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We propose an extension of the class of rational expectations bubbles (REBs) to the more

general rational beliefs setting of [1, 2]. In a potentially non-stationary but stationarizable

environment, among a heterogenous population of agents, it is possible to hold more

than one “rational” expectation. When rational but diverse beliefs converge (“correlated

beliefs”), they do not cancel each other out in aggregate anymore. This can make them

an object of rational speculation. Accounting for the fact that market efficiency has an

intrinsic time-dimension, we show that diverse but correlated beliefs can thus account for

speculative bubbles, without the need for irrational agents or limits to arbitrage. Many of

the shortcomings of REBs that make rational bubbles implausible can be overcome once

we relax the ergodicity requirement. In particular, we argue that the hitherto unexplained

“bubble component” of REBs corresponds to the extension of the state space in [3].

Keywords: asset pricing, bubbles, efficient markets, rational expectations, rational beliefs, aggregation,

heterogeneous expectations, correlated beliefs
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1. INTRODUCTION

In the following, we provide some addenda and modifications to the work of Kurz and Motolese
[3]. We show that their asset pricing model encompasses asset price bubbles, even though
they did not intend for it. The significance of this lies in that theirs is an equilibrium model
with perfectly rational agents in a frictionless competitive market—the economic equivalent of
Euclidean geometry with perfect circles. The only other Euclidean account of bubbles we are aware
of is the class of Rational Expectations bubbles (REBs) [4–6]. All other bubble theories rely on either
irrational agents or frictions of some sort [see e.g., [7–9] for surveys of the bubble literature].

Just as lines and circles are useful abstractions even though they do not exist in the real world
[10, 11], the “purity” of the setting in which bubbles are theorized is of practical import: If frictions
are a necessary condition of bubbles, then the policy implication is that the regulator should focus
on perfectingmarkets, pushing ever further the “financialization” of the economy [but see 12, 13]. If
it is irrational behavior that causes them, then bubbles may only push the system to more efficient
capital allocations [14, 15] or to new learning experiences [16, 17]. Either way, we should then
expect to see bubbles never more than once in a generation (but see [18, 19]).

If, by contrast, bubbles can arise even in a perfectly rational, friction-free world, then they
should be seen as an inherent feature of market economies, not as temporary aberrations.
The regulatory imperative would be to guard, not to “lean,” against them—the difference
between building dykes and trying to suppress the tides. The problem is that REBs as
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the only such account thus far are unexplained sunspot equilibria
with strict conditions. For example, they must be present from
the beginning of time1, cannot be negative, and, due to explosive
conditional expectations, eventually dominate the economy [20–
22]. Hence the preference in the literature for irrational or
frictional explanations, which are more plausible at the cost of
being less general (see however [9]).

The reduced form of Kurz and Motolese’s [3] model
corresponds to that of a noisy rational expectations equilibrium
[23–25] but the model is derived under rational beliefs [1, 2, 26].
The rational beliefs framework widens the scope of expectational
“rationality”2 from ergodic to non-ergodic, possibly non-
stationary economic environments. As a consequence, rational
beliefs are diverse—that is, diverse as a feature, not as a bug3.
The persistent diversity of expectations adds a strategic element
to the decision calculi of agents, enlarging the state space of
the model by an endogenous variable called “market belief.” We
contend that this endogenous state variable, which arises from
the diversity of beliefs, corresponds to the unexplained “bubble
component” in REBs.

There are two classical views on diverse beliefs. One is
encapsulated by [28, 29], whose report from a weight-judging
competition is the classic example of the “wisdom of crowds”4.
The opposite view was set forth by [30, ch. 12] who said that,
if agents disagreed too much about the future, speculation—
betting on others’s beliefs—would drive a wedge between price
and value. The former leads to Hayek and the efficient market
hypothesis (EMH); the latter underpins Minsky’s financial
instability hypothesis (FIH), and thereby most of the literature
on bubbles outside of REBs5.

What makes the EMH and FIH seem so irreconcilable is
that something is missing from the classical accounts, namely
the dependence structure of beliefs. It is interesting to note
therefore that both noisy rational expectations and the rational
beliefs framework do take it into account but in opposite ways.
Grossman [32], Hellwig [24], and Diamond and Verrecchia [25]
all require independence between private signals (which implies
independent beliefs) lest the aggregate signal lose its sufficiency6

and prices lose their informativeness. By contrast, Kurz and
Motolese [3] require dependence between beliefs in order for the
endogenous state variable to appear in the equilibrium price. One

1If a REB exists at any time t > 0, then it must also exist at t − 1.
2To be distinguished from choice-theoretic rationality. See [27] for a critique of the

terminology.
3One way to think about it is that a non-stationary environment underdetermines

the set of admissible, or rational, expectations (an expectation is inadmissible,

or irrational, if it leads to systematic mistakes). If rational expectations are the

fixed-point solution of a function, rational beliefs are the fixed-set solution of a

correspondence.
4Asked to guess the weight of an ox, none of the 787 individual estimates from the

attending crowd were correct but the “middlemost” (presumably the median in

today’s terminology; the OED defines the word as “That [. . . ] in the very middle,

or nearest the middle.”) came within less than one percent of the correct value

(1,207 vs. 1,198 lbs.), beating all but a handful of presumably lucky individuals.
5As Brunnermeier and Oehmke [31] point out, “much of the theoretical literature

on bubbles can be seen as an attempt to formalize this [Minsky’s] narrative.”
6[32, lemma 1].

might say there is really only one model once we move up a
level of abstraction: In the corner cases, when individual beliefs
are either independent or comonotonic, the equilibrium price
conforms to rational expectations; when they are (imperfectly)
dependent, the market extends its state space through the
endogenous market belief variable.

Accepting diverse beliefs as not the exception but the rule,
and shifting the focus to their dependence structure instead,
also changes our view of the role they play in the bubble
literature thus far. The generic argument is that the broader the
range of expectations, the more “confused” or “fantastical” about
the future investors are, the more opportunity for speculation,
and the bigger the bubble7. Historically, though, bubbles seem
to have been associated with a reduction in diversity rather
than an expansion of it [33]. People are literally “buying into”
a, necessarily common, bubble narrative (see also [34]). It is
interesting to note therefore that “correlated beliefs” in [3]
actually refers to correlated innovations to individual beliefs. This
means that, as the market belief variable appears, belief states
converge, lending additional support to our contention that the
endogenous state variable is the hitherto unexplained “bubble
component” of rational bubbles.

