AUTHOR=Maes Christian TITLE=Response Theory: A Trajectory-Based Approach JOURNAL=Frontiers in Physics VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/articles/10.3389/fphy.2020.00229 DOI=10.3389/fphy.2020.00229 ISSN=2296-424X ABSTRACT=We collect recent results on deriving useful response relations also for non-equilibrium systems. The approach is based on dynamical ensembles, determined by an action on trajectory space. (Anti)Symmetry under time-reversal separates two complementary contributions in the response, one entropic the other frenetic. Under time-reversal invariance of the unperturbed reference process, only the entropic term is present in the response, giving the standard fluctuation–dissipation relations in equilibrium. For non-equilibrium reference ensembles, the frenetic term contributes essentially and is responsible for new phenomena. We discuss modifications in the Sutherland-Einstein relation, the occurence of negative differential mobilities and the saturation of response. We also indicate how the Einstein relation between noise and friction gets violated for probes coupled to a non-equilibrium environment. We end with some discussion on the situation for quantum phenomena, but the bulk of the text concerns classical mesoscopic (open) systems. The choice of many simple examples is trying to make the notes pedagogical, to introduce an important area of research in non-equilibrium statistical mechanics.