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Trajectory-Based Approach
Christian Maes*
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We collect recent results on deriving useful response relations also for non-equilibrium

systems. The approach is based on dynamical ensembles, determined by an action

on trajectory space. (Anti)Symmetry under time-reversal separates two complementary

contributions in the response, one entropic the other frenetic. Under time-reversal

invariance of the unperturbed reference process, only the entropic term is present in

the response, giving the standard fluctuation–dissipation relations in equilibrium. For

non-equilibrium reference ensembles, the frenetic term contributes essentially and is

responsible for new phenomena. We discuss modifications in the Sutherland-Einstein

relation, the occurence of negative differential mobilities and the saturation of response.

We also indicate how the Einstein relation between noise and friction gets violated

for probes coupled to a non-equilibrium environment. We end with some discussion

on the situation for quantum phenomena, but the bulk of the text concerns classical

mesoscopic (open) systems. The choice of many simple examples is trying to make

the notes pedagogical, to introduce an important area of research in non-equilibrium

statistical mechanics.

Keywords: non-equilibrium, dynamical activity, ensembles, fluctuations, response

1. INTRODUCTION

To know a system operationally, is to be able to predict its response to a stimulus. Conversely,
we learn about a system by observing its response. In many ways and in all sciences, that
is the very ground for doing experiments where we interfere with the system’s condition. In
psychology for example, subjects are often tested for their reaction to external stimuli. Conclusions
are then formulated about susceptibility or vulnerability. In other domains from sociology to
climate science, we speak of the impact of events or measures, and/or of resilience of the system
of interest (see e.g., [1]). For biological processes, adaptation (i.e., proper response) to changes
in the environment is a matter of survival. How robust are foodwebs or other (economic)
networks over which supply and demand move? On micro-scales, mechanotransduction makes
cells respond biochemically to mechanical stimuli. All of these areas are of immense interest and
even importance today.

In physics, and since a long time, response has been associated with transport phenomena.
The transport of particles, energy, volume, or momentum is a central subject in all of physics.
Pushing, driving, stimulating, or exciting a system in one or the other way, leads to displacements
in physical quantities. The amount and nature of any displacement and how it depends on the
original condition is the subject of response theory. Transport coefficients such as conductivities
and mobilities, viscosities and elasticity moduli, have therefore been studied often in the context of
response theory.
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Over time however, a more general framework has emerged,
to begin with linear response theory around equilibrium. It
is the context of so called fluctuation–dissipation relations.
The terminology hints at the nature of the result, at least for
equilibrium systems: response got connected with fluctuating
quantities, in some cases expressing dissipation or diffusion of
quantities like energy, position or velocity. As a consequence,
response theory also played a role in summarizing or establishing
irreversible behavior on macroscopic scales starting from
reversible microscopic laws (see e.g., [2]).

Response theory for systems out-of-equilibrium is of more
recent times. One major problem, even for the more restricted
class of non-equilibrium processes considered here, is that the
response is no longer describable in terms of thermodynamic
variables like energies or entropy. Kinetics enters and the
steady condition is not characterized simply in terms of a
few macroscopic quantities. Typically we do not know the
stationary distribution, and yet we wish to formulate response
in terms of observable quantities. This is the main attempt
of the paper, to explain an approach to response which is
trajectory-based, meaning to formulate ensembles on the space
of allowed trajectories. The action or Lagrangian contains both
thermodynamic and kinetic information about the process,
and that gets reflected in response relations. The trajectory-
based approach of the present paper, on micrometer scales, is
compatible with the recent great progress in monitoring and
manipulating mesoscopic trajectories of tagged particles. We
have in mind fluorescence and fast-camera tracking, combined
with optical manipulations and shaping of potentials and driving,
e.g., via optical tweezers (1986) [3]. Such experimental tools
enable to collect also kinetic (and not only thermodynamic)
information, which appears an unavoidable prerequisite for
understanding non-equilibrium behavior.

From the conceptual point of view, we must prepare the
scene and introduce structure in (non-equilibrium) response.
From what will follow below, the most important players to
correlate with are excesses in entropy flux and frenesy. The last
concept is relatively new, and requires examples and illustrations
to understand its operational meaning. In particular, response
measurements will give information about changes in dynamical
activity and escape rates, which constitute themeaning of frenesy.
We refer to recent monographs on frenesy for an update [4, 5].
In all, we seek expressions of response that are informative or
operationally useful. Response theory indeed hopes to relate
the stimulus with observable effects in the unperturbed system.
The ambition is thus bigger than providing a Taylor expansion
or some formal perturbation series in the amplitude of the
stimulus. Understanding response means to identify mechanisms
and specify observables that are relevant even independent of the
detailed model, stimulating intuition and enabling to reconstruct
the response in terms of some more elementary considerations.

Response relations have been formulated since a very long
time, and their contents never failed to impress. An early
example has the typical setup drawn in Figure 1. It concerns
the second Thomson relation (1854) between the Seebeck and
the Peltier coefficients. Their equality was understood to be a
manifestation of time-reversal invariance in the 1931-work [6] of

FIGURE 1 | Seebeck-Peltier effect. Electric and thermal currents are the

response to small voltage and temperature differences. Their interference is

described by symmetric Onsager transport coefficients.

Lars Onsager. Such Onsager reciprocity relations as indeed found
in thermoelectric phenomena are useful to decrease the number
of unknown linear response coefficients. They can also be read
off from the Green–Kubo relations that were derived 100 years
after the paper by Kelvin [7]. The general idea is that in linear
response around equilibrium, the average of a current 〈Ji〉F of
type i (e.g., an electric current) is proportional to its correlation
with the excess entropy flux S,

〈Ji〉F = 1

2
〈S Ji〉 =

1

2

∑

k

〈Ji Jk〉 Fk, S =
∑

k

Jk Fk (1)

where Fk is the thermodynamic force of type k (e.g., giving
the difference in temperature at opposite ends of the system).
The linear response coefficients 〈Ji Jk〉 with averages in the
equilibrium ensemble are clearly symmetric under exchanging
i ↔ k (e.g., allowing to identify the Seebeck with the Peltier
coefficient divided by temperature).

(We ignore for the moment the issue of parity and generalized
Casimir-Onsager reciprocity.) The intervention of the entropy
flux, defined from a balance equation, was in essence the start of
much of irreversible thermodynamics [8].

Another line of response theory started with the PhD
work of Pierre Curie (1896) on the magnetic susceptibility of
paramagnets. There, we do not deal with transport or with
currents but we look at the response of magnetization. Curie
derived that at high temperature the equilibrium magnetization
mh responds to a small external magnetic field h with
susceptibility χ , for which

mh −m0 = h χ , χ ∼ 1

T

That is, the magnetic susceptibility falls off with the inverse
of the absolute temperature T (law of Curie). The structure of
such relations has been clarified by the Gibbs formalism, where
free energies govern responses via their derivatives. Example,
heat capacities are thereby related to variances in energy or
enthalpy. Mixed derivatives give rise to an analog of the Onsager
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FIGURE 2 | RC-circuit with resistor at temperature T, the electrical (linear)

circuit equivalent of the basic Langevin equation. The thermal noise at the

resistor produces a fluctuating potential, following the Johnson–Nyquist effect.

reciprocity for linear transport coefficients known as Betti-
Maxwell reciprocity (in equilibrium elasticity theory).

Perhaps the best-known response formula however is
the Sutherland-Einstein relation (1904–05) [9–11]. There, the
mobility is proportional to the diffusion constant. It is a
functional cornerstone of much of colloidal physics. We will see
various elementary examples in section 2.2. All of the above are
called fluctuation–dissipation relations of the first type.

A further line of relations, following from response theory
and called fluctuation–dissipation relations of the second type,
has been opened by the Johnson-Nyquist formula. It gives an
expression for the noise arising from the thermal agitations
of the electrons in a resistor. As a consequence, a random
voltage emerges which can be measured at the ends of the
resistor (Johnson effect, 1926). Mathematically, that voltage can

be described as the random voltage source U
f
t given in the

Nyquist formula (1928),

U
f
t =

√

2kBT R ξt (2)

with R the resistance and ξt a standard white noise. The
amplitude is of course very small by the presence of Boltzmann’s
constant kB, at least when compared to macroscopic voltage
values. Representing each resistor as an ideal resistor in series
with the source (2), we can study fluctuations in an arbitrary
electrical circuit. As an example, consider a resistance R in series
with a capacity C and with a steady voltage source E; see Figure 2.

Write Ut for the variable potential difference over the
capacitor. Kirchhoff’s second law reads

RC U̇t = E− Ut + U
f
t (3)

By inserting the white noise ξt following (2), we obtain the
Langevin equation

U̇t =
E− Ut

RC
+
√

2kBT

RC2
ξt (4)

With the battery removed, E = 0, the dynamics is reversible for
energy function H(U) = CU2/2. In particular, limt↑∞〈U2

t 〉 =
kBT/C, in accordance with the equipartition theorem. We can
however also see from (4) how the potential changes when the
battery is turned on or when E changes in time. That is again
the subject of response theory and the answer obviously depends
on and should make use of the choice (2); we come back to the
example at the end of Example 2.4.

From the above (more historical) examples we already become
aware of a possible connection between response and dissipation
as expressed in fluctuation relations. That will be systematized
in the following sections. In this respect it is useful to keep
distinctions clear and to separate various questions. Terminology
is not always helpful here, as such terms as fluctuation–
dissipation relations, Einstein relation, response relation etc. are
used in multiple meanings throughout the literature.

2. GENERAL QUESTION AND AMBITIONS

Response will be collected in a time-interval [0, t]. At negative
times s ≤ 0 (all the way to time zero) the system of interest has
been prepared in a reference condition. That can be many things,
from a thermal equilibrium condition to a specific transient
regime or, most often in this paper, a steady non-equilibrium
reference. The idea is that at time zero, the system (in whatever
prepared or reference condition) opens to a time-dependent
stimulus. That stimulus will be treated as a perturbation and
hence we speak of linear vs. non-linear response depending on
the sought consequence of the (small) stimulus. Both the stimulus
(or perturbation) and the observed quantity are allowed to be
time-extensive over [0, t]; see Section 4.

The goal of response theory is to describe and predict in a
systematic and physical way the statistical response, preferably
from observations that could be made in the initial (reference)
condition. The word “statistical” refers to the fact that we
deal with a reduced description, physically compatible with the
microscopic laws but on a level where the hidden degrees of
freedom have been integrated out (after some infinite volume
limit, in weak coupling etc.) and provide “enough” noise for
dissipative behavior. In that respect it is not necessarily the task
of response theory to demonstrate dissipative behavior; rather, its
validity will depend on it.

As is clear from scanning the vast literature on the subject,
there are many different versions of response theory. Apart
from standard treatments in text books such as [12–16], they
include the papers [17–32] to which we refer for other approaches
and results. The originality of our approach is to start from
dynamical ensembles on path-space. The action governing the
weight of a trajectory will get a physical significance in its
decomposition in a time-antisymmetric source (entropy flux)
and a time-symmetric contribution (frenesy) which both change
due to the perturbation. The merit of response theory is indeed
not its formal appearance—in the end we are all doing Taylor
expansion assuming (and sometimes proving) convergence of
certain integrals. In particular, for non-equilibrium purposes,
we emphasize the importance of the frenetic contribution in
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response; for different details and discussions, we refer to
[33–39].

We end those verbosities by winding three final remarks
around the main subject:

Remark 2.1. - The objection by Nico van Kampen (1971) against
linear response theory and the derivation of (Green–)Kubo
relations has been widely discussed. The original concerns were
formulated in [40]. Multiple reactions and answers have been
given. To summarize the situation, van Kampen criticized the
microscopic approach via the Liouville equation (which one
still often encounters in text books and reviews). Linearizing
the microscopic theory is no justification of linear macroscopic
equations (with currents proportional to forces). Moreover,
microscopic dynamics can be very non-linear in the sense
of possessing strong dependence on initial conditions. Linear
response on that micro-level would only hold for absurdly
short times.

These objections are of course fully justified, but linear
response need not proceed so naively as criticized by van
Kampen. In a way, and in no contradiction with van Kampen’s
objection, linear response can only be expected to work well
on scales of descriptions where “noise has been effective” to
make the reduced description sufficiently chaotic. Paradoxically,
instabilities typically help to assure sufficient statistical mixing
(see also [41]). In what we will discuss, the system is open and
assumed to be described by a probability law on trajectories
with an action which is sufficiently local in spacetime. A simple
realization are Markov processes. The physics that proceeds that
description is one of weak coupling with an infinite bath of
components which evolve on a much faster time scale. The
correct order of linear response is indeed to first take the
thermodynamic limit and to focus on a reduced description
which is sufficiently spacetime-mixing. Then, only afterwards, the
limit of linear response can be taken. Linear response formulæ
will therefore not prove diffusive or dissipative behavior on
meso- to macroscopic scales, but instead depend on it for their
full justification.

Remark 2.2. - The issue of causality and relaxation amounts to
the question whether we should impose or rather derive the
fact that the response happens after the stimulus. It would
seem natural that no extra condition of causality is needed; the
dynamics with its perturbation should take care of that. That
is also the option we are taking. Nevertheless, the fact that it
takes time for a perturbation at some fixed moment to relax
away so that the system may return to its original condition, is
deep and interesting even in classical physics. Clearly, estimating
relaxation times is not purely a question of thermodynamics.
That convergence is fast enough requires absence of jamming
and localization. Response theory indeed uses time-correlation
functions and their (sufficient) decay is an assumption or a result
whose justification falls outside response theory all together.
Stability of (non)equilibria [42] is a subject which is clearly
related to response theory but the latter often pre-supposes
the first.