Our approach is different from the idea of chaotic equilibrium
cycles (see e.g., [35]). In the later works based on equilibrium
cycles theory, the existence of a chaotic equilibrium growth
may be derived, and “equilibrium bubbles” associated with
transient excursions with nonlinear reversal (crashes) can be
observed [36]. In contrast to the small number of “degrees of
freedom” involved in the chaotic equilibrium growthmodels, our
framework is based on a social graph representing a large number
of individual agents with different but correlated beliefs.

Before we can re-interpret Kurz and Motolese’s [3] market
belief variable in this way, we need to add some detail. First,
section 2 exemplifies the role of correlated beliefs and thus
prepares for the subsequent developments. Then, we clarify what
we mean when we speak of a bubble. After a quick summary of
[3] in section 3, section 4 shows how their model relates to the
definition we propose in [37]. Next, for market belief to explain
the dynamic appearance of bubbles, we would like to be able to
switch it “on” and “off” at will8. Kurz and Motolese [3] basically
assume that it is always “on,” hence have little to say about the
dependence structure that gives rise to it, other than that “due
to correlation across agents, the law of large numbers is not
operative.” But not only are there different variants of the law
of large numbers (LLN), some LLNs can operate on correlated
variates.We needmore specificity about howmuch (or what kind
of) dependence is necessary for market belief to emerge. Ideally,
we would find a precise threshold in the parameter space fixing
the dependence structure.

7We identified the general mechanism behind this way of thinking as a form of

explicit symmetry breaking, a notion borrowed from theoretical physics, in [8].

Breaking the symmetry inherent in a diverse set of beliefs explicitly (as opposed to

spontaneously) also explains the need for frictions in these models.
8Recall that REBs, by contrast, cannot be restarted once they are deflated.
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Section 5 introduces a simple graph model for the dependence
of beliefs. This not only reduces the dimensionality of the
problem but also creates a partition in the parameter space. The
phase transition between small and giant components in the
graph then effectively serves as the on/off switch for the market
belief variable. The idea is to “rotate” the problem from one
of identically distributed but correlated belief innovations to an
independent but not identically distributed setting. This makes
the problem accessible to LLNs of differently-sized variables
[38, 39] via the eigenvalue distribution of the correlation
matrix. In section 6, we then use linear aggregation [40, 41]
to change the endogenous state variable from short- to long-
memory. This “dramatizes” the emergence of bubbles. Section 7
concludes with a few suggestions regarding policy implications
and empirical applications.

2. THE ROLE OF CORRELATED BELIEFS:
AN EXAMPLE

We begin with a re-examination of the introductory example
of [42]. The chief distinction between rational belief bubbles
and other heterogeneous belief bubbles [43] is our focus on the
dependence structure, or correlation, of beliefs rather than their
diversity. Lest the main idea get lost in technical details later,
the simpler, stylized setting serves to highlight this distinction
and provides some intuition about it before we embark on the
main argument.

There is an asset that pays dividends d, which are iid with
d ∼ N(y, 1/a). Disregarding learning effects over time, each
agent receives a signal xi = d + εi composed of a public
element d and a private element εi ∼ N(0, 1/b). Expectations are
heterogeneous because agents mix the common prior with the
signals they receive individually:

E
i(d) =

ay+ bxi

a+ b
(1)

Aggregated over the set of investors I, these private expectations
yield an average expectation of

Ē(d) =

∫

I
E
i (2)

=
ay+ bd

a+ b
(3)

Let agent i form a second-order belief

E
i(Ē(d)) =

ay+ bEi(d)

a+ b
(4)

=
ay+ b

(

ay+bxi
a+b

)

a+ b
(5)

=

(

1−

(

b

a+ b

)2
)

y+

(

b

a+ b

)2

xi (6)

Aggregating again and comparing to Equation (3) now shows
that the average expectations operator is not a “normal”
expectations operator. It violates the law of iterated expectations:

Ē(Ē(d)) =

(

1−

(

b

a+ b

)2
)

y+

(

b

a+ b

)2

d 6= Ē(d) (7)

This violation in turn leads to systematic pricing errors in the
market. Insofar as the relevant expectations operator is furnished
by “the average investor,” one can see this heuristically by
expanding the basic asset pricing equation

pt = Ēt(mt+1(pt+1 + dt+1)) (8)

= Ēt(mt+1)
[

Ēt(Ēt+1(mt+2xt+2))+ Ēt(dt + 1)
]

(9)

= etc. (10)

where mt is the stochastic discount factor. A failure of the law
of iterated expectations thus also means a breakdown of the
basic asset price equation. Allen et al. [42] essentially blame the
disagreement induced by the private signals for this failure: “if
there is differential information between investors so that there is
some role for the average expectations about payoffs, the folding
back of future outcomes to the present cannot easily be achieved.”
This is akin to Keynes’s position.

Indeed, if one eliminates the private signals from the model
[which amounts to taking the limit 1/a → 0 in expression (1)],
the law of iterated expectations starts to work again: E

i(d) =

Ē(d) = Ē(Ē(d)) = y. It thus appears that investor disagreement
introduced some sort of noise that prevented the law from
operating. In reality, though, it was not the disagreement that
induced the failure. If we go to the other extreme and eliminate
the public signal instead: xi = y + εi, the information agents
receive is still differential and still induces diversity of beliefs
E
i(d) = xi. Yet aggregating over the set I of agents now yields

Ē(d) =
∫

I xi = y = E
i(Ē(d)) = Ē(Ē(d)). Suddenly, we find

ourselves in Galton’s world!
The reason the law of iterated expectations for the average

expectations operator failed is that the expectations were not only
diverse or differential but also correlated. And the reason for this
is that the signals xi were coordinated by the public element d:

Cov(Ei(d),Ej(d)) = E((xi − y)(xj − y)) (11)

= E((d − y+ εi)(d − y+ εj)) (12)

= E((d − y)2 + (d − y)εi + (d − y)εj + εiεj)
(13)

=
1

a
(14)

> 0 (15)

To summarize, the (potential) wedge between price and value
associated with the failure of basic asset pricing relations and
identified by the failure of the law of iterated expectations was
caused not by the diversity of beliefs but by the correlation
between them.
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3. ASSET PRICING UNDER RATIONAL
BELIEFS

Kurz and Motolese [3] present an infinite-horizon, discrete-time
equilibrium asset pricing model. In order to be self-contained, we
provide a brief summary9.

