
ORIGINAL RESEARCH
published: 15 July 2020

doi: 10.3389/fphy.2020.00245

Frontiers in Physics | www.frontiersin.org 1 July 2020 | Volume 8 | Article 245

Edited by:

Haiyong Gan,

National Institute of Metrology, China

Reviewed by:

Weien Lai,

Hefei University of Technology, China

Furi Ling,

Huazhong University of Science and

Technology, China

Shuyun Teng,

Shandong Normal University, China

*Correspondence:

Jiu-Sheng Li

jshli@126.com

Specialty section:

This article was submitted to

Optics and Photonics,

a section of the journal

Frontiers in Physics

Received: 02 May 2020

Accepted: 03 June 2020

Published: 15 July 2020

Citation:

Sun J-Z and Li J-S (2020) Broadband

Adjustable Terahertz Absorption in

Series Asymmetric Oval-Shaped

Graphene Pattern. Front. Phys. 8:245.

doi: 10.3389/fphy.2020.00245

Broadband Adjustable Terahertz
Absorption in Series Asymmetric
Oval-Shaped Graphene Pattern
Jian-Zhong Sun 1 and Jiu-Sheng Li 1,2*

1Centre for THz Research, China Jiliang University, Hangzhou, China, 2 Key Laboratory of Electromagnetic Wave Information

Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou,

China

We propose a broadband adjustable graphene absorber in terahertz regime. A prototype

is designed to verify the terahertz absorption characteristics by a periodic array layer

of series asymmetric oval-shaped graphene patterns on polyimide and bottom layer of

metal plate. The absorber with 92% absorption and the bandwidth ranging from 3.39

to 5.96 THz is achieved. By changing the Fermi level of graphene, the bandwidth and

absorption can be flexibly adjusted. The absorption is more than 92% in the range

of 0∼40◦ incident angle. Using these characteristics, the simple absorber has broad

application prospects in the fields of filter and switch in terahertz region.
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INTRODUCTION

With the rapid development of terahertz technology in the potential application prospects fields
of imaging, security inspection, wireless communication, and sensing [1, 2], high efficient and
convenient terahertz devices becomes more urgent to meet these demands. As one of the key
devices of terahertz system, terahertz absorber attracts the attention of many researchers [3–
9]. However, the narrow bandwidth of terahertz wave absorber seriously limits its practicality.
Different schemes have been proposed to achieve the broadband response such as complex metallic
shape [10] or a multilayer structure [11, 12]. These cases face constraints such as complex structure,
difficult fabrication, angle dependence, and so on [13–15]. So, a broadband tunable terahertz
absorber with actively control bandwidth is the goal pursued by many researchers and is practically
useful. Fortunately, we know that a structure width gradient change is conducive to broadening
the absorption band. In this work, a terahertz wave absorber consisting of a series asymmetric
oval-shaped graphene patterns array layer, polymer layer and metal bottom plate is proposed. The
structure parameters and graphene Fermi level Ef having influence on the absorption performance
such as working bandwidth and absorbance, was numerically investigated. The magnetic dipole
oscillation in the graphene pattern array enhances the absorbance of the proposed structure.
The absorption performance was optimized by adjusting the size of the asymmetric oval-shaped
graphene pattern and the Fermi level of graphene. The simulation results show the absorber
provides above 92% absorption with broadband absorption bandwidth from 3.39 to 5.96 THz.
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FIGURE 1 | (A) Three-dimensional schematic diagram of the proposed absorber, (B) Top view and geometry of the unit-cell.

FIGURE 2 | (A) Absorption (A), transmittance (T ), and reflectance (R) of the proposed terahertz absorber, (B) real and imaginary parts of the normalized input

impedance.

FIGURE 3 | Absorption performance of the absorber with different Fermi levels. (A) Absorption performance of the absorber with different Fermi levels. (B) Absorption

spectrum with various Fermi levels.
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FIGURE 4 | Absorption performance of the absorber with (A) different semi-major axis (B) different semi-minor axis (C) different dielectric layer thicknesses.