Remark 2.3. - Numerical work and in particular equilibrium
molecular dynamics has been successfully used to compute

transport coefficients from the Green-Kubo formulae. For non-
equilibrium response relations, various new algorithms, in
particular using thermostated dynamics, have been employed.
Numerical methods and their physical motivation fall out of the
scope of the present discussion but we refer to the book [43]
for more material and references. For non-equilibrium response,
the search for efficient numerical algorithms to evaluate the FDR
such as the so-called zero-field (or field–free) algorithms played
an important role (see [28, 44–46]).

2.1. Plan of the Paper
After presenting a number of well-known and more elementary
examples, we introduce the main formal tool in section
3. Dynamical ensembles are presented with their action
and decomposition in time-symmetric and time-antisymmetric
excesses. There will be plenty of examples to illustrate their nature
for various types of Markov processes satisfying local detailed
balance. As such however, dynamical ensembles may stand on
their own and do not essentially depend on specifying the
underlying dynamical equations. The response theory in section
4 depends mathematically solely on the action. Its decomposition
becomes meaningful by giving rise to two major contributions
to the response (entropic and frenetic). The discussion on
response around non-equilibria makes the main part of the
paper, but we also discuss a unifying view on response around
equilibria. Apart from presenting various cases of response, we
also explain the relation with local detailed balance and the
different kinds of fluctuation-dissipation relations that exist. We
often concentrate there on the Sutherland–Einstein relation and
its possible violation. We discuss some experimental challenges
and highlight the Harada-Sasa equality. In section 4.2.2, we
give examples of response relations for active particles, where
local detailed balance does not hold. We end with the quantum
case in section 5, both as a reminder of what is true and to
open the question for trajectory-based versions of quantum
non-equilibrium response.

Having stated that, there are naturally also many things which
are not being discussed explicitly in the present review. There
is for example no discussion on non-equilibrium additions to
viscosities and elastic moduli, hence not touching the subject of
odd viscocity and elasticity [47–50]. We also spend very little
time with aspects of heat conductivity and with the question
of anomalous transport (in low dimensions), see e.g., [51]
and references therein. In particular, we do not address the
question of integrability of (even) Kubo expressions for the
linear transport, when there are more conserved quantities,
when (almost) integrability obtains or in low dimensions. All
of those are important topics of current research but here we
have chosen to highlight only the most elementary structures in a
pedagogical exposition for making the bridge to non-equilibrium
response theory.

2.2. Elementary Examples
Example 2.4 (Langevin dynamics). Consider a small particle of
mass m in a thermal environment at temperature T. At time
s = 0 an external force field Fs is turned on. From then the
dynamics is modeled with the perturbed Langevin evolution (in
one dimension) with position qs following q̇s = vs and velocity vs
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changing with

v̇s = −γ vs +
1

m
Fs +

√

2kBTγ /m ξs, s > 0 (5)

where (here and later) (ξs)s is a standard white noise process
(dimension of time−1/2, withmean zero and delta-timecorrelated
with unit variance). At time s = 0, the particle has Maxwellian
velocity distribution, with 〈v〉eq = 0. The idea is that at times
s > 0, Fs pushes the particle tomove. Themobility is the response
function R(τ ) entering in the expected velocity

〈v(t)〉F =
∫ t

0
ds R(t − s) Fs

It is showing how susceptible the particle is to the force Fs. Here
we can compute everything and find R(τ ) = 1

m e−γ τ , τ ≥ 0. If
Fs ≡ F is constant in time,

lim
t↑∞

〈v(t)〉F =
∫ ∞

0
ds R(t − s) F = 1

γ m
F

which means that the mobilityM = 1/(γm).
It is however physically and mathematically often

useful to work in Fourier space. One easily computes the
Fourier transform,

R̃(ν) =
∫

dt eiνt R(t) = 1

m

1

γ − iν

with imaginary part

Im R̃(ν) = 1

m

ν

γ 2 + ν2
(6)

On the other hand, without the forcing we have an equilibrium
process, satisfying detailed balance with Maxwellian stationary

distribution. There, the time-correlation is 〈vt v0〉eq = kBT
m e−γ |t|,

such that its Fourier transform equals

G̃(ν) =
∫

dt eiνt〈vt v0〉eq =
2kBT

m

γ

γ 2 + ν2

which implies the equality [with β = 1/(kBT)]

Im R̃(ν) = βν

2γ
G̃(ν) (7)

The identity (7) is an elementary example of the fluctuation–
dissipation theorem. We will call it a fluctuation–dissipation
relation (FDR) of the first kind. In the present case it provides
an easy example of the Sutherland-Einstein relation because the
diffusion constant D is related to G̃: with q0 = 0,

〈q2t | q0 = 0〉eq = 2

∫ t

0
dt1

∫ t1

0
dt2 〈v0 vt2〉eq

so that

D := lim
t↑∞

〈(qt − q0)2〉eq
2t

= 1

2
G̃(ν = 0) (8)

Combining (6), (7) and (8) we arrive indeed at

D = kBT

γ m
= kBTM, M =

∫ ∞

0
dτ R(τ ) = 1

γ m
(9)

Note that this relation is exact for the Langevin dynamics (5),
because of the linearity of the dynamics.

Looking back at the RC-circuit and (4), we see the same
structure as in (5) with the identification γ = 1/(RC), Fs = E/R
and m = C. In other words, it is the FDR of the second kind
(also called, the Einstein relation between noise and friction)
that ensures (9): if the factor in front of the noise in (5) would
have been different, (9) would not obtain. In fact, also the
opposite is true in the sense that the FDR of the second kind
can be derived from linear response theory [relations like (9)]
around equilibrium for the bath. We will explain that in section
4.1.3. All of such relations depend on microscopic reversibility,
which is derived from the dynamical reversibility of Hamiltonian
dynamics in the microcanonical ensemble. These things will
become more clear as we proceed (see section 3.3).

Example 2.5 (simple randomwalk). Consider a dilute suspension
of colloids being driven in a tube or channel with a rough
and irregular inner surface and filled with some viscous fluid
in equilibrium at temperature T. We suppose that the tube is
spatially periodic in one dimension with cells of size L. The
driving is from a constant force F (on the colloids) pushing them
say to the right. A picture of the situation in one cell (repeated
periodically) is provided in Figure 3. We want to model that
dynamics and transport with a biased continuous-time random
walk on the one-dimensional lattice. Each site x corresponds to
a cell. Our mathematical model needs two parameters giving the
transition rates to hop to the right, respectively to the left,

k(x, x+ 1) = p, k(x, x− 1) = q

We think of a local force around xmaking that possible, which is
working on the walker tomake the transition to the next cell. That
work is dissipated instantaneously into the thermal environment.
The work done by the constant force over length L is dissipated as
Joule heating in the fluid. The corresponding change in entropy
in the bath is thus FL/T.

From the condition of local detailed balance (to be recalled in
section 3.3) we put p/q = exp[FL/kBT] which expresses that the
ratio of forward to backward rates is given by the entropy flux to
the environment per kB. Writing FL/kBT = ǫ we thus have

k(x, x+ 1) = a(ǫ) exp[ǫ/2], k(x, x− 1) = a(ǫ) exp[−ǫ/2]
(10)

where we inserted a kinetic parameter a(ǫ) = √
pq > 0, possibly

depending on the driving F, temperature T, cell length L, and
other things such as the geometry of the channel/tube. To say it
differently we suppose the escape rate from each cell to be

p+ q = 2 a(ǫ) cosh[ǫ/2]

It tells us how the average residence time ∼ 1/(p + q) in each
cell of the channel depends on the force F. Now let us see about
the motion.
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FIGURE 3 | Flow in a rough channel with periodically repeated cells of length L. Colloids are pushed with force F in a thermal bath at temperature T. Trapping may

occur causing the current to drop at larger F.

The current (flux per particle from cell to cell)
obviously equals

〈v〉F = L (p− q) = L
p− q

p+ q
(p+ q) = 2L

eǫ − 1

eǫ + 1
a(ǫ) cosh[ǫ/2]

(11)
Expanding around F = 0 gives for the linear term

〈v〉F = L a(0) ǫ = a(0)β FL2

Hence, the mobility is M = β a(0)L2, the linear transport
coefficient. That is again an instance of the Sutherland-Einstein
relation since the diffusion constant (without force, ǫ = 0) here
equals D = a(0)L2 = kBT

F 〈v〉F = kBTM.
Note that the expression (11) is exact and can of course be

evaluated to all orders in ǫ. The differential mobility d〈v〉F/dF
as function of ǫ clearly picks up the dependence of the escape
rate p + q on ǫ. In particular it is easy to see that this differential
mobility can get negative at large enough values of ǫ when
p + q decreases with large ǫ. There is nothing surprising here,
and we will see later how that conclusion can be turned into a
constructive idea.

Example 2.6 (Periodic potential). . Example 2.4 can be extended
to include a periodic potential. Then, a force is added to the
Langevin equation that derives from a periodic potential U,
making (in three dimensions now)

Ėrt = Evt
m Ėvt = −∇U(Ert)+ Ef − γm Evt +

√

2mγ kBT Eξt (12)

where Ef is a constant force, to perturb the purely diffusivemotion.
For the response, there is the mobility (matrix) function M(t),
measuring the expected displacement of the particle:

Mij(t) =
1

t

∂

∂fj

〈

(Ert − Er0)i
〉

f

∣

∣

∣

∣Ef=0

The subscript f in the average refers to the dynamics with the

extra force Ef , perturbing−∇U(Ert) → −∇U(Ert)+Ef . The mobility
is the limit

Mij = lim
t→∞

Mij(t) (13)

giving the linear change in the stationary velocity by the addition
of a small constant force. The subscripts give the components of
the corresponding vectors.

The diffusion (matrix) function D(t) at finite time t is
defined as

Dij(t) =
1

2t

〈

(Ert − Er0)i; (Ert − Er0)j
〉

eq

That is again in the equilibrium process, with Ef = 0. The right-
hand side is the covariance: in general, for observables A and B
we write

〈

A;B
〉

=
〈

AB
〉

−
〈

A
〉〈

B
〉

(14)

The diffusion matrix is the limit

Dij = lim
t→∞

Dij(t) (15)

as we expect the (co)variance of the displacement of the particle
to be linear in time t ≫ 1/γ .

Exact computations are tedious now. Yet we will see in section
4.1.2 why [also for the dynamics (12)] we have the standard
Sutherland–Einstein relation Mij = Dij/(kBT). Note however
that in contrast with the case where U = constant, the mobility
no longer equals δij/(γm). For example, the mobility decreases
with the amplitude of the conservative force as the particle needs
to escape potential wells to have a non-zero velocity.

3. DYNAMICAL ENSEMBLES

Equilibrium statistical mechanics is centered around an object
which is often called the Hamiltonian. It specifies the interaction
potential between the components. Given such an energy
function on some effective scale of description, the ensemble
gets fixed by specifying the constraints or by giving intensive
variables such as temperature and chemical potential. The
resulting Boltzmann–Gibbs probability laws give the equilibrium
distributions on configuration or phase space. Under conditions
like translation-invariance, they are solution of the Gibbs
variational principle for a suitable free energy functional.

There is no strict analog for non-equilibrium systems, at
least not reaching the power and the glory of the Gibbs
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formalism. While in some rare cases of non-equilibrium systems
we have partial information about the stationary (single-time)
distribution for a given dynamics, there is no overarching
principle to specify it physically. The reason is probably
that kinetic (non-thermodynamic) features cannot be well-
represented (locally) at a fixed time.

The situation appears to be more promising on trajectory
space. Such an option was already chosen in the work of
Onsager andMachlup [52], for Gaussian processes showing small
fluctuations around hydrodynamical behavior for relaxation to
equilibrium. It was also the start of [53] for studying steady non-
equilibrium.We thenwant to find the physically correct (relative)
weights of trajectories, as traditionally given in terms of an action
and a Lagrangian. We will see below how to construct the action
for Markov processes. Yet, and even more importantly, we hope
to understand operationally what contributes to the action by
using it.

The idea is to consider on the level of description of interest
a family of possible/realizable trajectories ω. They are realized by
continuous time processes for systems in contact with possibly
various but well-separated equilibrium reservoirs. We open
the time-window [0, t] to write ω = (xs, s ∈ [0, t]) for a
trajectory. The “state” xs at time s can be amany-bodymesoscopic
condition, e.g, giving the chemomechanical configuration of a
collection of molecular motors or the positions of colloids or the
displacements and velocities for a crystal of oscillators1. Most
often, the space of trajectories (path-space) must be restricted
mathematically to have some regularities and for sure, it is an
infinite–dimensional space. Yet, we ignore the mathematically
more precise formulation, which is trivial enough, and we outline
the formal structure only, choosing also for the simplest notation.
In that spirit we write the probability of a trajectory as

Prob[ω] = P[ω] = e−A(ω) Pref[ω] (16)

where the Pref = Probref denotes a reference ensemble
(probability) andA is called the action. We obviously want to use
that the actionA as function of the trajectories, is (quasi-)local in
spacetime. Example for Markov processes, A will be given by a
time-integral of single or double-time events. We did not specify
here the initial conditions (at time 0) but the idea is that we want
A only to depend on the dynamics, not on the initial conditions2.
In other words, in (16) we let P(x0) = Pref(x0), coninciding at
time zero. Below we give examples to illustrate that structure
(section 3.2 is devoted to it). To start immediately however, we
go back to Example 2.5.