Let (dt)
∞
t be an exogenous random sequence of payoffs of a

risky asset. This random sequence has a true probability which is
possibly non-stationary, unknown, and unknowable but assumed
to be weak asymptotic mean stationary (WAMS). The agents
have a large sample of historical data dt , t = −1,−2, . . . at their
disposal from which they infer a unique empirical probability
measure. This empirical measure generates data according to

dt+1 = λddt + ρd
t+1 (16)

ρd
t+1 ∼ N(0, σ 2

d ) (17)

This is the common reference point for all agents i ∈ I =

{1, 2, . . . , n}, where n is the number of agents in the system. The
law of motion (16) fixes the set of rational beliefs.

Subjective beliefs dit about the fundamentals dt are formed
by augmenting the stationary measure with an individual belief
state git :

dit+1 = λddt + λ
g

d
git + ρid

t+1 (18)

The individual beliefs are assumed to be rational, which means
that git fluctuates around 0:

git+1 = λZg
i
t + ρ

ig
t+1 (19)

ρ
ig
t+1 ∼ N(0, σ 2

g ) (20)

The innovations ρ
ig
t+1 to the individual belief states are coupled

by a correlation matrix 6g .
As diverse expectations are readily ascertained by agents, the

state space is “expanded” by the average state of belief, dubbed
“market belief” Zt :

Zt =
1

n

n
∑

i

git (21)

This is basically a measure of market sentiment, with Zt > 0
indicating that agents on average expect temporarily higher than
normal payoffs (and vice versa). Market belief or sentiment Zt
evolves according to

Zt+1 =
1

n

∑

i

λZg
i
t +

1

n

∑

i

ρ
ig
t+1 (22)

= λZZt + ρZ
t+1 (23)

Since 6g may be time-varying, Zt may be non-stationary. It
is, however, also assumed to be WAMS, yielding a stationary
representation with

ρZ
t+1 ∼ N(0, σ 2

Z) (24)

9For a quick overview of rational belief theory, we refer to its entry in Wikipedia

which one of us (HS) contributed. For a survey, see [26].

By assumption,

(

ρd
t+1

ρZ
t+1

)

∼ N

(

0
0
,

[

σ 2
d

0

0 σ 2
Z

]

= 6̃

)

, iid (25)

Given this setup, there exists a unique equilibrium map d× Z →

p from the state space to prices.

Proposition 3.1. Under the conditions described above, there
exists a unique equilibrium price map

pt = addt + aZZt + P0 (26)

from the state space of fundamentals dt and market belief Zt to
prices pt .

Proof: See [3, theorem 2].

Our main interest lies in this map. Can we use market belief or
sentiment Zt to explain bubbles?

We examine the origin as well as nature of correlations
between individual beliefs that can lead to a natural explanation
of bubbles in this rational belief framework. We use a formalism
in terms of processes, which is coarse-grained compared with
the field of strategic noncooperative games, for which it
has been proved that there exists two classes of correlated
equilibria, exogenous, and endogenous [44, 45]. Our derivation
of correlated equilibria performed in section 6 does not require
the game theoretical mathematics and can proceed more
intuitively and transparently.

4. BUBBLES VS. EFFICIENT MARKETS

In contrast to topics of similar standing, bubbles are remarkably
contentious even on an existential level. This is because even
after centuries the term is still not well-defined. The problem
stems from the use of “fundamental value” in many definitions—
a highly contingent concept of its own. In our view, it is fine to
construct a theory of value; it is a stretch to build definitions on
top of it. This is why we proposed, in [37], to re-define bubbles
not in “money-space” where value lives but in the time-domain
where the efficient market lives. Before presenting the idea, we
provide a brief review of various bubble definitions that have been
proposed in the literature to contrast with our present approach.

4.1. Bubble Definitions in the Literature
4.1.1. Statistical Definitions

As a first group of bubble definitions, there are those that focus on
the price trajectory or other observables such as trading volume,
without reference to theoretical notions like fundamental value.
For example, Kindleberger and Aliber [46] regard as bubbles “any
upward price movement over an extended period of 15 to 40
months that then implodes.” Exchanging the specification of the
time-horizon for a size requirement, as it were, Goetzmann [47]
defines bubbles as a doubling in the market price followed by
a 50% fall10. Presumably, then, bubbles cannot occur in fixed

10One may recall here that [48] defined efficient markets as ones “in which price is

within a factor of 2 of value. [. . . ] The factor of 2 is arbitrary, of course.”
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income or other markets where there is a natural upper bound
on the market price! The fund manager GMO proposes that
bubbles occur “when prices rise two standard deviations above
their norm” [49, 50]. This is more flexible than an absolute size
requirement but, alas, opens a whole other can of worms, like
estimation issues, ergodicity assumptions, or the question if the
second moment even exists for a given asset.

Brock, as cited in [51], defines bubbles as “a monotonically
increasing sequence of prices.” Hüsler et al. [52] and Leiss et
al. [53] cite super-exponential growth rates11 as the hallmark
of a bubble. This chimes with [46] in that it also implies an
unsustainable price path but differs in that it does not require an
“implosion” or market crash.

What the definitions in this category have in common is that
they neither imply nor necessitate a mispricing per se. They focus
on the observable (the price series) and do not mix theoretical
concepts into the definition. In particular, there is no notion
of value here. This is an appealing feature for a definition, as
explanandum and explanans then are clearly separated from
each other. Bubbles, defined like this, can be tested without the
problem of the joint hypothesis. On the downside, insofar as
a definition depends on the full path, including a crash at the
end, it can be guilty of post hoc ergo propter hoc in practice.
Insofar as the theoretical underpinning is lacking, the definitions
in this category can also be too broad in scope: Empirically, too
many price series can fit a statistical bubble definition without
necessarily corresponding to our intuition of what a bubble
“should” be. For example, an interest rate sensitive stock might
follow a rate cycle up “over an extended period of fifteen to forty
months” only to then “implode” upon the revelation of a criminal
investigation. Fewwould characterize this as a bubble. Context, as
it were, is important.

