare
Supplementary Figure 7). For the moment our approach, which
primarily aims to demonstrate the feasibility of PCA- and ICA-
based assessment of the proposed standardized WFD matrices,
appears rather robust to influences of patients’ age.

As our sample consisted of several different NMDs, another
limitation of this study was the need to abstain from commonly

recognized clinical and functional scales describing special
features of a particular NMD in more detail than the proposed
assessment based on the MRC score. The MRC score helped
to preserve comparability of clinical assessment and to reduce
effects from the heterogeneity of the various NMDs in our
sample. Additionally, MRC grading is a commonly accepted
clinical tool validated to reliably measure strength in the lower
limbs. However, the generally weaker relation between PCA,
ICA, and FF and their weaker correlation to the MRC score
in calves in our sample could also result from deficiencies
of this score system. Actually, this system tests the ability to
move the lower limbs against gravity, which does not require
too much function of calf muscles. The overall smaller muscle
volumes in calves, potentially inducing greater variances in the
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TABLE 4 | Summary of ICA-based coefficients ρ1 and ρ2 and index NMi per NMD group.

CO

n = 9

CO < 50

n = 4

CO > 50

n = 5

ALS

n = 6

SBMA

n = 4

LGMD

n = 5

MMP

n = 2

ICA: ρ1 (regular–complement)

Thighs 0.25 ± 0.06

[0.18–0.42]

0.24 ± 0.03

[0.20–0.36]

0.27 ± 0.08

[0.18–0.42]

0.47 ± 0.05

[0.32–0.67]

0.44 ± 0.12

[0.25–0.77]

0.84 ± 0.13‡
Ca

[0.70–0.97]

0.55 ± 0.13

[0.42–0.68]

Calves 0.37 ± 0.08

[0.23–0.47]

0.37 ± 0.05

[0.23–0.47]

0.41 ± 0.06

[0.29–0.47]

0.53 ± 0.04

[0.40–0.61]

0.40 ± 0.01

[0.38–0.80]

0.65 ± 0.12*Ca

[0.30–0.82]

0.63 ± 0.09

[0.54–0.72]

Lower limbs 0.32 ± 0.06

[0.23–0.46]

0.31 ± 0.06

[0.23–0.39]

0.32 ± 0.06

[0.26–0.46]

0.53 ± 0.07

[0.34–0.60]

0.44 ± 0.06

[0.35–0.77]

0.77 ± 0.05‡
Ca

[0.70–0.83]

0.61 ± 0.09

[0.52–0.71]

ICA: ρ2 (non-regular)

Thighs 0.07 ± 0.01

[0.04–0.15]

0.06 ± 0.01

[0.06–0.10]

0.08 ± 0.01

[0.04–0.15]

0.17 ± 0.01

[0.10–0.19]

0.14 ± 0.06

[0.04–0.63]

0.70 ± 0.03‡
Ca

[0.67–0.85]

0.26 ± 0.11

[0.15–0.36]

Calves 0.20 ± 0.06

[0.09–0.26]

0.21 ± 0.05

[0.09–0.26]

0.20 ± 0.01

[0.14–0.26]

0.34 ± 0.04

[0.16–0.39]

0.25 ± 0.01

[0.23–0.51]

0.55 ± 0.14*Ca

[0.16–0.86]

0.54 ± 0.13

[0.40–0.67]

Lower limbs 0.15 ± 0.04

[0.10–0.22]

0.16 ± 0.04

[0.10–0.20]

0.15 ± 0.02

[0.12–0.22]

0.31 ± 0.04

[0.15–0.35]

0.23 ± 0.03

[0.18–0.70]

0.75 ± 0.05‡
Ca

[0.69–0.84]

0.49 ± 0.14

[0.35–0.62]

ICA: NMi

Thighs 0.32 ± 0.07

[0.23–0.58]

0.30 ± 0.04

[0.25–0.47]

0.36 ± 0.11

[0.23–0.58]

0.65 ± 0.08

[0.43–0.85]

0.57 ± 0.18

[0.28–1.40]

1.60 ± 0.16‡
Ca

[1.40–1.75]

0.80 ± 0.24

[0.57–1.04]

Calves 0.61 ± 0.06

[0.38–0.67]

0.59 ± 0.04

[0.38–0.63]

0.61 ± 0.06

[0.47–0.67]

0.86 ± 0.09

[0.56–0.98]

0.65 ± 0.02

[0.61–1.31]

1.20 ± 0.26*Ca

[0.46–1.68]

1.17 ± 0.22

[0.94–1.39]

Lower limbs 0.44 ± 0.10

[0.33–0.68]

0.47 ± 0.09

[0.33–0.59]

0.44 ± 0.05

[0.40–0.68]

0.84 ± 0.11

[0.50–0.95]

0.67 ± 0.10

[0.53–1.47]

1.46 ± 0.07‡
Ca

[1.39–1.66]

1.10 ± 0.23

[0.87–1.33]

In accordance with all other measurements, only between patients in the CO (sub)groups and the LGMD group a significant difference was found (DTK test [corr.]; sig *p < 0.05,
†
p

< 0.01, ‡p < 0.001; Ca, Different from all CO (sub)groups; C−, Different from CO (sub)group younger than 50 years only; C+, Different from CO (sub)group older than 50 years only).

(Values are given as Median ± MAD and [range] till not denoted otherwise).

measurements, could also contribute to this. Moreover, as our
methods indicate a higher sensitivity to detect subtle shifts in the
muscular water/fat-content in NMDs, one also has to consider
that alterations in MRI may precede the clinical deterioration
of a patient. Obviously, this is not fully described by the MRC
score and requires a closer analysis of the exact relation between
changing of ICA- and PCA-based parameter values and the
correlated clinical presentation of a patient.