Example 3.1 (simple random walk, continued). What weight
P[ω] to give to a trajectory ω of a continuous–time random
walker? As in Example 2.5, we take the transion rates k(x, x+1) =
p, k(x, x− 1) = q on the one-dimensional lattice. A trajectory has

1We will write x for a general state, possibly including many-body positions,
velocities or spins. We use q or Er when we explicitly address the positions of
particles, and v for velocities.
2We do not consider in the present review the case of comparing two different
initial conditions, or the relaxation from perturbing the stationary distribution
as initial condition. In such cases, a procedure following the Agarwal-method is
possible [34, 54].

periods of waiting separated by jump times. The waiting times are
distributed exponentially with constant rate p + q, wherever the
walker resides at that moment. It will contribute an overall factor.
To concentrate on the jumping, we suppose the trajectory hasN+
steps forward and has N− steps backward during [0, t]. Then,

P[ω] ∝ e−(p+q)t pN+(ω) qN−(ω) = e−(p+q)t
(

p

q

)(N+(ω)−N−(ω))/2

(pq)(N+(ω)+N−(ω))/2

∝ e−(p+q)t eǫ(N+(ω)−N−(ω))/2 a(ǫ)N+(ω)+N−(ω)

∝ e−(p+q)t eǫ J(ω)/2 a(ǫ)N(ω) (17)

where the second line takes the notation of Example 2.5 and,
in the last line, J(ω) = N+(ω) − N−(ω) is the time-integrated
(variable) current while N(ω) = N+(ω) + N−(ω) is the total
number of (unoriented) jumps (dynamical activity). Hence,
taking as reference the process with ǫ = 0 in (16), we have

A(ω) = −N(ω) log
a(ǫ)

a(0)
− ǫ

2
J(ω) (18)

up to irrelevant (since constant) terms. Let us see what we can
learn from just that expression. Take e.g., − log a(ǫ)/a(0) ≃
ǫ2. Then, for large ǫ, trajectories ω having small N(ω) will be
preferred. Therefore, as ǫ grows larger, the dynamical activity gets
reduced and hence the current will also decrease. It will possibly
die. That is the same conclusion as from the considerations in
Example 2.5. Trapping far-from-equilibrium can be induced by
pushing too much (see also [55, 56]). On the other hand, for
small ǫ (in linear order around zero bias) we can as well forget
the influence of the dynamical activity and the linear response
regime may be called purely dissipative: we could as well take

P[ω] ∝ eǫ J(ω)/2 Pref[ω] (19)

instead of (16)–(18), when asking for linear response around the
reference ǫ = 0.

3.1. Decomposition From Time-Symmetry
In the generality in which we work at this point, there is only one
but rather relevant symmetry transformation to decompose the
action A in (16). We consider the involution θ on trajectories ω,
by which

(θω)s = πωt−s, s ∈ [0, t] (20)

The kinematical time-reversal π is an involution on the state
space which flips the odd degrees of freedom (such as velocities)
present in the trajectory. We assume here that θω is an
allowed trajectory, whenever ω is (assumption of dynamical
reversibility). Note that we also time-reverse external (time-
dependent) protocols, if any, in the same manner.

We now decompose the action according to that symmetry,

A = D− 1

2
S, D := 1

2
(A+Aθ) , S := Aθ −A (21)
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The reason for the factor 1/2 in front of S will become more
clear later3. The main point is that under the condition of local
detailed balance (below), S(ω) is the change of entropy (per kB)
in the environment as caused and determined by the system
trajectory ω. We will therefore refer to S (anti-symmetric under
time-reversal θ) as the entropic part. The time-symmetric part D
is referred to as the frenetic part. Note that both D and S refer to
excesses with respect to the reference ensemble; they specify how
entropic and frenetic parts change. A more informal observation
may be that our Lagrangian approach [53, 57] where we give
weights to trajectories with the decomposition of the action A =
D − S/2 suggests to think of D as the analog of time-integrated
kinetic energy and of S as the analog of time-integrated potential
energy. In that respect, we have that the extensivity in time will
mostly be guaranteed only for D.

3.2. Examples
The writing of (18) already gives an example of the
decomposition (21): the dynamical activity N(ω) is clearly time-
symmetric, and the particle current J(ω) is time-antisymmetric.
Indeed, ǫJ(ω) is the entropy flux per kB released in the
viscous environment. We give some other examples illustrating
the decomposition.

Example 3.2 (Markov jump processes). We denote the transition
rate for a jump x → y by

k(x, y) = a(x, y) es(x,y)/2 (22)

taking a parametrization with symmetric activity parameters

a(x, y) = a(y, x) =
√

k(x, y)k(y, x) (23)

and antisymmetric driving

s(x, y) = −s(y, x) = log
k(x, y)

k(y, x)

Under local detailed balance, also discussed in the next section,
the s(x, y) get the interpretation of giving the (discrete) change
of entropy per kB in the equilibrium bath with which energy,
volume or particles are exchanged during the system transition
x → y. Here, an environment is imagined consisting of spatially
well-separated equilibrium baths, each with fast relaxation.
Trajectories are piecewise constant and they consist of “waiting”
times and “jumping” events. During the jump, the system
exchanges “stuff” with one of the baths. Local detailed balance
thus amounts here to being able to identify

S(ω) =
∑

τ

s(xτ− , xτ ) (24)

with the path-wise total entropy flux (per kB) in the environment.
In (24) we sum over the jump times in the (system) trajectory
ω = (xτ , 0 ≤ τ ≤ t) and xτ− is the state just before the jump
to the state xτ at time τ . In other words, we assume in such

3It is the same 1/2 as multiplying J(ω) in (18).

models that we can read the variable changes of the entropy in
the reservoirs in terms of system trajectories. Note of course that
the path-wise entropy flux S(ω) = −S(θω), is antisymmetric
under time-reversal.

Waiting between jump times takes a random time,
exponentially distributed with the escape rate

ξ (x) :=
∑

y

k(x, y)

as parameter, when in state x. The time-integrated escape
rate equals

Esc(ω) :=
∫ t

0
ds ξ (xs) (25)

as function of the trajectoryω in [0, t]. Clearly, Esc(ω) = Esc(θω)
is time-symmetric. There is also a second time-symmetric
component in the jumping itself: the activated traffic can be
measured from

Act(ω) :=
∑

s

log
a(xs− , xs)

a0
(26)

where the sum is again over the jump times in ω and a0 is a
reference rate.

Let us finally turn to (21). The frenesy associated to the path
ω is

D(ω) := Esc(ω)− Act(ω)

=
∫ t

0
ds
∑

y

k(xs, y)−
∑

s

log a(xs− , xs)/a0 (27)

That makes the time-symmetric contribution in the
decomposition (21). When a(x, y) ≡ a is constant, Act(ω)
is proportional to the dynamical activity (time-symmetric traffic,
total number of jumps) over [0, t].

Example 3.3 (Overdamped diffusion). We can take the diffusive
limit of the previous example. A Brownian particle has position
Ert = [rt(1), rt(2), rt(3)] ∈ R

3 with motion following

Ėrs = χ EF(Ers)+
√

2kBT χ ξs, Eξs = standard white noise vector
(28)

The mobility χ is a positive 3 × 3−matrix that for simplicity we
choose not to depend on q here. It implies that in the frenesy, only
the escape rates will change when we change F with respect to a
reference choice. We put

EF(Er) = h Ef (Er)+ Eg(Er)

where Ef and Eg are vector functions. The constant h is a parameter
and h = 0 gives the reference dynamics. We want the excess
frenesy and entropy flux per kB for h 6= 0, as defined from
(16) and (21). We refer to [4, 39, 58] for detailed calculations.
Mathematical understanding follows from the Cameron-Martin
and Girsanov theorems for the change of measure (via Radon-
Nikodym derivative); cf [59]. We can also remember the trick
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that Eξs, s ∈ [0, t], is (formally) a stationary Gaussian process
whose weights carry over to the trajectory via the quadratic form

1

2
Eξs · Eξs = [Ėrs − χ EF(Ers)] ·

1

4kBT χ
[Ėrs − χ EF(Ers)]

To obtain the action A, that must be integrated over time
s ∈ [0, t] after which we must take the difference between the
expressions for EF = Eg and for EF = Eg + hEf .

At the same time we remember here that the Itô-integral is not
time-symmetric, but the Stratonovich-integral uses a symmetric
discretization. There is the relation
∫ t

0

EG(Ers) ◦ dErs =
∫ t

0

EG(Ers) dErs + kBT

∫ t

0
(χ∇) · EG(Ers) ds (29)

for general smooth functions G, that connects for (28) the
Stratonovich-integral (left-hand side) to the Itô-integral (first
term on the right-hand side).

Whatever method one prefers, the result for (28) is that

D(ω) = h2β

4

∫ t

0
ds Ef · χEf + hβ

2

∫ t

0
ds Ef · χ Eg

+h

2

∫ t

0
dsχ∇ · Ef (30)

S(ω) = hβ

∫ t

0
dErs ◦ Ef (Ers) (31)

in (21). Note that the highest order in the excess parameter h
appears in the frenetic part. Indeed, frenesy will matter more at
larger excesses.

When Ef = ∇V is conservative, then the second and third
term in D (the linear part of the frenesy) add up to become
proportional to the time-integral of the backward generator L

acting on V :

for Ef = ∇V , Ef · χ Eg + kBTχ∇ · Ef = LV

for the backward generator Lu = ∇u · χEg + kBT(χ∇) · ∇u (on
a function u) of the reference dynamics. On the other hand, the
entropy flux (31) becomes a time-difference, S(ω) = hβ[V(Ert) −
V(Er0)].

We can also specify to the case where Eg = −∇U and Ef
being the non-conservative (or rotational) part of the force EF.
The reference dynamics (h = 0) satisfies the condition of detailed
balance (time-reversibility). The excess frenesy (30) now equals

D(ω) = h2β

4

∫ t

0
ds Ef · χEf − hβ

2

∫ t

0
ds Ef · χ∇U + h

2

∫ t

0
dsχ∇ · Ef

(32)
The entropy flux per kB becomes time-extensive, being β times
the work done by the non-conservative force as given in (31). It
is the Joule-heating divided by kBT.

Example 3.4 (Underdamped diffusion). The Langevin dynamics
for a particle with mass m, position qs and velocity vs reads in
one-dimensional notation as

q̇s = vs

mv̇s = [F(qs)+ ǫ f (qs)−mγ vs]+
√
2D ξs (33)

where we added a perturbation f of strength ǫ to the reference
force F. Here, γ is the constant friction and ξs is standard white
process, as always. The strength D = mγ kBT > 0 governs the
variance of that noise. The action in (16) is taken for force F+ ǫ f
with reference at ǫ = 0. The decomposition (21) here employs
the velocity-flip in the time-reversal. The result gives [38, 60],

D(ω) = ǫ2

2D

∫ t

0
dsf 2(qs)+

ǫ

D

∫ t

0
ds f (qs) F(qs)

−m
ǫ

D

∫ t

0
dvs ◦ f (qs) (34)

S(ω) = ǫβ

∫ t

0
ds vs f (qs) (35)

As before, S equals the work done by the non-conservative
force f , times β . The frenesy D represents the kinetics. Note
also that in the last two (linear in ǫ) terms of (34) we find the
sum −F(qs)ds + mdvs = −mγ vsds +

√
2D ξs (multiplied with

ǫf (qs)/D) representing the thermostating forces (friction plus
noise) for the original dynamics.

The same formulæ hold for time-dependent forces. Suppose
we set (withm = 1 = kB)

q̇s = vs (36)

v̇s = −γ vs + F(qs, λs)+
√

2γT ξs (37)

with a time-dependence in the force F governed by an external
protocol with parameter λs at time s. The reference process we
choose here for applying (16) is taken for F = 0. The time-
reversal must include the protocol; we reverse it as (θλ)s = λt−s.

We find for (21),

S(ω) = A(θω, θλ)−A(ω, λ) = 1

T

∫ t

0
ds vs F(qs, λs)

which is the time-integrated power divided by temperature,
instantly dissipated as Joule heat in the environment and given
by (35). The frenesy D = (Aθ +A)/2 as in (34) equals

D(ω) = 1

4γT

∫ t

0
ds
[

F(qs, λs)
2 − 2 v̇sF(qs, λs)

]

where the first term refers to an escape rate and the second term
(with Stratonovich integral) to the dynamical activity (having the
acceleration v̇s).

Other examples can be added; heat conduction networks
are treated in [61] and Maes [4]. More examples are collected
in [35, 58].

3.3. Local Detailed Balance
The decomposition of section 3.1 is especially useful when there
is a physical meaning to S and D as excesses with respect to the
reference ensemble. The previous examples have shown that S
andDmay indeed come with such a physical meaning. The time-
symmetric part D is the frenesy, collecting both the undirected
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traffic and the quiescence in the trajectory: too much waiting is
punished when the escape rates are high and undirected traffic
(also called, dynamical activity) is being stimulated when the
time-symmetric activation part exceeds that of the reference
ensemble. That was already clear in the example (18). We will
learn more about the role of D in the following section.