4.1.2. Comparative Definitions

As a second category, there are bubble definitions based on
comparisons, usually between price and some notion of value.
For instance, the New Palgrave Dictionary of Economics defines
bubbles as “asset prices that exceed an asset’s fundamental
value” [54]. Bland as it may appear, this excludes the possibility
of negative bubbles, a significant restriction to make by
definition, as it were. Temin and Voth [55] by contrast identify
bubbles as “periods of substantial mispricing” which allows
for undervaluations as well as overvaluations but adds a size
requirement (“substantial”). Levine et al. [56] define bubbles as
simply a “misfit between the market price and the true value of an
asset” with no such qualification. This lack of specificity makes it
hard to see where the line between excess volatility and bubbles
should be drawn. The point is not to niggle or read too much
into what may have been intended as merely passing remarks in
a much longer work. It is to show that just because a definition is
done casually does not mean it has no consequences—especially
when we have to relate different studies to each other.

Apart from direct appeals to value, comparisons can also refer,
more obliquely, to the information sets on which “true value”
is presumably based. For instance, Blanchard and Watson [5]

11faster than exponential growth, or growth rates that themselves grow.

define bubbles as price movements which are “unjustified by
information available at the time.” More emphatically, Asness
[57] demands that the term should apply only when “no
reasonable future outcome can justify” the price. This seems
to posit a range of admissible price paths, defining bubbles
negatively, or by exclusion.

For all their differences, comparative definitions always
require a theory of asset pricing, if only implicitly, for a notion
of what the correct price is supposed to be. This is their Achilles’
heel and the chief criticism of efficient market proponents. For
example, Santos andWoodford [58] compare the market price of
an asset to the state-price weighted sum of its real payoffs, while
[59] uses the realized return on an asset over a sufficiently long
time after trading. Different studies can thus agree, in general
terms, to define bubbles as a divergence of price from value and
still disagree over whether a particular price series is a bubble or
not. This can make it all seem a bit arbitrary.

4.1.3. Detailed Definitions

A third group of definitions goes beyond the perceived gap
between price and value by tying it to specific explanations. For
example, Kirman and Teyssière [60] require that the gap between
price and value be “endogenous, i.e., not directly produced by
exogenous shocks.” In other words, the mispricingmust arise in a
certain way in order for it to count as a bubble. Brunnermeier and
Oehmke [31] concur that “not every temporarymispricing can be
called a bubble.” In particular, it has to arise “because investors
believe they can sell the asset at an even higher price to some
other investor in the future,” so for them the speculative motive
is essential. Roubini [61] even introduces a policy dimension by
distinguishing between “endogenous” and “exogenous” bubbles,
where the former are bubbles whose “probability and size can
be affected by monetary policy” while the latter cannot12. As an
extreme example of the involute nature of the definitions in this
category, let us quote from [63]:

I would say that a speculative bubble is a peculiar kind of fad

or social epidemic that is regularly seen in speculative markets;

not a wild orgy of delusions but a natural consequence of the

principles of social psychology coupled with imperfect news

media and information channels. [. . . ] I offered a definition of

bubble that I think represents the term’s best use: A situation in

which news of price increases spurs investor enthusiasm which

spreads by psychological contagion from person to person, in the

process amplifying stories that might justify the price increases

and bringing in a larger and larger class of investors, who, despite

doubts about the real value of an investment, are drawn to it

partly through envy of others’ successes and partly through a

gambler’s excitement.

Basically the obverse to our first category, it is not surprising then
to find that detailed definitions tend to be too narrow in scope.
Would a bubble that arose by a different mechanism, or in a
market in which the proposed mechanism does not apply, also
be a “bubble”? For example, would a “political bubble” [64] not

12A similar but more general argument, less focused on monetary policy, has been

put forth in [62].
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count as a bubble to [31]? Or if it did, doesn’t this mean that there
must exist a less restrictive superset of bubbles, of which the two
variants (political vs. speculative) are but particular cases? And
if not, how are we to relate the results and policy implications
of different studies to each other? Would a bubble indicator
constructed for, say, speculative bubbles still be expected to detect
politically driven ones?

The above quote also illustrates that the more detailed a
definition, the more likely it is to mesh the notion of bubbles
with behavioral assumptions or market frictions. Arguably it
is this that makes bubbles such a loaded term. With respect
to recessions, inflation or unemployment, the debates may be
vigorous but at least their subjects are accepted. By contrast,
bubbles remain “existentially controversial.” Perhaps this is
because themore detailed a definition, themore it acts as a Trojan
horse: themere use of the termmay already admit of assumptions
one does not wish to make. It is thus that the rejection
of behavioral hypotheses or doubt about the effectiveness of
monetary policy may lead one to reject the concept of bubbles,
almost as an unintended side effect. For the sake of discussion,
we should therefore move away from such evocative definitions
toward greater formalism and pithiness. In the words of Brock
[65], “for the quality of a theory to improve over time, definitions
must become more rigorous and less ambiguous.”

4.2. Market Efficiency and
Time-Dependence of Market Efficiency
It remains commonly overlooked that the concept of market
efficiency has a time-dimension. Markets essentially transform
informational inputs, modeled by a filtration (Ft)

∞
t=0, into price

signals (pt)
∞
t=0. Markets thus act as a map 1F → 1p from news

to price changes. Market attributes are naturally defined in terms
of these primitives. Eliding the discount factor for simplicity, the
efficiency of markets has been characterized by the martingale
property (cf. [66–68]), where

Et(pt+1|Ft) = pt (27)

A market is efficient relative to the news process (Ft)
∞
t=t0

iff the
map 1F → 1p produces a martingale. This means that price is
an unbiased predictor and that an efficient market does not allow
trading profits based on the current information set [69].

But just as efficiency can only be defined relative to an
information set, it also requires a time-scale. It is implicitly
understood in Equation (27) that the time step 1 from t to t + 1
is the relevant time-scale. That is, if we take t0 to be the present,
Equation (27) can be written like

Et0 (pt0+nt|Ft0 ) = pt0 (28)

with n = 1 and the understanding that the martingale condition
holds for n ∈ N. But any given discrete-time price process can
be seen as merely a sampling from an underlying continuous-
time process, which could have been sampled at a different rate
or frequency, say τ or T with 0 < τ < t < T. That a process is a
martingale on one time-scale neither necessitates nor implies that

it is one on another13. This opens the possibility that a market is
efficient on one time-scale but inefficient on another.