DEVICE STRUCTURE

The schematic of the designed broadband adjustable terahertz
absorber is shown in Figure 1. The proposed absorber is
composed of series asymmetric oval-shaped graphene structure
and metal plate substrate, separated by a polyimide layer. The
graphene pattern is formed by the series two asymmetric oval-
shaped graphene patterns, and the dielectric layer is polyimide
with a dielectric constant ε = 3.5. Gold is used as the bottom
metal plate with a conductivity of σ gold = 4.56 × 107 S/m. The

geometrical parameters of the proposed absorber are designed
as a = 5.2µm, b = 3.5µm in the x-y plane and the thickness
of the graphene sheet is set to 1 nm for easy simulation. The
graphene can be fabricated by large-scale transfer techniques, and
then the electron beam lithography can be employed to produce
oval-shaped graphene patterns. To investigate the performance
of the designed terahertz wave absorber, CST software is used
to calculate the absorption responses. Floquet periodic boundary
conditions are used in x-y plane and TE-polarization mode
normal incident is from the top.
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FIGURE 5 | Electric field distribution at (a) f = 4 THz (b) f = 6 THz.

FIGURE 6 | x-z plane and 4 THz, (a,b) are magnetic induction lines and magnetic field diagrams at y = 0µm, (c,d) are magnetic induction lines and magnetic field

diagrams at y = 10.4µm, (e,f) are magnetic induction lines and magnetic fields at y = 14.6µm, (g,h) are magnetic induction lines and magnetic fields at y = 25µm,

respectively.

NUMERICAL CALCULATION AND
ANALYSIS

Figure 2A shows the absorption, transmittance, reflectance
spectra in TE-polarized mode under normal incidence.

Absorptance can be calculated according to the equation of A =

1-T-R, where T is transmittance T = |S21|
2 and R is reflectance

R = |S11|
2, which can be obtained from simulated S-parameters.

From the figure, one can see that the over 90% absorption is from
3.39 to 5.96 THz. Figure 3B displays the real and imaginary parts
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FIGURE 7 | x-z plane and f = 6 THz, (a,b) are magnetic induction lines and magnetic field diagrams at y = 0µm, (c,d) are magnetic induction line and magnetic field

diagrams at y = 14.6µm, respectively, (e,f) are magnetic induction lines and magnetic field diagrams at y = 10.4µm, (g,h) are magnetic induction lines and magnetic

field diagrams at y = 25µm, respectively.

of the normalized input impedance of the proposed absorber.
When the imaginary part of the normalized input impedance of
the proposed absorber is zero, the maximum absorption of the
absorber can be obtained. At this time, the effective impedance
of the absorber matches with the free space impedance (That is
to say, the absorber is under impedance matching condition).
The effective impedance Z (The impedance is normalized to
free space impedance) of the absorber is obtained through the
reflection and transmission coefficients and their corresponding
phase relationships. The black solid and red solid lines represent
the real part and imaginary part of the normalized impedance,
respectively. From Figure 2B, one can observed that the real part
of the normalized impedance Re(Z) is near 1 and the imaginary
part of the normalized impedance Im(Z) is near 0 from 3.39
to 5.96 THz. It indicates that the effective impedance Z of the
absorber basically matches the impedance of free space within

the bandwidth. The proposed absorber reaches above 92%
absorption between 3.39 and 5.96 THz.

Figure 3 shows the absorption spectra under different
graphene Fermi level Ef . When Fermi level Ef is lower than
0.5 eV, the maximum absorption of the proposed structure is
<85%. The average absorption gradually increases when the
Fermi level increases to 0.7 eV because of the change of the
conductivity. The average absorption performance increases until
Ef = 0.7 eV, and it reaches the maximum value of above
95.0%. When Fermi level Ef exceeds 0.7 eV, the absorption effect
begins to weaken and average absorption moves downwards.
In addition, the bandwidth of the proposed absorber can be
tunable by the chemical potentials correspondingly. To study
the influence of the structural parameters changes on absorption
performance, we systematically change structural parameters
(including a, b, and h) to calculate the absorption spectra of the
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FIGURE 8 | Absorption spectra with different (A) azimuth angles (B) incidence angles.

TABLE 1 | Performance comparison of the proposed absorber with some reported absorber.