Here we want to recall that in all previous examples, S is
the (excess) entropy flux (per kB) with respect to the reference
process. That is not an accident. It is an instance of what has
been called local detailed balance [62–67]. The environment of
the system consists of spatially separated equilibrium baths, each
showing fast relaxation in the weak coupling with the system.
For Markov jump processes in Example 3.2, the s(x, y) give the
(discrete) change of entropy per kB in the equilibrium baths
following an exchange of energy, volume or particles during
the system transition x → y. For the other Markov diffusion
examples, the relation between friction and noise has been chosen
in exactly such a way as to satisfy local detailed balance and
each time indeed the antisymmetric part S is the time-integrated
entropy flux measured in units of kB4. The ultimate reason is
time-reversal invariance of the microscopic system (microscopic
reversibility) in the microcanonical ensemble, which for return
to equilibrium is expressed as the condition of detailed balance
(see [66]). The main point is that in the microcanonical ensemble
(giving equal probability to all phase-space points on the constant
energy-volume-particle number surface), entropy itself is giving
the weight of a condition: the microcanonical weight at a single
time can be expressed with the Boltzmann writing of entropy,

kB log Probmc[x0] = entropy(x0)

Continuing to write Probmc for the weight of a (physically
coarse-grained) trajectory ω in the microcanonical ensemble,
time-reversal invariance gives

Probmc[ω] = Probmc[θω]

Hence, for the conditional probabilities,

Probmc[ω |ω0 = x]

Probmc[θω |ωt = y]
= exp

1

kB
{entropy(y)− entropy(x)}

The logarithm of the ratio of transition rates is given by the
change of entropy. A particularly relevant reduced description
is to take mesoscopic variables for a subsystem and a
thermodynamic description for its environment (consisting of
equilibrium baths). Then, under weak coupling assumption, the
above identities propagate on the level of the subsystem [66].
In summary, working under the condition of local detailed
balance implies that we assume that the time-antisymmetric
term S in

Prob[ω]

Prob[θω]
= eS(ω) (38)

4We use the letter S (and not σ or Ṡ) to indicate the variable (path-wise, trajectory–
dependent, random,. . . ) time-integrated entropy flux, believing no confusion will
arise here with the thermodynamic state function “entropy.” In fact, the entropy
flux refers to a change in that entropy in the totality of equilibrium reservoirs
making the environment of the system.

FIGURE 4 | The setup of response theory. Response is monitored at times

[0, t] from a stimulus in that same time-window and depending on the initial

preparation (before time zero). The (small) amplitude of the perturbation may

vary in time.

gives the time-integrated entropy flux per kB in excess
with respect to the reference ensemble5. To make sure, the
probabilities “Prob” in (38) really refer to the same process or
ensemble, i.e., starting from the same initial distribution at time
zero and generated with the same dynamics.

There are various reformulations of that, and also various
more microscopic foundations which are known as fluctuation
theorems [68–71]; we refer to [53, 57, 58, 66, 72–74] for some
of the original papers making the connection between the source
term of time-reversal breaking and entropy.

As a final word of warning, we emphasize that not in all
physical cases local detailed balance needs to be true. For
example, if a system is directly coupled to a non-equilibrium bath
or if the coupling with or between equilibrium reservoirs is too
large, local detailed balance will fail. We give two examples (and
their response relations) in section 4.2.2.

4. RESPONSE RELATIONS

We come to the questions of section 2. Recall the situation
pictured in Figure 4.

In the present section we use dynamical ensembles to obtain
response relations. That is a different approach than from
imitating classically the formalities of quantum mechanics and
its perturbation expansions [75–78]. The reference ensemble is
the original, unperturbed ensemble with reference probability
Probref = P0. The stimulus modifies the dynamical ensemble to
the perturbed one, Prob = Pǫ , where we use ǫ to indicate the
order of the spacetime amplitude of the perturbation. Following
(16)–(21), we thus write

Prob[ω] = e−1D(ω)+ 1
21S(ω) Probref[ω] (39)

5Remember that the operation θ of time-reversal is supposed to work on all
dynamical variables including the protocol. Even though that protocol is fixed, its
time-reversed version is to be taken in the denominator of (38).
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where we emphasize via “1” that the perturbed ensemble
shows changes in entropy flux and frenesy as caused by the
perturbation over time [0, t]. The perturbed ensemble at time
zero starts from the same distribution as the original reference.
It is important here to recall that the separation between time-
symmetric (frenesy D) and time-antisymmetric (entropy flux S)
contributions is obtained via the time-reversal operation [θ in
(20)] which should include the perturbation protocol; i.e., we
also reverse the time-dependence in the perturbation, cf. the
dynamics (36).

Let us take an observable, i.e., a function O of the trajectory ω,
always in the window [0, t]. By (39), its average in the perturbed
ensemble is6

〈O〉 =
∫

P0(dω)O(ω) e
−A(ω) = 〈O e−1D+ 1

21S〉0 (40)

Remember that the right-hand side is an average in the reference
ensemble. In other words,

〈O〉 − 〈O〉0 =
〈

O
[

e−1D+ 1
21S − 1

]〉

0
(41)

To show the order of perturbation we write1D = ǫ D′
0+ ǫ2

2 D
′′
0+

. . . , 1S = ǫ S′0+ ǫ2

2 S
′′
0+. . .where the primes denote derivatives

with respect to ǫ and ǫ is the strength (overall amplitude) of
the considered perturbation. The rest is straight; we expand the
exponential in (40) which to second order in ǫ turns into

〈O〉ǫ − 〈O〉0 = ǫ

〈

O

[

−D′
0 +

1

2
S′0

]〉

0

+ ǫ2

2

〈

O

[

−D′′
0 +

1

2
S′′0 + (D′

0)
2

+1

4
(S′0)

2 − D′
0S

′
0

]〉

0
(42)

To indicate the strength of the perturbation we sometimes
write a subscript on the expectations 〈·〉 = 〈·〉ǫ . For time-
dependent perturbations the same logic applies. For what
is next, we divide in various cases to estimate the relevant
terms in the decomposition. We start with the linear response
around equilibrium.

4.1. Linear Response Around Equilibrium
Linear response takes the first order in the response formula of
(42). We get

〈O〉ǫ − 〈O〉0 = ǫ

〈

O

[

−D′
0 +

1

2
S′0

]〉

0
(43)

Remember that D′
0, S

′
0 are the first derivatives evaluated at

ǫ = 0. Note that, if we would have O(ω) = g(x0),
only depending on the initial time as some arbitrary function
g, then

〈

O
[

−D′
0 + 1

2S
′
0

]〉

0 = 0 by the normalization
〈g(x0) exp[−A]〉0 = 1, as it should because 〈g(x0)〉ǫ = 〈g(x0)〉0
6Integration over trajectories is a mathematical subject we are not touching here; in
line with a more common physics notation, we can also write P0(dω) = P0(ω) dω.

and A only depends on the dynamics. Such arguments take
care of causality, that the response to later perturbations must
equal zero.

Let us now focus on reference processes which are time-
reversal invariant: 〈O(θω)〉0 = 〈O(ω)〉0 or P0(ω) = P0(θω). That
is the case of reference equilibria, where we write expectations
〈·〉eq = 〈·〉ref = 〈·〉0. Linear response around equilibrium has
been developed since the 1950’s into a systematic theory [12–
16, 75–78]. We refer to [79] for a review in the case of interacting
particle systems.

Suppose first that the observable is odd under time-reversal,
O(θω) = −O(ω): then, 〈D′

0 O〉eq = 0 because D′
0(θω) = D′

0(ω)
is symmetric and hence D′

0 O is antisymmetric and vanishes in
equilibrium. As a consequence, only the entropic contribution
remains in the linear response formula (43): when Oθ = −O,

〈O〉ǫ = ǫ

2

〈

OS′0
〉

eq (44)

which is non-zero because S′0(θω) = −S′0(ω) is also anti-
symmetric. This formula is generally true for linear response
around equilibrium for odd observables and will be applied for
state functions (as in the Kubo formula next) and for currents (in
the Green-Kubo relations further down). It is physically useful
because of the ready interpretation of S′0 as the (linear) excess
(time-integrated) entropy flux due to the perturbation, following
local detailed balance. In particular we have that always

〈S′0〉ǫ = ǫ

2

〈

(S′0)
2〉

eq ≥ 0 (45)

which says that in linear order the expected dissipation in
the perturbed condition is always non-negative and equals the
equilibrium variance of that flux. That explains somewhat the
origin of the terminology for the relation (44) as fluctuation–
dissipation relation (of the first kind). The reason why the
time-symmetric frenesy D′

0 is unseen in the linear response of
(antisymmetric) currents J is that, to linear order in ǫ, field-
reversal is equivalent with time-reversal. To say it with a formula,
we can as well use (19) in linear response:

〈J〉−ǫ ≃ −〈J〉ǫ = 〈Jθ〉ǫ

Such equivalence is of course not true in general farther away
from equilibrium, except in very rare cases. For such a rare case
we refer to [80] for an application of linear response in the context
of directed polymers relevant for the fluctuations following the
Kardar-Parisi-Zhang equation.

Secondly, when the observable O is time-symmetric, like D′
0

itself, then we need the correlation between O and the frenesy:
when Oθ = O,

〈O〉ǫ − 〈O〉eq = ǫ
〈

OD′
0

〉

eq (46)

That is interesting for currents which are even under time-
reversal as happens for themomentum current (e.g., generated by
shear). Another example for jump processes is the number N(ω)
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of jumps (dynamical activity) in [0, t] as in (17)–(18). Here we
have that always

〈D′
0〉ǫ − 〈D′

0〉eq = ǫ
〈

(D′
0)

2〉

eq ≥ 0

which is the analog of (45). For example, again looking at (18),
the expected change in the number of steps 〈N〉ǫ − 〈N〉eq for a
random walker always has the same sign as a′(0) for small ǫ.

4.1.1. Kubo Formula
We can specify the result (44) further by taking O(ω) = f (xt) −
f (π x0) for a function f on states. We then go for single-time
observations. Remember here that π is the kinematical time-
reversal (like flipping the velocities if any). In that case, the
left-hand side says

〈O〉ǫ = 〈f (xt)− f (πx0)〉ǫ = 〈f (xt)〉 − 〈f 〉eq

where the last equality uses that we have equilibrium (full time-
reversal invariance) at time zero. For the right-hand side of (44),

〈

OS′0
〉

eq = 2
〈

f (xt) S
′
0

〉

eq

where we used that
〈

f (π x0) S′0
〉

eq = −
〈

f (xt) S′0
〉

eq. Hence, in

linear response around equilibrium,

〈f (xt)〉 − 〈f 〉eq = ǫ
〈

f (xt) S
′
0

〉

eq (47)

for all functions f . This response relation has followed
straightforwardly from the assumption of time-reversal
invariance in the equilibrium (reference) ensemble, where
S = ǫ S′0 + O(ǫ2) is the antisymmetric part in the action A of
(21) or of (39) under time-reversal, following (38). The final step
for recognizing the Kubo formula in (47) thus comes from the
physical interpretation of (38): from local detailed balance, S(ω)
is the entropy flux (per kB) into the equilibrium environment
due to the perturbation as seen from the system trajectory ω.
We have announced that in section 3.3 after giving the Markov
dynamics examples in section 3.2. That implies for example
that if the perturbation is opening a new energy exchange with
potential V(x) = V(q) (depending on positions q) and time
dependent amplitude ǫ hs, s ∈ [0, t], then the change of energy in
the environment is

1E = ǫhtV(xt)− ǫh0V(x0)

while the work done on the thermal bath equals

W = ǫ

∫

ds ḣsV(xs)

Therefore, applying Clausius relation to the thermal equilibrium
reservoir, the entropy change in the environment per kB is

S(ω) = 1

kBT
[1E−W] = ǫhtV(xt)− ǫh0V(x0)− ǫ

∫

ds ḣsV(xs)

(48)

as a function of the system position-trajectory qs, s ≤ t. The
correlation in (47) becomes

〈

f (xt) S
′
0

〉

eq =
〈

f (xt) [htV(qt)− h0V(x0)−
∫

ds ḣsV(xs)]

〉

eq

= 1

kBT

∫

ds hs
d

ds

〈

f (xt)V(xs)
〉

eq (49)

Concluding, we find that the linear response function for
observing f at time t with perturbation of the energy E →
E− ǫ hsV(Xs) at time s equals

δ〈f (xt)〉
δ(ǫhs) |ǫ=0

= RfV (t, s) = β
d

ds

〈

f (xt)V(xs)
〉

eq (50)

which is the Kubo formula [34, 75]. Very little algebra has been
used to derive it; yet the derivation is physically cogent.

There are of course other possibilities for the entropy flux (48).
For example, in an underdamped dynamics we may have

S(ω) = ǫ

kBT

∫

ds hs vs
dV

dqs
(51)

as the time-integrated dissipated power over thermal energy
[instead of (48)]. That leads however to exactly the same Kubo
formula (50) when using that q̇s = vs.

We emphasize that we have not used any specific dynamical
evolution except for the assumptions (48) or (51) which are
physically motivated and readily derived for all the mesoscopics
with a clear interpretation of entropy flux such as in all examples
of the paper. It means that we imagine the non-equilibrium
process to proceed as if locally each transition or each local
change in the state (in energy, particle number, volume, or
momentum) is in contact with one well-defined equilibrium
reservoir, for which the condition of detailed balance (38) applies.

4.1.2. Green-Kubo and Sutherland–Einstein Formula
Another instance of (44) is to take O(ω) = Ji(ω), an
antisymmetric current of some type i (particles, energy, mass,. . . ).
We follow again the condition of local detailed balance (section
3.3) whereby, when thermodynamic forces ǫ Fk are exerted, then
S = ǫ

∑

k Jk(ω) Fk. As a consequence we have

〈Ji〉ǫ = ǫ

2
〈Ji Jk〉eq Fk (52)

which are the Green-Kubo relations announced in (1). A detailed
modeling of some thermo-electric phenomena as introduced
along the cartoon of Figure 1 and following local detailed balance
is exposed in [81].

Green-Kubo relations connect transport coefficients with
fluctuation properties 〈Ji Jk〉eq in the equilibrium system. Quite
generally, in equilibrium, the latter can be rewritten as Helfand
moments, mean square deviations in generalized displacements.
In other words, the Green-Kubo relation gives so called
Einstein-Kubo-Helfand expressions for transport coefficients.
The response can then be calculated as a (generalized) diffusion
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constant [82, 83]. The best known example is the Sutherland–
Einstein relation as discussed in section 2.2, examples 2.4 and 2.6.
We can now see its derivation more generally.