Such a disjunction between time-scales can be supported
empirically14 as well as theoretically, from reading [72] “in
reverse”: To recap his argument, as long as liquidity is not infinite
and there is a strictly positive bid-ask spread s > 0 in the market,
successive price changes 1p will exhibit serial dependence and
the martingale property will not hold. Adapting his notation,
let those price changes be measured at the time-scale τ < t,
i.e., 1p2τ = p2τ − pτ , to make the connection to our discussion
clearer. The bid-ask spread induces an asymmetry in the price
path at the scale τ (see Figure 1): If the last transaction was
conducted at the bid, then the next move can only be up (by
the spread s) or 0. If the last transaction was conducted at the
ask, then the next move can only be down (by s) or 0. One time-
step further, the situation is reversed. If the last move was up or
0 (down or 0), then the next move can only be down or 0 (up
or 0). The bid-ask spread thus introduces a serial dependence
into successive price movements that is not compatible with the
martingale condition of an efficient market.

At the same time, over a sufficient number n of time-
steps τ , the transition probabilities converge to a (symmetric)
steady state. This means that for t ≥ nτ , with n sufficiently
large, the effect of the bid-ask spread (or, by extension, other
microstructural factors) “washes out”: Measured on the micro-
scale τ , the process exhibits serial dependence; measured on
the macro-scale t ≥ nτ , the price process can conform to the
martingale property again.

Let us illustrate this phenomenon analytically with a toy
model, the two-step random walk in [73], a special case of the
class of persistent random walks [cf. [74], section 5.2]. Let 1p ∈

{U,D} for up = +1, down = -1. Define πUU as the joint probability
that the price goes up twice in a row; πUD as the probability that
an up move is followed by a down move; and πDD,πDU as the
probabilities of down-down and down-up moves. Let πUU =

1/6,πDU = πUD = 1/3,πDD = 1/6. Suppose the last move was
up and start at time t0 with pt0 = 100. Then

E(pt0+τ |Ft0 ) = E(pt0+τ |up) (29)

= 100+ πU|U × 1+ πD|U × (−1) (30)

= 100+
1

3
−

2

3
(31)

6= 100 (32)

where πU|U ,πD|U are the corresponding conditional
probabilities. That is, one time-step forward, this two-step
random walk is not a martingale. However, if we perform the

13In [37], we use so-called n-step or persistent random walks as an example.

Another way to see this is by letting the expectation cycle through a periodic

function, e.g. a sine-curve: xt = sin(t)+ ǫt with ǫ ∼ N(0, σ 2). Then Et(xt+2πn) =

xt . As long as we sample at the frequency of (2π)−1, the series looks like a

martingale but at any other frequency, it is not.
14See for example [70] or, more plastically, the case study of [71]. The point

being that a market, no matter how efficient, always needs some time to

digest information.
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FIGURE 1 | Table of transition probabilities, conditional on the last transaction having been conducted at the bid or at the ask price, adapted from [72, p. 1129].

same calculation two time-steps forward,

E(pt0+2τ |Ft0 ) = E(pt0+2τ |up) (33)

= 100+ πUU|U × 2+ πDD|U × (−2) (34)

= 100+
1

3
−

1

3
(35)

= 100 (36)

The reason is that the memory gets lost at the time-scale t = 2τ ,

πUU|U =
πUU∧U

πU
(37)

=
πUU × πU

πU
(38)

= πUU (39)

As a result, even though the same price process exhibits serial
correlation at the scale τ , it conforms to the martingale property
at the scale t = 2τ .

4.3. Bubbles as Elongations of
Characteristic Time-Scales of Markets
We call the time-scale at which the martingale property holds the
characteristic time-scale of a market. It is inversely proportional
to the speed with which a market can “digest” information. Not
only do different markets process information at different speeds,
the same market can slow down or speed up over time. Projected
onto the time-line, bubbles appear as regimes in which the speed
of a market slows down significantly from normal.

Definition 4.1. Given amarket that is efficient relative toF at the
time-scale t, a t-bubble occurs when the price process changes
such that the martingale condition Et0 (pt0+T |Ft0 ) = pt0 now
only holds at time-scales T > t. As a boundary case, we include
regimes where T = ∞ or the condition never holds.

Colloquially, we may call t-bubbles simply “bubbles” so long as
it is clear that the notion only makes sense when set in relation
to the characteristic time-scale t of the market. Conversely, a
bubble is a slowdown in the map 1F → 1p from the “nor-
mal speed” ∼ 1/t of the market to ∼ 1/T—a sort of
“informational constipation” if you will, as the “digestion”
of news becomes slower15.

15An incarnation of this is provided by theHawkes self-excited conditional Poisson

process, which has been used to characterize the level of endogeneity or reflexivity

Our re-definition of bubbles is sufficiently general so as to be
compatible with most of the existing definitions in the literature.
The lengthening of the time-scale only serves to create space for
a variety of bubble dynamics “in-between” the points at which
the martingale property is restored. The general principle is to
eliminate (the conditions for) the bubble from a model and
inspect the time-scale t at which the market in the model is
efficient. If the bubble component has a finite survival time, this
can be taken as a lower bound for T. For example, under the
limited arbitrage argument of [78], the duration of the bubble is
finite with a survival time of τ̄ (in their notation). Without the
bubble, the market’s characteristic time-scale is t; with a bubble,
it slows down to 1/τ̄ .

To sum up, market efficiency has a time-dimension. It is
therefore not enough to speak of a market as efficient. In addition
to the news process (Ft)

∞
t=0 relative to which efficiency is defined,

one also needs to state at which time-scale efficiency is supposed
to hold. The time it takes a market to fully absorb an information
increment 1F can be random but has a characteristic scale,
in the sense that it fluctuates within certain bounds or that its
mean is defined. In the following, we will take this characteristic
time-scale of a market as a given16.

4.3.1. Application to REBs

Blanchard [4] constitutes an interesting example because even
under a bubble the price path still follows a martingale. In
equilibrium, the probability of a crash is supposed to exactly
balance the added growth factor of the bubble component bt =
pt − p̄, where p̄ is the fundamental value, or

Et(bt+1|bt > 0) = bt (40)

if we elide the discount factor for simplicity. That is, the price
would simply incorporate the bubble component via

E(pt+1|Gt) = p̄+ bt (41)

of financial markets [75–77]. As the “branching ratio” approaches 1, the market

becomes more and more endogenous and the response time to shocks diverges, so

that news have a longer and longer lived impact.
16It is also possible, though, to conceive of financial markets in which the mean

time to digest news diverges. This could occur, for instance, when the absorption

time is distributed according to a power law in the tail with tail exponent <1. As

many response functions are power laws in the time domain with small exponent,

this is indeed an interesting possibility. In this case, the market would never be

efficient even at arbitrarily large time-scales.
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Note however that G = (Gt)
∞
t=0 is generated by fundamental

variables as well as the bubble component b = (bt)
∞
t=0. But

definition 4.1 relies on an efficient market as a benchmark.
Therefore, the bubble according to 4.1 cannot be defined relative
to G. Instead, we must introduce a “copy” of the market, a
hypothetical market in which all the elements are the same
(agents and their preferences, assets, institutions, etc.) except the
information process, which must exclude the bubble component
bt . Denoting this filtration F = (Ft)

∞
t=0,

E(pt+1|Ft) = p̄ (42)

6= p̄+ bt (43)

That is, relative to the efficient market, the bubble component
introduces an estimation or valuation error which survives with
probability π and collapses with probability 1 − π in [4]. It thus
has an expected length of π/(1−π) time-steps, or T ≥ π/(1−π)
time steps. For example, if π = .95, then T ≥ 19 time steps. As
the probability (1 − π) of a crash approaches zero, T → ∞ in
the limit.