Finally, since we evaluated the full WFD without correction,
we assume our measurements to be prone to bias from
inhomogeneities of B0 and geometrical properties of the used
coil system. As all data was recorded on a single scanner using
the same coil system, this seemed not to have played a major
role. However, this needs to be investigated further, especially
when assessing regions with smaller muscle volumes, as in
the neck or the arms, with expectedly higher distortions of
the magnetic field. Also, differences in data quality performed
on different MR scanners or with higher field strengths and
improved sequence techniques (e.g., 3-point Dixon sequence) is
to be expected, potentially leading to improved spatial resolution
and discrimination power.

Conclusion
PCA was found promising to allow robust classification of
patients according to their stage of NMD, thereby extending the
possibilities of FF. ICA enabled an apparently robust separation
of regular from non-regular muscle components in the proposed
standardized MRI feature–based matrices Mw/f , which could

offer a practical way for automatic identification of pathologically
altered muscle tissue and possible NMD subgroups. Compared
to FF, our preliminary results suggest a higher power of
PCA- and ICA-derived parameters to detect subtle shifts in
the MRI water/fat signal relation in NMDs, which encourages
the conduction of further trials to overcome limitations of
this study. PCA- and ICA-driven statistical assessment of
neuromuscular MRI may, therefore, be used to substantially
improve the diagnostic workup and monitoring of disease
progression in NMDs.
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Supplementary Figure 1 | Example of individual ROIs covering the various

muscles at each side in a representative slice near the mid-level of thighs and

calves. These individual muscle ROIs were assessed cumulatively, thereby

evaluating thighs or/and calves from both sides or legs as one large cumulative

ROI, respectively. This allowed a cumulative investigation of both thighs, both

calves and both lower limbs. Note that the ROIs covering bone marrow were used

to check for Dixon inversion artifacts only.

Supplementary Figure 2 | Cumulative standardizedWFD-matricesMw/f of thighs

(upper images) and calves (lower images) measured in subjects without NMD. On

the left side controls younger than 50 years and on the right side controls older

than 50 years are displayed. The area including 95% of all control cases is marked

in green color and green lines indicate their median water- and fat-signals. WFD in

regular muscle tissue, was found rather homogeneous with a greater variance of

the water-signal compared to, in its effect perpendicular to this, only minimal

fat-signal variances. In calves and older subjects slightly bigger fat-signal variances

were observed, which were not significantly different from younger subjects.

Eigenvectors of Mw/f (multiplied by corresponding standard deviations, drawn as

blue and red arrows in the middle) were nearly parallel to the x- and y-axes.

Scattering c
(

ϕw/f , σn
)

and rotation ϕw/f were very small in all control subjects.

Supplementary Figure 3 | WFD-matrices Mw/f of thighs measured in subjects

with proven NMD overlain by the corresponding 95th quantile reference area of

the control-group (green area). Lines give the median of normalized water- and

fat-signals of NMD-patients (blue) and controls (green). Eigenvectors of each Mw/f

(multiplied by corresponding standard deviations, drawn as blue and red arrows in

the middle) show the direction of the principal components of each group.

Compared to controls (reference), WFDs in patients suffering from ALS (left upper

image), MMP (right upper image), SBMA (left lower image), or LGMD (right lower

image) were clearly more inhomogeneous and rotated. Accordingly, scattering

c
(

ϕw/f , σn
)

and rotation ϕw/f were much bigger compared to control subjects.

Supplementary Figure 4 | WFD-matrices Mw/f of calves measured in subjects

with proven NMD overlain by the corresponding 95th quantile reference area of

the control-group (green area). Lines display the median of normalized water- and

fat-signals of NMD- (blue) and control-patients (green). Eigenvectors of each Mw/f

(multiplied by corresponding standard deviations, drawn as blue and red arrows in

the middle) show the direction of the principal components of each group.

Compared to controls (reference), WFDs in patients suffering from ALS (left upper

image), MMP (right upper image), SBMA (left lower image), or LGMD (right lower

image) were clearly more widespread and rotated. Scattering c
(

ϕw/f , σn
)

and

rotation ϕw/f were also higher compared to control subjects.

Supplementary Figure 5 | WFD-matrices Mw/f generated from

component-vectors Ei1 (right images) and Ei2 (left images) derived from ICA with

separation of two components. Cumulative ROIs of thighs (upper row) and calves

(lower row) including all cases in the study were assessed for distinct

WFD-patterns for regular (Ei1) and non-regular (Ei2) muscular tissue. Note that Mw/f

of vectors Ei1 display the same WFD as found in direct measurements in the control

group.

Supplementary Figure 6 | ICA component plot showing the relation between

component 1 (regular muscular tissue) and component 2 (non-regular muscular

tissue) in thighs (left graph) and calves (right graph) from all patients (NMD-groups

are indicated by colors, numbers indicate the MRC-score). Note that non-regular

tissue seems to increase exponentially with loss of regular muscle tissue, where

this behavior is clearly more pronounced in thighs than in calves.

Supplementary Figure 7 | Age was no significant confounder of PCA- and

ICA-derived parameters. Robust linear regression analysis (LRA) testing for

relevant effects from age revealed no significant relation with the measurements. In

fact, parameters ϕw/f , c
(

ϕw/f , σn
)

, ρ1 and ρ2 turned out as rather specific

indicators for muscle degeneration. Independently from age, stronger deviations

of measurements from the x-axis were found in persons already more severely

disabled by their NMD (NMDs are indicated by different colors; numbers display

the MRC-score). Blue lines show the regression line for the respective parameter

tested for its dependence on age in controls. Adjusted R2 and significance of the

relation between the respective parameter and age are also displayed.
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