The Sutherland–Einstein relation tells that diffusion matrix
and mobility are proportional,

Mij =
1

kBT
Dij (53)

where we use the notation from Example 2.6. To understand its
origin, we can use (52) or directly derive it from (44). Taking a
colloid suspended in a fluid at rest, we apply an external field E.
The entropy flux per kB caused by dissipating the work done by
the force is equal to

S(ω) = 1

kBT
E · (Ert − Er0)

As observable O we take the displacement Ert − Er0 and apply (71):

〈Ert − Er0〉E = 〈(Ert − Er0)
1

kBT
E · (Ert − Er0)〉eq

Dividing by time t and taking derivatives with respect to the
force components E(i), yields (53) if the infinite-time integrals
make sense.

Remark 4.1. There remains often the question whether all
this and all that are restricted to stochastic dynamics. The
correct answer starts from noting that in the correct (e.g., weak
coupling) regime of reduced descriptions the correct dynamics
is of course stochastic when considering the reduced trajectories
only. Obviously, the same result will be reached when doing the
Hamiltonian dynamics in the bigger microscopic system, when
the reduced dynamics made any sense to start with. Deviations
will be observable (experimentally) due to realistic couplings,
finite time-scale differences or absence of thermodynamic limits
etc. In other words, whenever we see 〈·〉eq we better take
an average over the microcanonical ensemble with suitable
constraints of energy, volume, etc. . . when we can. Another
consideration is the effectiveness of simulations which may be
better for deterministic dynamics. Note however that at any rate
we must somehow circumvent the van Kampen objection in
Remark 2.1 and take a statistical approach, meaning to observe
the appropriate physically coarse-grained observables.

4.1.3. Fluctuation–Dissipation Relations of First and

Second Kind
The terminology of fluctuation–dissipation relations (FDRs)
is not always very precise. For better systematics, results on
response relations in the linear regime around equilibrium are
called FDRs of the first kind. Example, we call the Kubo formula
(50) an FDR of the first kind. Often one focuses on the relation
between mobility and diffusion. As we explained just above
and have illustrated in section 2.2 with two examples, particle
diffusion is related with mobility, obtained from measuring the
induced velocity after applying an external field (Sutherland–
Einstein relation). There is however also an FDR of the second
kind, called Einstein relation.

To avoid misunderstandings we speak about (1) the
Sutherland-Einstein relation when meaning the linear response
formula for mobility in terms of the diffusion, and (2) the
Einstein relation when dealing with the connection between
friction and noise. The Sutherland-Einstein relation is a direct
application of linear response theory around equilibrium,
meaning the ensemble of Kubo and Green–Kubo relations. The
Johnson-Nyquist relation was among the first examples of an
FDR of the second kind; see (2).

In the set-up of Example 2.4, the FDR of the first kind and of
the second kind are about identical (hence the possible confusion
of terminology). In general indeed, the noise amplitude need
not be equal to the (long-time) diffusion constant7. There are
however important connections between the FDR of the first and
of the second kind, the glue being provided by the condition of
local detailed balance of section 3.3 and the source being time-
reversal invariance. To summarize the situation: imposing local
detailed balance in the set-up of Markov dynamics as in section
3.2 implies an FDR of the second kind, which in turn implies a
standard FDR of the first kind around equilibrium. Alternatively,
imposing FDR of the first kind for the thermal equilibrium
environment of a system, implies local detailed balance and
the FDR of the second type for the system weakly coupled to
that environment. The various FDRs are, in other words, not
equivalent but still strongly related. Here we elaborate on the
derivation and the nature of the Einstein relation (FDR of the
second kind) which we first encountered as the Johnson-Nyquist
relation in (2).

The Einstein relation is best known from the relation between
friction and the noise amplitudes for Brownian particles. The
physical origin of friction and noise is indeed one and the
same. Good experience has taught us that a colloid suspended in
and moving through an environment of many much faster and
smaller particles experiences friction and statistical fluctuations
at the same time. The relation with the FDRs of the first kind
derives from the fact that the motion of a probe (e.g., a colloid)
in a thermal bath can be considered as a stimulus there. It is
a time-dependent perturbation on the equilibrium bath. That
environment responds and that feeds back to the probe motion,
making friction and noise.

To be more specific, let us consider a probe trajectory (Ys, s ≤
t) up to time t as a perturbation from the case where the probe has
always been at rest at its present position Yt . For the equilibrium
bath coupled to the probe, that means (for (16)) that we have
the reference ensemble for the bath having the probe at rest (at
position Yt at time t) and the perturbed bath ensemble where the
probe moves away from Yt for time s < t:

P(ω|Ys, s ≤ t) = exp[−D(ω)+1

2
S(ω)] P(ω|Ys = Yt , for all s ≤ t)

(54)
The P(ω|Ys, s ≤ t) is the probability of a bath-trajectory ω

conditioned on a(n arbitrary) probe trajectory (Ys)t , while the
probability in the right hand-side is the reference probability on
bath trajectories.

7For Markov diffusions, it is always related to the short-time mean square
displacement though.
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The difference between the two ensembles originates
physically from the coupling between probe and bath. We
assume for simplicity that the probe position Y only enters via
an interaction potential U(Y , q) = ∑N

i=1 u(Y − q(i)) with the
various (N) bath particles at positions q(i). At time s ≤ t, the
force of the probe on a bath particle (with generic position q) is
thus of the form8

u′(Ys − q) = u′(Yt − q)+ (Ys − Yt) u
′′(Yt − q)

= u′(Yt − q)+ hs V
′(q)

to linear order in Ys−Yt . In the last equality, we rewrote the force
to make the link with the notation of the response theory above:
hs = Ys−Yt is a time-dependent amplitude andV(q) = u′(Yt−q)
for s ≤ t and at fixed Yt . In other words, the effect of the probe
motion on the bath is to provide a time-dependent perturbation
with potential V , much the same way as treated in the Kubo
formula of section 4.1.1.

Let us next find the relevant bath observable for which we
need to see the influence of that perturbation. That has of course
everything to do with the probe dynamics: the force of each
bath-particle on the probe (all at time t) is

− u′(Yt − qt) = −
∫

dω P(ω|Ys, s ≤ t) u′(Yt − ωt)+ ζt , (55)

ζt :=
∫

dω P(ω|Ys, s ≤ t) u′(Yt − ωt)− u′(Yt − qt)

where the fluctuation term ζt has mean zero for every probe
trajectory (Ys, s ≤ t). For

∫

dω P(ω|Ys, s ≤ t) u′(Yt − ωt) we use
the Kubo formula (50):

− u′(Yt − qt) = −〈u′(Yt − ωt)〉Yt −
〈

S(ω, (Ys)
t) ;

u′(Yt − ωt)
〉Yt + ζt

〈

S(ω, (Ys)
t) ; u′(Yt − ωt)

〉Yt = β

∫ t

−∞
ds Ẏs

〈

u′(Yt − ωs) ;

u′(Yt − ωt)
〉Yt (56)

where the average 〈·〉Yt with the probe at rest in Yt is taken over
the stationary bath-particles. The identity (56) follows from the
entropy flux as time-integrated dissipated power by the probe on
the bath,

S(ω, (Ys, s ≤ t)) = β

∫ t

−∞
ds

d

ds
(Ys − Yt)V(qs)

Since the bath is supposed in thermal equilibrium, we indeed only
need the entropic contribution for calculating the response. The
last term in the first line of (56) is the noise introduced in (55)
and given in zero order as

ζ 0
t (Yt) = 〈u′(Yt − qt)〉Yt − u′(Yt − qt), 〈ζ 0

t (Yt)〉Yt = 0

while the time-correlations are

〈ζ 0
t (Yt)ζ

0
s (Yt)〉Yt = 〈u′(Yt − qs) ; u′(Yt − qt)〉Yt (57)

8We prefer to use one-dimensional notation for simplicity only.

As a summary, the induced force on the probe at time t is

−〈u′(Yt − x)〉Yt − β

∫ t

−∞
ds Ẏs

〈

u′(Yt − qs) ;

u′(Yt − qt)
〉Yt + ζ 0

t (Yt) (58)

The first term is a systematic force on the probe. The second
term is the friction and the third term is the noise in linear
order around the equilibrium bath, satisfying (57). We conclude
therefore that it is the entropic term in the action that produces
the Einstein relation between the noise kernel and the friction
memory. We do not elaborate here on the collective effect of
the large N number of bath particles which would have to be
combined with a weak coupling limit; cf. the van Hove limit
[13, 16, 84]. That would simplify the expressionsmore, producing
e.g., Gaussian white noise and a deltacorrelated-memory kernel
in the friction.

4.2. Linear Response Around
Non-equilibrium
We move to the situation where the system’s condition was
prepared in steady non-equilibrium (until time zero). Note that
we do not require a close-to-equilibrium regime, the perturbation
is small but the reference condition can be far out-of-equilibrium.
The formalism applies generally, but for the interpretation we
stick to the regime where we have local detailed balance (see
section 3.3). We still have (43) for perturbations around non-
equilibrium, but we must include the frenetic contribution even
in linear order. Taking as observable O(ω) = f (xt) a function of
the state xt at time t, we get

〈f (xt)〉ǫ − 〈f (xt)〉0 = ǫ

2
〈f (xt) S′0(ω)〉0 − ǫ〈f (xt)D′

0(ω)〉0
= ǫ 〈f (xt) S′0(ω)〉0 − ǫ〈 f (xt)
[

D′
0(ω)+ S′0(ω)/2

]

〉0 (59)

The last line has its first term on the right-hand side
giving the Kubo formula (50) for linear response
around equilibrium. Indeed, time-reversal invariance
in equilibrium implies 〈 f (xt)

[

D′
0(ω)+ S′0(ω)/2

]

〉eq =
〈 f (πx0)

[

D′
0(ω)− S′0(ω)/2

]

〉eq = 0 because of the

normalization〈e−A〉eq = 1 for whatever initial condition. The
correction to the linear response in equilibrium is (obviously)
additive. By writing (59) as

〈f (xt)〉ǫ − 〈f (xt)〉0 = ǫ β

(

1− 〈 f (xt)
[

D′
0(ω)+ S′0(ω)/2

]

〉0
〈f (xt) S′0(ω)〉0

)

∫ t

0
ds hs · 〈f (xt)∇V(xs)〉0

we get a prefactor β (·) which may be called an effective
inverse temperature when compared to (49)–(50). That is
one way for an effective temperature to appear, obviously
depending on the observable f (see e.g., [85–87]). For example,
if 〈f (xt)D′

0(ω)〉0 ≃ 0 then the effective temperature Teff ≃ 2T
is twice the thermodynamic surrounding temperature. We see
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that in this context, using effective temperatures is a rather
drastic multiplicative abbreviation of taking into account the
frenetic contribution.

The last term in (59) can also be used as indicator of violation
of the FDR of the first kind. Or, the difference between the left-
hand side and the first term on the right-hand side gives an
estimate of the non-equilibrium nature of the reference process.
To make that into a more physical prescription we take the
freedom to subtract

ǫ
〈

f (x0)
[

D′
0(ω)− S′0(ω)/2

] 〉

0 = 0

(by normalization) from (59): 〈f (xt)〉ǫ − 〈f (xt)〉0 =

ǫ 〈f (xt) S′0(ω)〉0 − ǫ
〈

[f (xt)+ f (x0)]D
′
0(ω)

〉

0

−ǫ
〈

[f (xt)− f (x0)] S
′
0(ω)/2

〉

0

or

ǫ
〈

[f (xt)+ f (x0)]D
′
0(ω)

〉

0 = −ǫ
〈

[f (xt)− f (x0)] S
′
0(ω)/2

〉

0 +
(60)

{ǫ 〈f (xt) S′0(ω)〉0 − [〈f (xt)〉ǫ
−〈f (x0)〉0]} (61)

Note that in equilibrium the last line (61) vanishes because of the
Kubo formula (50). Moreover when f is odd (like a velocity) in
the sense that f (πx0)− f (πxt) = f (xt)− f (x0) is symmetric under
time-reversal, then the right-hand side of the first line (60) also
vanishes in equilibrium. In other words, then, the left-hand side
of (60) measures the violation of the Kubo formula (FDR of the
first kind). Now take f (x) = v to get for (60)–(61):

ǫ
〈

[vt + v0)]D
′
0(ω)

〉

0 = −ǫ
〈

[vt − v0] S
′
0(ω)/2

〉

0 + (62)
{

ǫ 〈vt S′0(ω)〉0 − [〈vt〉ǫ − 〈v0〉0]
}

(63)

In the underdamped regime, see Example 3.4, we can use
that the excess entropy flux equals S′0 = β

∫ t
0 ds vs for a

constant external perturbation ǫ, so that
〈

[vt − v0] S′0(ω)
〉

0 =
β
∫ t
0 ds 〈[vt − v0] vs 〉0 = 0. On the other hand, for the excess

frenesy we use (34),

D′
0 =

β

mγ

∫ t

0
ds F(qs)−

β

γ
(vt − v0)

Hence, for all times t,

∫ t

0
ds
〈

vs F(q0)+ v0 F(qs)
〉

0 = mγ
{

∫ t

0
ds 〈vs v0〉0

−kBT

ǫ
[〈vt〉ǫ − 〈v0)〉0]

}

(64)

Again, the right-hand side vanishes in equilibrium by the Kubo
relation (50). The left-hand side gives a time-integration of
delayed power-dissipation. For times t = ds, we see that the
frenesy contributes −F(qs)ds + mdvs = −mγ vsds +

√
2D ξs

(multiplied with β/(mγ )) representing the thermostating forces
for the unperturbed dynamics. Together, (64) gives a reordering

of the linear response around a NESS where the violation of
the FDR of the first kind is measured (via the left-hand side) in
terms of dissipation. Similar expresions can be obtained by time-
modulating the constant ǫ → ǫ cos νs so that we enter Fourier-
space. We can also take the limit t ↑ ∞. The left-hand side then
becomes the expectation of the rate of energy dissipation 〈J〉0, and
we arrive at the Harada–Sasa equality [88], in their notation,

2π 〈J〉 = γ

∫ ∞

−∞
[C̃(ν)− 2T R̃S(ν)] dν

The “tilde” denotes Fourier-transform and R̃S(ν) is the real part
of the transform, C denotes the velocity correlation function and
R is the change of velocity caused by a constant external force.