4.3.2. Application to [3]

In accordance with definition 4.1, we must first specify an
efficient benchmark against which a bubble can be defined. In
[3], the natural benchmark is a market driven exclusively by the
fundamentals (dt), or the price map pt = P0 + addt (see theorem
3.1). This relationship holds when the correlation of beliefs is
sufficiently low for the law of large numbers to apply and market
belief to vanish. Since the stable distribution of the dividend
process is persistent (cf. Equation 16), we have

Et(pt+n|dt) = P0 + adλ
n
ddt (44)

This means that any dividend shock will wash out exponentially
fast, or that the market is (approximately) efficient at a time-scale
T, where T = {n ∈ N : λn

d
< ε} for any chosen tolerance ε > 0.

For the sake of argument, let us fix λd = 1/4 and ε = 1/100.
Then the market is efficient at the time-scale of 4 time steps.

If market belief Zt enters the equation because “due to
correlation across agents, the law of large numbers is not
operative,” ([3], p. 301) there are two scenarios. One, it has the
same, or lower, persistence with 0 < λZ ≤ 1/4 in Equation (23).
Then market belief increases the variance of the process but does
not change the efficient time-scale. This was the original focus of
[3]. Two, λZ > λd. Suppose, for instance, that λZ = 3/4. Now
the innovations ρZ

t+1 to market belief Zt affect the expected price
(under the stable distribution) for T = 17 periods.

So far, we haven’t done anything yet. It is simply an observation
that if λZ > λd, market belief Zt potentially slows down
the market or “interferes” with the fundamentals dt in the
equilibrium price equation. This conforms to our re-definition
of bubbles in terms of time-scales rather than price-value
divergences but there is nothing in the original work of Kurz and
Motolese [3] that would motivate a particular parameterization.

In the following, we now propose two extensions or
modifications to the model: First, to find an “on/off” switch

for market belief Zt in the parameter space of the dependence
structure of beliefs, we propose to generate 6g from a “social
graph.” This reduces the dimensionality of the problem and at
the same time provides a natural partition of the parameter
space. Then, to emphasize or perhaps motivate λZ > λd, we use
linear aggregation [40, 41] to move the model beyond a simple
parametrization. The aggregation of short-memory correlated
belief transitions can lead to a long-memory series. The resulting
divide between fast-moving fundamentals dt and slow-moving
market belief Zt magnifies the bubble effect outlined above.

5. HOW MUCH DEPENDENCE IS
ENOUGH?

This section discusses the first modification to the model of
[3], which consists in introducing a “social graph” to motivate
the existence of a non-trivial correlation matrix 6g of the
innovations ρ

ig
t+1 to the individual belief states defined in

Equation (19). In other words, we propose to generate 6g from
a “social graph,” which represents the investor population. For
simplicity, we use the Erdős-Renyi random graph model G(n, p),
where n is the number of agents (or vertices) in the system and
p ∈ [0, 1] is the probability with which a random pair of agents
i, j is linked by an edge {i, j}. The edge is represented by a set as
opposed to a tuple as we take the graph to be undirected. To
keep things tractable, we also do not assign weights to links or
distinguish between different degrees of correlation.

Whenever agents (or their nodes) are connected in the graph,
we take their beliefs to be correlated17. Moreover, we let their
beliefs be correlated by a constant ρ̄ ∈ (0, 1], thereby abstracting
not only from directions of influence (by the undirectedness of
the graph) but also from variations in the degree of influence18.
In our model, the pertinent fact is that (or whether) there exists
some level of mutual influence or communication, regardless of
its direction or strength. Formally, 6g is constructed via the rule
∀i 6= j ∈ {1, . . . , n},

σ
g
ij = σ

g
ji =

{

ρ̄, if i, j are connected;

0, otherwise
(45)

where σ
g
ij is the (i, j)-th component of 6g . Since the social graph

of the agents is random, so is 6g .
A group of agents that is connected to each other, or whose

beliefs are correlated, is called a clique or “component” of the

17For those unfamiliar with the terminology of graphs, note that there is a

difference between two agents being “linked” by an edge and being “connected”

by a path. Vertices i, j in the graph are said to be linked if the graph contains an

edge {i, j} between them. For vertices to be connected, it suffices that there exist a

path between them. Agents that are linked are also connected but agents may be

connected without being linked. For example, if agents i and j are linked by {i, j}

and agents j and k are linked by {j, k} but there is no edge between agents i and k,

agents i and k are still considered connected via the path {{i, j}, {j, k}}.
18That ρ̄ is chosen positive stems from the fact that sufficiently large groups of

agents cannot be all negatively correlated. Suppose, for example, that there are

three agents i, j, k all perfectly negatively correlated. If i becomes more optimistic, j

must become more pessimistic, which means kmust become more optimistic. But

this belies the negative correlation between i and k. The same principle holds with

less-than-perfect (negative) dependence in larger groups.
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graph. One can distinguish between two kinds of cliques or
components. If the size of a clique does not scale with the total
number of agents in the system, or is independent of n, then we
call it a “small component.” If a clique is such that it becomes
larger the larger becomes n, it is called a “giant component.” This
difference in the scaling behavior of cliques has an important
consequence for 6g .