References Bandwidth >90% Graphene type Polarization

Biabanifard et al. [8] 2.2 THz Multilayer graphene disks and ribbons Sensitive

Deng et al. [16] 8.7 THz Graphene pattern and gold pattern Insensitive

Our results 2.57 THz Oval-shaped graphene Sensitive

proposed absorber shown in Figure 4. As shown in Figure 4A,
with the increase of the semi-major axis a, the absorption peak at
5.0 THz gradually decreases to 88%. When the semi-major axis a
equals 5.2µm, the absorption is above 92% at the frequency range
from 3.39 to 5.96 THz. As can be seen from Figure 4B, when the
parameter b varies from 2.5 to 4.5µm, the average absorption
has a significant weakening trend. In order to obtain a perfect
absorber with above 92% absorption and broad bandwidth from
3.39 to 5.96 THz, we chose the parameter of the semi-minor
axis b = 3.5µm. As depicted in Figure 4C, it is found that as
the dielectric layer thickness (h) increases from 8.8 to 9.2µm,
the absorption bandwidth exhibits slightly redshift and average
absorption has a slightly weakening trend. When h= 9.0µm, the
absorptance is infinitely close to 100% at f = 6 THz.

Figures 5a,b illustrate the electric field distribution of the
absorber under normal incidence of TE-polarization mode
terahertz wave at the resonance frequencies of f = 4 THz and
f = 6 THz, respectively. It can be observed that the electric
field energy is concentrated on both ends of the long axis of
the oval-shaped graphene pattern, which means surface plasmon
resonances are strongly bounded to both ends of the long axis
of the patterned graphene. Figures 6a–h show the magnetic
induction lines and magnetic fields of the proposed absorber
at f = 4 THz in x-z plane at y = 0µm, y = 10.4µm, y =

14.6µm, and y = 25µm, respectively. From Figures 6a,g, y =

0µm and y = 25µm, one can find that the magnetic induction
lines of the graphene layer are symmetrical. Corresponding

magnetic field strength diagrams of y = 0 and y = 25µm
are shown in Figures 6b,h. It indicates that the oval-shaped
graphene layer generates magnetic resonance and forms two
magnetic dipoles, which promotes the terahertz wave absorption.
Figures 6c,e depicts the magnetic induction lines of y = 10.4
and y= 14.6µm, respectively. The corresponding magnetic field
diagrams are illustrated in Figures 6d,f, respectively. At y = 10.4
and y = 14.6µm, the oval-shaped graphene layer forms a single
magnetic dipole and promotes the terahertz wave absorption.
Themagnetic resonance occurs at the long axis of the oval-shaped
graphene pattern, and the energy is basically concentrated on the
long axis of the oval-shaped graphene pattern.

The magnetic induction lines and magnetic field diagrams
of the absorber in x-z plane at y = 0, y = 10.4, y = 14.6,
and y = 25µm at a frequency of f = 6 THz are shown in
Figure 7. It can be observed that, compared with the Figure 6

(f = 4 THz), the magnetic field strength and magnetic loop
position are different. At f = 6 THz, the top graphene pattern
has a magnetic resonance but a corresponding magnetic loop is
formed in the dielectric layer. Furthermore, the magnetic field
strength is weaker than that of f = 4 THz. The absorption spectra
of TE polarization mode, operating frequency and incidence
angle are plotted in Figures 8A,B. One can see that the absorber
has a relatively stable absorptivity (above 92%) with absorption
bandwidth from 3.39 to 5.96 THz in the incident angle range of
0–40◦. Table 1 shows the performances of our absorber and some
reported absorber.
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CONCLUSION

To sum up, we have numerically studied a broadband tunable
absorber based on series asymmetric oval-shaped graphene
array. The simulated results indicate that the proposed
structure provides a broadband absorption (3.39∼5.96 THz) with
absorbance higher than 92%. Furthermore, one sees that both
the absorption bandwidth and the absorbance of the proposed
absorber can be dynamically controlled by changing the Fermi
level of the series asymmetric oval-shaped graphene array. The
proposed absorber may have potential applications such as filter
and switch in terahertz range.
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