After these generalities it is time to get more specific examples.
As for experiments, we refer to [89] where a driven Brownian
particle in a toroidal optical trap is studied for its linear response
of the potential energy. The frenetic contribution to the response
is separately measurable. It shows the experimental feasibility
of the entropic–frenetic dichotomy at least for non-equilibrium
micron-sized systems with a small number of degrees of freedom
immersed in simple fluids. For an example with many non-
equilibrium degrees of freedom we present a theoretical model
as illustration:

Example 4.2 (Coupled oscillators). We put a one-dimensional
oscillator (qi, pi) at sites i = 1, . . . , n with energy U =
∑n

i=1 ϕ(qi+1 − qi) where for example ϕ(q) = 1
2q

2 + 1
4q

4. We
keep q0 = qn+1 = 0 as boundary conditions. The dynamics adds
white noise ξs(i) to every oscillator,

q̇s(i) = ps(i) (65)

ṗs(i) = Fi(qs)−
∂U

∂q(i)
− γips(i)+ hs

∂V

∂q(i)
+

√
2D ξs(i)

(66)

The non-equilibrium resides in the non-conservative forcing Fi
and/or in the presence of multiple temperatures Ti = D/(γi kB).
A sketch of the situation is depicted in Figure 5.

The (small) perturbation is V(q) with amplitude hs, s ≥ 0.
Over [0, t] the integrated excess entropy flux is

S =
n
∑

i=1

1

Ti

∫ t

0
ds hs

∂V

∂q(i)
(qs) ps(i)

The excess frenesy (in linear order) is

D = 2

D

∑

i

∫ t

0
hs

∂V

∂q(i)
(qs)

{

[

Fi(qs)−
∂U

∂q(i)

]

ds− dps(i)
}

As a result (needing some more calculation) we end up with the
linear response formula for observable Qt at time t,

δ

δhs
〈Qt〉|h=0 =

∑

i

1

2Ti

〈

∂V

∂q(i)
(qs) ps(i)Qt

〉

0
− 〈DQt〉0

where the last term can be obtained from

2D〈DQt〉0 =
∑

i

〈

∂V

∂q(i)
(qs)

[

F(qs)−
∂U

∂q(i)
(qs)

]

Qt

〉

0
(67)
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FIGURE 5 | A chain of oscillators may be perturbed by slightly moving a mass at site j, applying there a self-potential V. We want to know the effect of the

perturbation for the mass at site k. That will be influenced by an existing temperature profile Ti .

FIGURE 6 | The susceptibility (68) of p(k) for perturbing at q(j), for different

values of γj with Tj = 1.5 and γ1 = γn = 1, T1 = 2, and Tn = 1; all other

γi ≡= 0. A small perturbation of the mass at site j causes a damped oscillatory

movement of the mass at site k. Interestingly, the limit in which the damping

γj ↓ 0 makes sense, erasing the thermal noise in the bulk. The plot refers to

the dynamics (65) with force Fi = −2q(i)+ q(i− 1)+ q(i+ 1)− αq(i)2 − kq(i) with

α = 1.0, k = 2.0, and U = 0. Figure courtesy of Urna Basu.

− d

ds

∑

i

〈

∂V

∂q(i)
(qs) ps(i)Qt

〉

0

+
∑

i,j

〈

∂2V

∂q(i)∂q(j)
(qs) pj(s) pi(s)Qt

〉

0

As a special case, we take F = 0, observable Q = pk and
perturbation V(q) = ǫ qj. We then find the linear response,

χjk(t − s) = δ

δ(ǫhs)
〈pt(k)〉|ǫ=0 = −

(

βj + βk

2

)

〈ps(j) pt(k)〉0

− 1

2D

(〈

∂U

∂q(j)
(qs) pt(k)

〉

0

+
〈

ps(j)
∂U

∂q(k)
(qt)

〉

0

)

(68)

Observe the spacetime reciprocity j ↔ k, s ↔ t. In Figure 6, we
see the susceptibility χjk(t − s) as function of time for different
values of the damping γj. It appears that the limit of vanishing
bulk thermal noise continues to make sense for the response [90].
That example thus stands for the study of longitudinal waves in
heat conducting strings.

Example 4.3 (Linear response of jump processes). We revisit the
Markov jump processes of section 3.2, with the parametrization
(22); see also [91]. We take a perturbation

s(x, y) → s(x, y)+ǫ s1(x, y), a(x, y) → a(x, y)+ǫ a1(x, y) (69)

to linear order in ǫ. Then, the excess frenesy equals

D(ω) = −ǫ
∑

s

a1(xs− , xs)+ ǫ

∫ t

0
ds
∑

y

k(xs, y)[a1(xs, y)

+1

2
s1(xs, y)] (70)

and

〈O〉ǫ − 〈O〉0 = ǫ

2

〈

∑

s

s1(xs− , xs)O(ω)

〉

0

(71)

+ ǫ

〈





∑

s

a1(xs− , xs)−
∫ t

0
ds
∑

y

k(xs, y)[a1(xs, y)

+1

2
s1(xs, y)]

]

O(ω)

〉

0

gives the response for an arbitrary path-observable O over time
[0, t] in terms of a reference non-equilibrium condition. The
first term on the right-hand side of (71) is proportional to the
correlation of the entropy flux S with the observable O and gives
rise to the usual Kubo-formula (49) with the time-derivative
when the perturbation is caused by a potential (see [91]).

Example (2.5) is the simplest illustration of the above9, where
we perturb around a fixed (large) value of ǫ. The current appears
in (11) and its derivative equals

1

L

d

dǫ
〈v〉F = 2a′(ǫ) sinh

ǫ

2
+ a(ǫ) cosh

ǫ

2
≃ [a′(ǫ)+ a(ǫ)/2] eǫ/2

(72)
The derivative a′(ǫ) only contributes for ǫ 6= 0. The negativity
of a′/a(ǫ) < −1/2 for large ǫ implies a negative differential
conductivity. The same can be concluded from taking the
derivative of (18), which is reproducing (71) with 〈J ; J〉0 ≃
〈N ; J〉0 ≃ t a(ǫ) exp ǫ/2.

Such a simple scenario as above with the crucial role of the
frenetic contribution gets realized in more examples, including

9With the possible abuse of notation that there ǫ stands for the non-equilibrium
driving, and we perturb ǫ → ǫ + dǫ.
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responses to temperature and chemical affinities (see [55, 56, 92–
96]). To pick one, in [96] one sees modifier activation–inhibition
switching in enzyme kinetics. A more abstract scenario (going
beyond the case of Markov jump processes) goes as follows:
taking the observable O = S′0 (typically proportional to a
current), linear order response gives

〈S′0〉ǫ − 〈S′0〉0 =
ǫ

2
〈(S′0)2〉0 − ǫ〈S′0 D′

0〉0

In contrast with (45), a positive correlation between the
linear excesses in entropy flux and in frenesy in the original
dynamics yields a negative frenetic contribution. In and close-to-
equilibrium, 〈S′0〉ǫ − 〈S′0〉0 ≥ 0 always. Two necessary conditions
for a negative susceptibility for the observable S′0 are, (1) one
needs to be sufficiently away from equilibrium, and (2) one needs
a positive correlation 〈S′0 D′

0〉0 > 0 in the original process.
More generally, it is the frenetic contribution that can make
currents to saturate and provide homeostatic effects far enough
from equilibrium.

We also recall an application of the Cramér–Rao bound,
which enables to give a general bound on response functions.
That was exploited in the Dechant-Sasa inequality [97] to
give that

(

∂〈O〉ǫ
∂ǫ

∣

∣

ǫ=0

)2

≤ 2Var[O] 〈A′′
0〉

for an arbitrary path-observableO = O(ω) on [0, t] with variance
Var[O]; see [97, 98] for details. Naturally, the (unperturbed)
expectation 〈A′′

0〉 is related to the frenesy.
As a final remark, non-equilibrium linear response as

formalized above can also be used for an expansion of the
stationary distribution around a reference non-equilibrium. In
particular we mention the work of Komatsu and Nakagawa
[99] for characterizing non-equilibrium stationary distributions.
A similar analysis followed in [60, 100]. Work remains to
be done toward applications on population selection and the
understanding of relations with interdisciplinary aspects having
to do with trophic levels in foodwebs or with the appearance of
homeostasis in biological conditions, to mention just two.

4.2.1. Modified (Sutherland–)Einstein Relations
Around non-equilibrium, the FDR of the first kind (between
mobility and diffusion) is violated, and the Sutherland–Einstein
relation must be corrected with a frenetic contribution. We
refer to the constructions in [101–103] for more introduction
and examples.

In general, we take a particle of mass m in a heat bath
according to the Langevin dynamics for the position Ert and the
velocity Evt ,

Ėrt = Evt (73)

mĖvt = EF(Ert)− γmEvt +
√

2mγ kBT Eξt

We get out of equilibrium when the force EF is not derived
from a periodic potential. It can be arbitrarily large. We have
no confining potential and no global bias, meaning that the
steady (net) velocity is zero. The easiest is to work with a

FIGURE 7 | A non-conservative periodic force field for which the

Sutherland-Einstein relation gets modified.

spatially periodic force field EF which adds vortices in its rotational
component, e.g., a lattice of convective cells as in Figure 7.

The vector Eξt is standard Gaussian white noise.
When the system is not in equilibrium, and we search for an

expression for the mobility (13), we can use (43) or (59) where
the perturbation changes EF(Ert) → EF(Ert)+E. We look at the linear
response in E. Frenetic terms show up so that the mobility and
diffusion constants (15) are no longer proportional. See [101] for
a detailed derivation of the following result: the non-equilibrium
modification of the Sutherland-Einstein relation is given by

Mij =
1

kBT
Dij

− lim
t→∞

1

2γmkBT t

∫ t

0
ds
〈 (Ert − Er0)i

t
; Fj(Ers, Evs)

〉

0
(74)

Notation from (13)–(15). The frenetic contribution gives a
spacetime correlation between applied forcing and displacement
[last expectation in the right-hand side of (74)]. Quite generally,
the diffusion is much more sensitive to the strength of the force
than is themobility. The deviationwith respect to the Sutherland-
Einstein relation is second order in the non-equilibrium driving.
We refer also [104] for further analysis and phenomenology,
including the occurrence of negative mobilities.

The formula (74) is again similar to a Harada-Sasa equality
(see (64) and formula 22 in [88]). It also invites some inverse
problem. In the paper [103], the theory of linear response around
non-equilibria is used to probe active forces in living cells: by
measuring the force, one obtains the correlation between force
and displacement which is exactly the frenetic part in (74).

To understand themodifications to the Einstein relation (FDR
of the second kind) we must revisit the calculations in section
4.1.3. See Figure 8 for the scenario where a probe interacts with
a faster non-equilibrium bath. The logic remains the same but
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we must add the frenetic contribution to (56). It means that the
induced friction gets a modification (and is no longer purely
dissipative into the environment) because of the non-equilibrium
nature of the bath. For details we refer to [105–108], where [107]
also discussed the possible changes in the noise statistics related
to the non-equilibrium bath.

4.2.2. Active Particles: No Local Detailed Balance
To show how the formalities proceed even in the absence of local
detailed balance, we give here the example of linear response for
an active particle system. See for example [109] for a general
review on active particles.

We start by illustrating the situation in the case of an active
Ornstein–Uhlenbeck (AOU) particle [110]. Linear response for
AOU particles has been subject of various papers already,
including [111, 112].

Consider a particle in one dimension in a potentialV and with
position qs following

q̇s = E vs − µV ′(qs)+ µ hs; τ v̇s + vs =
√
2R ξs (75)

The noise is vs and while it is mean-zero Gaussian, it is not white.
In fact,

γ (s− s′) := 〈vs vs′〉 =
R

τ
e−|s−s′|/τ τ↓0−→ 2R δ(s− s′) (76)

The time-constant τ measures the persistence time in the process
vs, which is then applied as an external field with amplitude
E to the particle motion. As a consequence, the process (qs)
is not Markovian and is not satisfying the FDR of the second
kind (Einstein relation), in contrast with all the examples in
section 3.2.

For τ = 0 the motion is passive with standard white noise
ξs of strength R. The Einstein relation would then set RE2 =
kBT µ where µ is the mobility. We have already added a constant
perturbation to (75), with time-dependent amplitude hs. The
question is again to understand the linear response

〈O〉h − 〈O〉0

for some observable O in the perturbed ensemble 〈·〉h with
respect to the original (unperturbed) 〈·〉0.

Even though the model does not satisfy local detailed balance
(of section 3.3), we can still apply the same response formulæ if
we identify the action in (16) to apply (40). In a formal sense, the
probability of a trajectory ω of positions qs, s ∈ [−∞,+∞], is
proportional to

Probh[ω] ∝ exp−1

2

∫

ds

∫

ds′ Ŵ(s− s′)vs vs′ (77)

if we substitute

vs =
1

E

(

q̇s + µV ′(qs)− µ hs
)

and use the symmetric kernel Ŵ(s) for which

∫

ds′ Ŵ(s− s′)γ (s′ − s′′) = δ(s− s′′)

FIGURE 8 | Cartoon of three levels: slow probe, faster non-equilibrium

medium and even faster thermal bath. The probe motion perturbs its

environment. The response of the medium is needed to derive the fluctuating

dynamics of the probe.