By construction, the correlation of beliefs is transitive: if agents
i, j have correlated beliefs and agents j, k also have correlated
beliefs, then so do agents i, k. Graphically, this means that every
clique of agents can, after appropriate reshuffling of the indices,
be represented by a block matrix in 6g . The size of a clique is the
number of nodes or agents contained in it. If a clique of correlated
agents has sizem, say, then the corresponding block matrix in6g

is of m × m dimension. Obviously, if we pick any off-diagonal
entry σ

g
ij from such a block, its value is ρ̄; if we pick an entry of

6g that is not part of a clique, then its value is zero. But what
about a random pick from 6g , i.e., the unconditional expectation
E(σ

g
ij ) or average correlation in the system as a whole?

The average correlation of beliefs depends on whether the
agents are organized into many small separate components
or into a giant connected component. The intuition is that
components or cliques of correlated agents in the original space
act like “composite agents” when transposed into eigenspace19.
The law of large numbers then acts, or not, on these “composite
agents,” which are independent but differently-sized, instead
of the actual agents, which are equally-sized but correlated. A
system with 1,000 isolated agents behaves essentially the same as
a system with 2,000 agents who are organized into cliques of 2.

Small components do not scale with n. As the graph increases
from, say, 100 to 1,000 agents, there are more cliques but of the
same size (or size distribution) as before. A giant component,
by contrast, scales with the system size n. Its size is a constant
fraction S ∈ [0, 1] of n. As a giant connected component arises
in the social graph of agents (or their beliefs), the weight of
the non-zero correlations in 6g remains a constant fraction of
the total, and the average correlation of beliefs in the system
becomes positive.

Formally, the question is how the average correlation of beliefs
behaves as the system becomes large, or

∑

i

∑

j 6=i σ
g
ij

n(n− 1)
→ E(σ

g
ij ) (46)

as n → ∞. Let c = (n − 1)p be the mean degree of the graph20.
The average size of the small components is

R =
2

2− c− cS
(47)

The fraction S of the n agents or vertices contained in a giant
connected component depends on c and is the solution or fixed
point of

S = 1− exp{−cS} (48)

19This is the basic idea of principal component analysis [79].
20We skip calculations that do not add to the main point and refer interested

readers to [80] instead.

When c < 1, S = 0 or there is no giant component in the graph.
This yields an average correlation coefficient of

2(n− 1)× ρ̄ + (n− 2)(n− 1)× 0

n(n− 1)
=

2ρ̄

n
(49)

As the system size n increases, the average correlation tends to 0,
and in the limit, we can take E(σ

g
ij ) = 0.

When c ≥ 1, a giant component emerges in the graph and
the system behaves differently. The reason is that unlike the small
components, the giant component scales with the system size n.
Then the average correlation of beliefs is

(S× n)(S× n− 1)ρ̄

n(n− 1)
→ S2ρ̄ (50)

as n → ∞ which is strictly positive.
Our use of the Erdős-Renyi random graph theory has been

made for the sake of simplicity and tractability. It will be
interesting in the future to extend our treatment to the case of
Barabasi-Albert networks and other random geometric graphs.
However, our main point on the emergence of a non-zero average
correlation of beliefs will not be changed. What will be modified
are the specific control parameters and conditions under which
a non-zero average correlation of beliefs emerges. Furthermore,
the application to real-world social networks is reported to a
future work.

6. THE EMERGENCE OF BUBBLES

We now make the following modification to [3]:

Axiom 6.1. Let the agents have coefficients λig in (19). In
particular, we assume that the coefficients λig are drawn from a
family of absolutely continuous distributions with support [0, 1)
with density

f (λig; b) ∼ cb(1− λig)b as λig → 1 from below (51)

with parameters−1/2 < b < 0 and 0 < cb < ∞.

The density in the axiom is only specified for values close to 1,
so this is a flexible semiparametric specification. The only hard
requirement is that the coefficients cannot be bounded away from
1 (although they can never attain it). Agents now differ from each
other w.r.t. the persistence of their belief states git . This means that
agents differ in their trading horizons: Short-term day traders
form subjective expectations that flit around much faster than
long-term investors who form expectations over multi-year, even
decade-long horizons.

As a result of this positive average correlation in the system,
market belief Zt will assume long-memory and a price bubble
develops, as we now show.

Proposition 6.1. Suppose that E(σ
g
ij ) > 0 or that the average

correlation of beliefs in 6g is positive. Then there exists a common
component or “representative belief " πt ∼ N(0,ϑ) iid in the
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innovations and the transition functions (19) of agent states of
belief can be rewritten in terms of this representative belief to

git+1 = λiggit + siπt+1 + εi,t+1 (52)

As a consequence, the aggregate market belief Zt assumes long
memory persistence.

Proof: Since 6g is symmetric and positive definite, we can
perform a spectral decomposition

6g = S2S′ (53)

where S is the matrix of eigenvectors, 2 is the n-dimensional
matrix with the eigenvalues ϑi, i = 1, . . . , n on the diagonal,
SS′ = In, the n-dimensional identity matrix, ϑi ∈ R

+, and
ϑi 6= ϑj,∀i 6= j.

According to [81], if E(σ
g
ij ) > 0, which we have shown above

to be the case when a giant connected component arises in the
social graph of the agents, then the biggest eigenvalue, ϑ1, is
distributed according to

ϑ1 ∼ N

(

(n− 1)E(σ
g
ij )+ 1+

Var(σ
g
ij )

E(σ
g
ij )

, 2Var(σ
g
ij )

)

(54)

For correlation matrices, one needs to ensure positive
definiteness of 6g and [82] show that the result remains valid
under suitable restrictions on the support of the off-diagonal
entries for large sample correlation matrices.

Given that
∑

i ϑi = trace(6g) = n, all other eigenvalues ϑi>1

are therefore constrained to be of the order (1 − E(σ
g
ij )). That

is, the larger the system, the greater the dominance of the largest
eigenvalue, ϑ1, over all others, ϑi>1. Furthermore, as the variance,
unlike the mean, in (54) does not scale with n, this dominance
also becomes more certain as n grows large.

We exploit this by rewriting the innovations in individual
states of belief in terms of a factor model

ρ
ig
t = si1π

1
t + εit (55)

where π1
t is the first principal component

π1
t = S′1ρ

g
t (56)

and “factor loading" si1 is the (i, 1)-th component of eigenvector
matrix S or the i-th component of the first eigenvector S1. Since
π1
t is simply a linear combination of (multivariate) Gaussians

with mean 0 and variance σ 2
g , it is itself ∼ N(0,ϑ1). The belief

transitions (19) now take the form

git+1 = λiggit + siπt+1 + εi,t+1 (57)

=
si

1− λigL
πt+1 +

1

1− λigL
εi,t+1 (58)

where L is the lag operator.
Hidden in the εit = (si2, si3, . . . , sin) · (π2

t ,π
3
t , . . . ,π

n
t )

′

is the variation of all the other principal components in

eigenspace. Since the system is orthogonal, all the summands are
independent from each other. Again, each principal component
πk
t , k = 2, . . . , n is nothing but a different linear combination

of the original innovations ρ
g
t (Equation 56), hence E(πk

t ) = 0.
∑n

k=2 s
2
ik

Var(πk
t ) =

∑n
k=2 s

2
ik
ϑk < ∞ because the total variance

is finite. Therefore, the series εit converges to zero as n → ∞ [83,
thm. 22.6].

It follows that we can neglect the idiosyncratic terms and
rewrite individual beliefs solely in terms of the common
component

git+1 =
si

1− λigL
πt+1 (59)

Accordingly, market belief (21) now takes the form

Zn,t =
1

n

∑

i

si

1− λigL
πt (60)

If we expand this expression,

Zn,t =
1

n

n
∑

i

λiggit−1 +
1

n

n
∑

i

siπt (61)

=
1

n

n
∑

i

λig(λiggit−2 + siπt−1)+
1

n

n
∑

i

siπt (62)

=

∞
∑

k=0

(

1

n

n
∑

i=1

si(λ
ig)k

)

πt−k (63)

A stochastic process has long memory if its spectral density is of
the form L(ω)|ω|−2d, for some slowly varying function L at zero
and d ∈ (0, 12 ) [84]. Zaffaroni [41] shows that, for coefficients
λig distributed according to expression (51) with b > −1/2, the
coefficients in (63) converge

µk = lim
n→∞

1

n

n
∑

i=1

si(λ
ig)k (64)

with

µk ∼ ak−(b+1) (65)

for some constant a as k → ∞, and that the limit process

Zt =

∞
∑

k=0

µkπt−k (66)

has a spectral density ∼ cω−2d if b < 0, for some constant c and
d = −b.

For example, what is the probability that the equilibrium price
will lie at least one standard deviation of Zt above P0 for a period
of 100 days? To isolate the effect of long memory on the bubble
probability, we normalize the variance of Zt to a constant 1 for
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all t and calculate P(
∑100

t=1 Zt > 100) = 1 − P(
∑100

t=1 Zt ≤ 100).
Recalling that Zt is a Gaussian process, we note that

100
∑

t=1

Zt ∼ N
(

0, 1′61001
)

(67)

where 1 is the 100 × 1 vector of ones, ·′ indicates the transpose,
and 6100 is the 100 × 100-dimensional covariance matrix of
(Z1, . . . ,Z100) with (i, j)-entries σZ

ij .

Case 1: Independence. Under time independence, i.e., if Zt were
iid, the entries σZ

ij in 6100 are equal to 0 for i 6= j and 1 for i = j.

Then

100
∑

t=1

Zt ∼ N (0, 100) (68)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.
Case 2: Short memory. Under the setup of [3], we have
exponentially decaying autocorrelations and the (i, j)-th entry of
6100 is

σZ
ij = λ

|i−j|
Z (69)

This corresponds to the yellow line in Figure 2. For comparison
purposes, we choose a value of λZ ≃ .77, which yields

100
∑

t=1

Zt ∼ N (0, 739) (70)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.0001173 or less than
1 in 8,500.

Case 3: Long memory. By contrast with the previous cases, we
see a significant probability of bubbles arising under the long
memory specification of the previous section, with coefficients as
in Equation (65). The (i, j)-th entry of 6100 is now

σZ
ij =

∞
∑

t=0

µtµt+|i−j| (71)

=

∞
∑

t=0

ct−(b+1)c(t + |i− j|)−(b+1) (72)

Figure 2 plots the first 100 autocorrelations for a parametrization
of b = −1/4 or λZ ≃ .77 (both yielding the same first-order
autocorrelations).

The slowly decaying off-diagonal entries of 6100 lead to a
much higher dispersion of the sum,

100
∑

t=1

Zt ∼ N (0, 3133) (73)

and the probability P(
∑100

t=1 Zt > 100) ≃ 0.037 or about 1 in 27.
Ceteris paribus, introducing long memory increased the chances
of a bubble by two orders of magnitude.

7. CONCLUSION

We mentioned in the introduction that the theoretical setting
in which bubbles are conceived has practical implications. If
bubbles can arise, as we have argued, even under idealized
circumstances—in a world of perfectly rational agents acting

FIGURE 2 | First 100 autocorrelations of the original, short-memory (yellow) and the modified, long-memory (blue) processes, where the parameters are chosen such

that the first-order autocorrelation is equal.
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in markets with no frictions or “limits of arbitrage”—then
they should be recognized as a general and system-immanent
feature of market economies. Continuing to view them as
aberrations, due to specific faults or circumstances, implies
that one can “lean against” or eradicate them by addressing
said faults or circumstances. This strikes us as an attempt to
suppress the tides. We favor building dykes instead, guarding
against their inevitable recurrence by increasing the robustness of
the system.

It is also not clear that bubbles are necessarily “bad.” Indeed,
another way to look at them is as the free-market alternative
of industrial policy, i.e. as a spontaneous and decentralized
way to achieve coordination, instead of the controlled and
centralized approach favored in statist economies. This would be
another argument against efforts to suppress bubbles. Alas, it is
undeniable that bubbles can have bad consequences, particularly
if they end in “crashes” or sudden ruptures which can destabilize
the system at large.

To make a rational policy tradeoff, we therefore need two
further elements, apart from the bubble itself: One, a model
of what might be termed “rational belief crashes,” noting that
there is no violent ending inherent in rational belief bubbles
themselves. This conforms to the view explored here that bubbles
and crashes are separate events and require separate theories. A
bubble does not have to end in a crash (it can deflate gently),
just as an asset price can crash without a bubble (adverse news,
e.g., in the form of a lawsuit, may arrive). The second element
that is needed is a welfare analytical model of how rational belief
bubbles and crashes fit into an economy with a production and a
banking sector.

In terms of empirical applications, we would like to see
an augmentation of current sentiment indicators with cross-
sectional quantities [recall 32, lemma 1]. This could lead

to a “real-time” bubble indicator based on disaggregated,
contemporaneous expectations. As far as we are aware, current
bubble indicators, which are used to monitor financial markets
and systemic risk, are based on historical data and/or estimates
of fundamental value.
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