Via Fourier transform10 it is straightforward to getŴ(s) = [δ(s)−
τ 2 δ̈(s)]/(2R).

As usual we put

Probh[ω] = e−A Prob0[ω]

and find the action

A = − 1

E2

∫

ds hs

∫

ds′ Ŵ(s− s′)
(

q̇s′ + µV ′(qs′ )
)

+ O(h2)

= − 1

2E2

∫

ds′ K(s′)
(

q̇s′ + µV ′(qs′ )
)

+ O(h2) (78)

where the kernel Ks := hs − τ 2ḧs.
Concerning the nature of the stochastic integral (78) it is

interesting to remark that there is no difference here between
the Itô and the Stratonovich convention. For the first term in the
integral of (78) we can write

I :=
∫

ds′ K(s′) q̇s′ ≃
∑

s′
K(s′) (q(s′ + δ)− q(s′))

where the integral is discretized to become a sum where the
difference between consecutive s′ is of order δ. For the time-
symmetric part Iθ + I (and also time-reversing the perturbation),
we see that

I + Iθ ≃
∑

s′

(

K(s′) (q(s′ + δ)− q(s′))+ K(−s′) (q(−s′ − δ)− q(−s′))
)

=
∑

s′

(

K(s′) (q(s′ + δ)− q(s′))+ K(s′) (q(s′ − δ)− q(s′))
)

10We can also verify directly by using ∂2xxe
−α|x| = −2α δ(x) e−α|x| + α2 e−α|x|.
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=
∑

s′
[K(s′)− K(s′ + δ)] (q(s′ + δ)− q(s′)) (79)

which tends to zero as δ ↓ 0. There is indeed no short-time
diffusion and the behavior of qs is ballistic for every τ > 0.
The excess frenesy as induced by the perturbation to linear order,
is therefore

1

2

(

Aθ +A
)

= D = − µ

2E2

∫

ds K(s)V ′(qs) (80)

On the other hand, the time-antisymmetric part of the action is

Aθ −A = 1

E2

∫

K(s) q̇s ds (81)

In the passive case where K(s) = µhs/R local detailed balance
would impose µE2R = T to be the temperature and (81) would
represent the entropy flux per kB. In the active case, we can only
consider R E2 as a measure of the strength of dynamical activity
delivered by the Ornstein-Uhlenbeck noise. There is however no
physical identification of Aθ − A with the (excess) entropy flux
due to the perturbation.

Nevertheless, the formula of response to linear order holds
unchanged as

〈f (qt)〉h − 〈f (qt)〉0 =
1

2E2

∫ t

ds Ks

〈

f (qt) ;
(

q̇s + µV ′(qs)
)〉

0

(82)
for functions f and with Ks = hs − τ 2ḧs. That second term,
proportional to the persistence time, induces a double time-
derivative to apply on the expectation, of course also depending
on τ .

A second example of an active particle model is the well-
known run-and-tumble process, also called Kac or telegraph
process, where the particle moves on the real line with positions
qs following

q̇s = c σs +
√
2T ξs, σs −→ −σs at rate a (83)

where the noise σs = ±1 is dichotomous. Again, there is
no local detailed balance, and no presence of an Einstein
equation except in the limit a ↑ ∞ where the noise becomes
statistically indistinguishable from being white. That is a finite
temperature (T-)generalization of the usual run-and-tumble
process introduced in [113]; see also [114]. The Smoluchowski
equation for the spatial density ρ = ρ(q, t) satisfies

(∂t − T∂2q )
2ρ − c2∂2qρ = −2a(∂t − T∂2q )ρ (84)

The derivation of (84), a thermal telegraph equation, is done in
Demaerel and Maes [113].

We start the process at q = 0 with equal probability of having
σ0 = 1 or σ0 = −1. We find 〈q2t 〉0 for large t by multiplying
equation (84) by q2 and integrating:

¨〈q2〉0 − 2c2 = −2a ˙〈q2〉0 + 4aT

Therefore, the diffusion constant is

D := lim
t→∞

〈q2t 〉0
2t

= T + c2

2a
(85)

(see also [115]). Note that there is already diffusion at zero
temperature T = 0.

To get the mean velocity v = limt→∞〈qt〉ǫ/t resulting from
the application of an extra external field ǫ, we modify in (83) the
drift σs c → σs c + ǫ. We easily find that v = ǫ and the mobility
is thusM = 1. Per consequence,

D

T
= 1+ c2

2a T
> M (86)

and the Sutherland-Einstein relation is broken. See more
discussion in [113]. The Sutherland–Einstein relation has been
discussed as well for active systems with a possible interpretation
in terms of an effective temperature in [116, 117].

4.2.3. Open Problems
We mention a couple of natural open problems related to
response around non-equilibria.

1. Singular response: In the basic formula (16) for relating two
dynamical ensembles, we assume implicitly that the set of
allowed trajectories are the same for both; only the weights
change. In mathematical terms, we speak of mutual absolute
continuity of the processes, as part of the hypothesis in
the Girsanov theorem [59]. For various classes of dynamics
that assumption is not satisfied at first sight. There may be
various reasons, and we very briefly discuss three. When we
consider twoMarkov diffusions with different noise strengths,
then they are not comparable. That happens in particular
for changes in temperature. So, at first sight there is a
fundamental problem with thermal response, how a change
in temperature changes the expectations. That question has
been treated from various sides, for different questions and
with different methods. We refer to [118–123] for some of
the progress. A second case of possible problems arises when
trajectories are subject to deterministic constraints, which
are perturbed. Again, trajectories become incomparable. For
instance, in the Example 4.2 we have added noise to each
oscillator. Perturbing the chain in a region without noise,
where the dynamics is purely Hamiltonian creates problems
for the method with dynamical ensembles. Of course, for
the linear response around equilibrium, there is no problem
because we know the (stationary) equilibrium distribution
and there the Agarwal formula [54] (see also [34]) can be
used. In the same paper [34] and via the same method a
linear response for dynamical systems is illustrated. A third
(always) related case is that of changes in geometry and
topology. Non-equilibrium may be a topological effect as e.g.,
allowing circuits is essential for breaking detailed balance.
Again, changes in the network architecture or topology may
be give rise to incomparable trajectories.

In general, stochastic regularization is a good method to
pragmatically deal with it, if linear response makes sense at
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all. That is illustrated in Example 4.2 and in Figure 5 for a
chain of oscillators where the dynamics becomes Hamiltonian
in the bulk.

2. Many-body physics: We have emphasized since the start that
response expansions must be useful. That means also that the
observables appearing in the expectations of linear or non-
linear response should be measurable. Today, much progress
was made to follow trajectories of individual particles. The
many-body case is however still very challenging. There
seems no good escape here; frenesy is necessary in response
around non-equilibria and involves many-body kinetics.
Other relations avoid the details of response but still give
useful relations. We have in mind for example the discussed
Harada-Sasa equality where the energy dissipation is obtained
from experimentally accessible quantities alone, without
knowing every detail of the system. Again, physical coarse-
graining toward more reduced descriptions appears a good
option (see e.g., [124]).

3. No local detailed balance: We have supposed throughout that
we work under the condition of local detailed balance. That
is not a strict mathematical prerequisite, but it is essential
for the physical interpretations. In section 4.2.2, we have seen
the examples of linear response for active Ornstein-Uhlenbeck
and run-and-tumble processes. Those were the easy cases
however. Extensions of the FDR of the first and the second
kind for active systems which are in direct contact with non-
equilibrium degrees of freedom are therefore to be explored
further. We have seen how the Einstein relation between
noise and friction gets modified for probes coupled to non-
equilibrium reservoirs, but much needs to be clarified here
for benchmarking a physically motivated active Brownian
motion. Active systems as we encounter in biological processes
break the FDR, andwewish to construct the response from the
tools of the present paper (see e.g., [125] for such a challenge).

4. Quantum non-equilibrium: The linear response around
quantum non-equilibria faces various problems, To start, we
lack good modeling of quantum non-equilibrium processes11.
Quantum open dynamics is usually treated in the weak
coupling limit where Markov approximations arise. It is
however not so clear whether true quantum phenomena (e.g.,
outside the Coulomb blockade regime for quantum dots)
can be modeled physically correctly by Markov dynamics.
Entanglement between system and reservoir or between
reservoirs is probably necessary. Dynamics such as via
Lindblad evolutions have fast decoherence in the energy
basis and can only be approximately touching the quantum
world. A second problem has to do with a quantum notion
of dynamical activity. A trajectory-based approach for open
quantum systems does not appear straightforward. We have
little idea for example whether a small particle subject to zero-
point quantum fluctuations (only) will undergo a diffusive (or
very subdiffusive) motion, see [129] for an exciting possibility

11Obviously, we do have a number of powerful computational models in quantum
non-equilibrium physics, as provided from the Schwinger–Keldysh formalism
[126, 127] or from Feynman-Vernon theory [128]. We do not include them here
in the discussion, as our ambition is to attempt a trajectory-based approach.

based on the quantum FDR. We continue this discussion in
section 5.

5. Aging and glassy systems: This review does not deal explicitly
with response theory in disordered and glassy systems
[130]. That is unfortunate as one of the main forces for
the development of response theory out-of-equilibrium has
indeed been the physics of glassy systems (see e.g., [45, 131]).
The focus of this review is much more on response around
steady behavior, while glasses refer to a transient albeit very
long-lived condition. The methods of the previous sections
remain valid but the non-equilibrium sits entirely in the
nature of the condition with a dynamics that is, for the
rest, undriven and satisfying detailed balance with respect
to an asymptotic equilibrium. While the physics is clearly
much more complicated than what has been presented in
the majority of examples so far, there is a further good
reason why it should appear as an (advanced) application
of response theory in a trajectory-based approach. Today,
there is a growing trend to emphasize the kinetics of glassy
behavior, instead of the thermodynamics of metastability. The
general idea is that many-body interactions create kinetic
constraints for the evolution and relaxation to equilibrium.
But that is exactly in line with the frenetic aspects we have
been emphasizing: relaxation requires the possibility of traffic
between mesoscopic conditions. We have seen examples of
particle transport where the current gets strongly diminished
when pushing harder as the frenesy takes over as the main
component in the action. Similarly, people have considered
the glassy phases and transitions as manifestations of jamming
and transitions in dynamical activity [93, 132].

6. Applications and experiments: While we tried to emphasize
the importance of the frenetic contribution to response, there
are clearly many more applications and insights that can be
gained; see also [5]. One possible avenue is to understand
better what determines the scale of susceptibilities. How
sensing works, in other words. It would for example be
interesting to understand the validity of the Weber-Fechner
law (1834) from psychophysics and which states that the
relationship between stimulus and perception is logarithmic
(see e.g., [133]).

We see also that weak susceptibility of certain observables
(homeostasis) would follow from near orthogonality of the
observable O and the excess action, O ⊥

[

−D′
0 + 1

2S
′
0

]

, in the
sense of a vanishing right-hand side in (43). Such points of
zero susceptibility are reached when moving from a regime of
positive to negative susceptibility.

At the same time, experiments on measuring the role of
frenesy are still limited. Trajectory-based response is feasible
with the newest tools of tracking and data selection. We
hope more of that can be used for understanding non-
equilibrium response.

4.3. Non-linear Response Around
Equilibrium
One may wonder whether the (mutilated) ensemble (19) or just
the fluctuation identity (38) would suffice to continue response
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theory to second order. It was explained in [134] why that does
not work. If all we know is (38) (the basis for all fluctuation
theorems), then, equivalently, in the non-equilibrium process,

〈O〉ǫ = 〈Oθ eS〉ǫ

Apply that to a time-symmetric observable, O = Oθ and expand
to linear order in the non-equilibrium strength ǫ:

〈O〉ǫ = 〈O eS〉ǫ H⇒ 〈O〉ǫ = 〈O〉ǫ − ǫ〈OS′0〉eq = 〈O〉ǫ

which is empty. Linear response around equilibrium follows
from fluctuation theorems [i.e., identities like (38)] only
for time-antisymmetric observable, like for showing Green-
Kubo relations. It implies that second order response,
even for antisymmetric observables, does not fly. We need
another method.

The question of non-linear response around equilibrium
has of course been considered in many important papers. We
mention [131] for the context of disordered systems to enable
measurement of a correlation length and [132] where the frenetic
term plays a central role.

Section 4.1 can be continued from (42). We start again with
the equilibrium reference with expectations 〈·〉eq. We suppose
that S = ǫ S′0, meaning that the entropy flux determines the order
of the perturbation, e.g., from adding external fields or potentials
as perturbations. Using (42) with S′′0 = 0 and since both D′′

0 and
(S′0)

2 are symmetric under time-reversal,

〈O− Oθ〉ǫ = ǫ 〈S′0(ω)O(ω)〉eq − ǫ2 〈D′
0(ω) S

′
0(ω)O(ω)〉eq (87)

With a state functionO(ω) = f (xt), applying formula (87), we get
the next order beyond the traditional Kubo formula (50),

〈f (xt)〉ǫ −〈f (xt)〉eq = ε 〈S′0(ω) f (xt)〉eq−ε2 〈D′
0(ω) S

′
0(ω) f (xt)〉eq

(88)
We have used again that 〈f (πx0)〉eq = 〈f (x0)〉eq = 〈f (xt)〉eq.
The result (88) is valid for general time-dependent perturbation
protocols as well; see [37].

To extend the Green–Kubo formula (4.1.2), we take an
antisymmetric observable O(θω) = −O(ω) as for time-
integrated particle or energy currents, O(ω) = J(ω). Then,
from (87),

〈J〉ǫ = ε

2
〈S′0(ω) J(ω)〉eq −

ε2

2

〈

D′
0(ω) S

′
0(ω) J(ω)

〉

eq (89)

Similarly, taking O(ω) = S′0(ω) in (87) makes

〈S′0〉ǫ = ε

2

〈

(S′0)
2〉

eq −
ε2

2

〈

D′
0 (S

′
0)

2〉

eq

so that the sign of the second-order term depends on an entropy–
frenesy correlation in equilibrium, correcting the FDR (45).

Starting the discussion of the next section it is interesting
to observe that perturbations which are thermodynamically
equivalent (having the same S′0), still yield a different response.
That is due to the frenetic contribution (different D′

0). Sensing
beyond close-to-equilibrium is a kinetic effect; see Figure 9.

FIGURE 9 | The scenario for non-linear response around equilibrium. The

vertical axis shows some displacement as function of non-equilibrium (driving)

parameter ǫ. The three functions correspond to different kinetics by which the

same thermodynamic perturbation is realized. In linear order, the responses

coincide and deviations, much as life itself, start at second order around

equilibrium.

4.3.1. Feeling Kinetics
Suppose we have a gas in a volume V which is open to
exchange of particles from a chemical bath at temperature T
and chemical potential µ. The gas finds itself in thermal and
chemical equilibrium with fixed volume, chemical potential and
temperature. Of course, the number N(t) of particles at time t is
variable. The density 〈N〉eq/V is constant and determined by the
environment (µ,T). That is the preparation at time zero. Let us
then change the chemical potential fromµ toµ+δ at fixed T, for
some small δ. In time the gas will relax to the new equilibrium at
(µ+ δ,T), with an evolution of the density through the expected
particle number 〈N(t)〉. Its change in time is given by response
theory. In the linear regime, from (47), we get

〈N(t)〉 − 〈N〉eq = βδ

∫ t

0
ds
〈

J(s);N(t)
〉

eq

Here, 〈 · 〉eq is the expectation in the original equilibrium process
with (µ,T), and J(s) is the net current at time s of particles
entering the environment. Using

∫ t
0 dsJ(s) = N(t)−N(0), we see

〈N(t)〉 − 〈N〉eq =
βδ

2

〈

[N(t)− N(0)]2
〉

eq

which is the FDR of the first kind (linear in small δ). We only
used (47) and a general thermodynamic description in terms of
particle number, entropy flux and the relevant intensive variables.
The expectation takes care of the rest. The expectation in the
right-hand side only depends on the original chemical potential.

That situation changes in second order around equilibrium as
seen from (88). We sketched the general scenario in Figure 9.
The frenetic contribution enters and exit and entrance rates of
the particles now matter. The response has become sensitive
to kinetic information beyond the change in (thermodynamic)
chemical potential. There are indeed different kinetic ways to
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increase the bath chemical potential and the difference will be
picked up by the time-dependence of 〈N(t)〉 − 〈N〉eq in second
order around equilibrium (δ2). As first explored in [37], the total
exchange activity (between the system and the reservoir) enters,
which is a time-symmetric traffic.

4.3.2. Experimental Challenges
Second order response around equilibrium was explored first in
[135] for a colloidal particle in an anharmonic potential. There,
the technique to measure the trajectory of the particle is known
as total internal reflection microscopy. The perturbation is an
optical force on the particle.

In [124], the problem of coarse-graining is investigated.
A trajectory-based response theory for a dense suspension is
obviously challenging. As we saw before, also in section 4.2.3,
getting “enough” kinetic information in many-body systems
is problematic to evaluate the frenetic contribution. Such
coarse-graining aspects also can be studied in simulation and
numerical studies.

5. QUANTUM CASE

The formalism of linear response theory as developed in the
1960’s much followed that of perturbation theory in quantum
mechanics. We repeat the main steps of that formalism,
limiting ourselves to finite systems. Mathematically rigorous
generalizations to spatially-extended systems, to ground states
in particular and to the description of linear response in the
thermodynamic limit are obviously important, but today seem
restricted to systems showing amass gap uniformly in the volume
(see e.g., [136]).

One starts with a Hamiltonian

H(s) = H0 +HI(s), HI(s) := −hs B

where the operator B stands for the perturbation, time-
modulated with the small real hs = h∗s (denoting complex
conjugate). The reference Hamiltonian is H0. Associated to H0

is the reference density matrix ρ0, representing the initial mixed
state before the perturbation sets in (hs = 0 for s ≤ 0). From
then on the dynamics is unitary as for a closed isolated system
with evolution operator U(s), s ≥ 0 satisfying

ih̄
d

ds
U(s) = H(s)U(s), while U0(s) = e

−i s
h̄
H0

The initial density matrix ρ0 is invariant forU0:U0(s) ρ0 U∗
0 (s) =

ρ0. A first order calculation gives

U(t) = U0(t)−
i

h̄

∫ t

0
ds U0(t − s)HI(s)U0(s)+ O(h2)

or, in first order and with B0(u) := U∗
0 (u)BU0(u),

U(t) =
(

1+ i

h̄

∫ t

0
ds hs B0(s− t)

)

U0(t)

That is all we need to calculate the density matrix ρ(t), t > 0, to
first order in hs:

ρ(t) = U(t) ρ0 U
∗(t)

= ρ0 +
i

h̄

∫ t

0
d hs [B0(s− t), ρ0]+ O(h2) (90)

We obtain the perturbed expectations from 〈A(t)〉 = Tr[ρ(t)A]
for observables A. Writing A0(t) := U∗

0 (t)AU0(t) we conclude
that the response function is given by

RAB(t, s) = i

h̄
Tr
[

ρ0 [A0(t),B(s)]
]

= i

h̄
Tr
[

[B, ρ0]A0(t)]
]

(91)

for t ≥ s > 0. That also works for ground states ρ0 = |0〉〈0|
(projector on the (non-degenerate) ground state of H0):

RAB(t, s) =
i

h̄
〈0| [A0(t),B(s)] |0〉

and obviously, by the stationarity of ρ0, the response only
depends on the time-difference τ = t − s > 0.

To reach the quantum fluctuation–dissipation theorem one
must use that ρ0 is the thermal equilibrium state for H0. At
this point one can use the Kubo-Martin-Schwinger condition for
equilibrium densities ρ0 = ρeq = exp−βH0/Z, Tr[ρeqA] =
〈A〉eq, which says

〈A(t − iβh̄)B(t′)〉eq = 〈B(t′)A(t)〉eq

That basically uses analyticity in a complex-time domain where
B0(−ih̄s) = esH0 B e−sH0 . We thus have

∫ βh̄

0
ds

dB0
ds

(−is) = eβH0 B e−βH0 − B

and (91) becomes

RAB(t, s) =
i

h̄

∫ βh̄

0
dτ

〈

dB0
ds

(−iτ )A0(t)

〉

eq
(92)

which is the direct quantum analog of the Kubo formula (50).
Another approach takes the Fourier transform; see before in

Example 2.4. One defines the equilibrium time-correlation

GAB(t) :=
1

2
〈AB0(t)+ B0(t)A〉eq (93)

where we can put that 〈A〉 = 〈B〉 = 0 without loss of generality.
Assuming that the decay in time t is sufficiently fast, we define the
Fourier transform

G̃AB(ν) =
∫

dt GAB(t) e
iνt

where ν is the time-conjugate complex variable. Since GAB(t) ∈
R, we have

G̃∗
AB(ν) = G̃AB(−ν), G̃AB(ν) = G̃BA(−ν)
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where the second equality follows from the cyclicity of the trace
making GAB(t) = GBA(−t). In particular, GAA(t) is positive-
definite, meaning that

n
∑

i,j=1

ci c
∗
j GAA(ti − tj) > 0

for all coefficients ci ∈ C. That can be shown by using

GAA(ti − tj) =
1

2
Tr[ρ0 (A0(ti)A0(tj)+ A0(tj)A0(ti))]

and it implies that G̃AA(ν) ≥ 0 is real and positive.
A final calculation from (91) leads to the fluctuation–

dissipation theorem in the form

1

2i

(

R̃BA(ν)− R̃∗AB(ν)
)

= 1

h̄
tanh

(

βh̄ν

2

)

G̃AB(ν) (94)

That is the better known quantum version of the Kubo relation
(50) (obtained from taking tanh(βh̄ν/2) ≃ βh̄ν/2).

When A = B, we have

ImR̃AA(ν) =
1

h̄
tanh

(

βh̄ν

2

)

G̃AA(ν) > 0, ν > 0 (95)

It is the imaginary part of the response function that relates to
dissipation. If indeed we consider E(t) = Tr(ρ(t)H(t)) and we
take hs = Re(h0e−iνs),A = B, then

E(2π/ν)− E(0) = π |h0|2 ImR̃AA(ν)

where the left-hand side is the change of energy over one period.
That dissipation is connected to fluctuations via the right-hand
side of (95). In general one can find also the real part of the
response by using the so called Kramers-Kronig relations,

Re G̃(ν0) =
1

π

∫

dν
Im G̃(ν)

ν − ν0

Im G̃(ν0) =
1

π

∫

dν
Re G̃(ν)

ν − ν0

where the integrals are for Principal Values.
Let us add that we can get rid of the “Imaginary,” say in (95)

by defining the odd response function

Ro(τ ) = sign(τ )R(|τ |)

for which then R̃oAA(ν) = 2i ImR̃AA(ν), or

R̃oAA(ν) =
2i

h̄
tanh

(

βh̄ν

2

)

G̃AA(ν) (96)

and we can go back to the time-domain by taking convolutions.
The quantum version of the Sutherland–Einstein version is

readily obtained from (95). The mean square displacement is
(using anti-commutators)

〈(Xt − X0)
2〉eq = 〈{X0,X0}〉eq − 〈{X0,Xt}〉eq

= 2[G(0)− G(t)]

where we inserted (93) for G(t) = 1
2 〈{X0,Xt}〉eq. Following

[129], with (95) that implies that the diffusive behavior can be
deduced from

〈(Xt − X0)
2〉eq = 1

β

∫ ∞

0
dτ R(τ )

[

2 coth(πτ/βh̄)

− coth(π(τ + t)/βh̄)− coth(π(τ − t)/βh̄)
]

= h̄

π

∫ ∞

0
duR

(

h̄β

π
u

)

[

2 coth(u)

− coth(u+ π t

βh̄
)− coth(u− π t

βh̄
)

]

(97)

For the time-dependent response function we use (91),

R(τ ) = 1

ih̄
〈[X0,Xτ ]〉, τ ≥ 0

(zero for τ < 0.) In the long time, classical regime we must
take βh̄ ≪ 1/γ with 1/γ the relaxation time for R(τ ) → µ as
τ ↑ ∞, with µ the mobility. Then, (97) yields µ = β D as in
the classical Sutherland–Einstein relation; see Example 2.4. In the
long time quantum regime where we consider relaxation times
shorter than βh̄, other (intrinsic quantum) behavior may arise, as
studied in [129].

The reason for recalling the above is not only for
completeness. The calculations above give the standard approach
to FDR of the first kind. Note the difference in approach with
all that went before. An extension to quantum non-equilibrium
dynamics is therefore not obvious. There are formal extensions
as an open quantum system in various regimes evolves in time
according to a classical Markov dynamics. Those regimes are
characterized by terminology like fast decoherence, Coulomb
blockade, fast repeated measurements, Zeno regime, etc. where,
such as in Lindblad dynamics, the relaxation of the density
matrix corresponds to the convergence of an associated classical
Markov dynamics. That is not what we are finally after of course;
we want true quantum effects where non-locality, non-Markov-
behavior and entanglement play a role. It seems we are far from
there (cf. the open problem in section 4.2.3). The approach of
the present paper so far fails as well, as we have no trajectory-
based picture for open quantum systems. Note that the Feynman
path-integrals do not refer to real trajectories. Rather we believe
that a useful extension of the Bohmian formulation of quantum
mechanics to open systems is most promising to deal with the
necessary ideas of (quantum) traffic or dynamical activity, even
to start in the semiclassical realm [137]. Ideas of unraveling
of trajectories [138, 139] or of classical representations of spin
density evolutions [140, 141] go in that same direction.

On the other hand, much of today’s research activity in
quantum non-equilibrium physics uses either the Schwinger–
Keldysh non-equilibrium Green function technique [126, 127]
or the Feynman–Vernon influence functional approach [128].
The calculations using time–dependent non-equilibrium Green
functions are rather complicated however, and we fail to
see a powerful conceptual framework. The Feynman–Vernon
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approach is useful for deriving (certain) master equations for
the reduced density matrix, with most emphasis on bosonic
(thermal) environments.

6. CONCLUSIONS AND OUTLOOK

The tools for observing and manipulating mesoscopic kinetics
have been growing sensationally. We are therefore hopeful that
a response theory based on checking trajectories is useful. The
relevant dynamical ensembles are governed by an action on path-
space, where the weight of the various possible trajectories of
the considered dynamical variables are decided by a competition
between excesses in entropy flux and frenesy. Indeed, under
local detailed balance the antisymmetric part in the action gives
the total entropy flux (per kB) into the environment, while
the time-symmetric part becomes essential outside the close-
to-equilibrium regime. That frenesy collects kinetic information
such as in escape rates and dynamical activity. New phenomena

and modifications in Einstein and Sutherland-Einstein relations
provide interesting new challenges for exploring the non-
equilibrium world.
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