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A hallmark of non-perturbative theories of quantum gravity is the absence of a fixed

background geometry, and therefore the absence in a Planckian regime of any notion

of length or scale that is defined a priori. This has potentially far-reaching consequences

for the application of renormalization group methods à la Wilson, which rely on these

notions in a crucial way. We review the status quo of attempts in the Causal Dynamical

Triangulations (CDT) approach to quantum gravity to find an ultraviolet fixed point

associated with the second-order phase transitions observed in the lattice theory.

Measurements of the only invariant correlator currently accessible, that of the total

spatial three-volume, has not produced any evidence of such a fixed point. A possible

explanation for this result is our incomplete and perhaps naïve understanding of what

constitutes an appropriate notion of (quantum) length near the Planck scale.

Keywords: quantum gravity, phase transitions, causal dynamical triangulations, lattice field theory, asymptotic

safety

1. INTRODUCTION

TheWilsonian concept of renormalization has been of immense importance for our understanding
of quantum field theory and its relation to critical phenomena in statistical mechanics and
condensed matter physics. In the context of lattice field theory it has been the guiding principle
for approaching a continuum quantum field theory, starting out with a lattice regularization of the
theory. Usually we view the ultraviolet (UV) regularization of the quantum field theory as a step on
the way to defining the theory. For a given theory there will in general be many ways to introduce
such a regularization, some more convenient than others, depending on the calculations one wants
to perform. The lattice regularization is usually not the most convenient regularization if one wants
to perform analytic calculations, but for some theories it allows one to perform non-perturbative
calculations, for instance in the form of Monte Carlo (MC) simulations of the field theories in
question. It also allows one to address in a non-perturbative way the question of whether or not a
given quantum field theory exists, the simplest example being a φ4-theory in four dimensions. This
is a perturbatively renormalizable quantum field theory, so one can fix the physical mass and the
physical coupling constant of the theory, and to any finite order in the coupling constant calculate
the correlation functions. However, this does not imply that the theory really exists in the limit
where the UV cut-off is taken to zero, since the perturbative expansion is only an asymptotic
expansion. The lattice field formulation of the φ4-theory provides us with a tool to go beyond
perturbation theory, and (as will be discussed below) the result is that the φ4-quantum field theory
does not exist in four spacetime dimensions. In a similar vain, lattice field theory seems to confirm
the existence of the quantum version of non-Abelian gauge theories.
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The lattice field theories address the question of existence
of certain quantum field theories using the Wilsonian picture:
if the continuum quantum field theory exists as a limit of the
lattice field theory when the cut-off is removed (the lattice
spacing goes to zero), there exists a UV fixed point of the
renormalization group. One can approach such a fixed point
in the following way: choose observables which define the
physical coupling constants of the theory and measure them
for a certain choice of the bare coupling constants used to
define the lattice theory. Then change the lattice spacing by
a factor 1/2 and find the new bare coupling constants which
leave the observables unchanged1. Continue halving the lattice
spacing and in this way create a flow of the bare coupling
constants. The bare coupling constants will then flow to a UV
fixed point (if it exists).

The next question is which observables to choose. In the case
of a φ4-theory this is simple (and we will make a choice below).
In the case of non-Abelian gauge theories it is already somewhat
more difficult, since observables should be gauge-invariant, while
the theory is usually not formulated in terms of gauge-invariant
variables. In MC simulations of the quantum field theory it is
important to choose such gauge-invariant observables, since in
quantum field theories the quantum fluctuations are dominated
by UV fluctuations. If one uses the path integral (as one does
in MC simulations), it implies that a typical field configuration
is almost nothing but UV fluctuations. This is true also for
scalar theories like a φ4-theory, but since the field variables in
gauge theories are not gauge-invariant, most of these fluctuations
are even more unphysical “noise.” However, this noise will
cancel when calculating expectation values of gauge-invariant
observables. If we next move to quantum theories of geometry,
in particular attempts to quantize General Relativity (GR), the
choice of “gauge-invariant” observables becomes even more
tricky. Gauge invariance in this context is usually replaced by
diffeomorphism invariance, and there are few invariant local
observables. However, it is even more important that the concept
of “distance” now becomes field-dependent. For a given geometry
the distance between two points depends on the geometry.
Therefore, if we integrate over geometries in the path integral,
it becomes unclear how to think about a quantum correlation
between fields as function of a distance. In particular, since
distance, or scale, is paramount in the Wilsonian theory of
critical phenomena, a new challenge arises in this program
when we quantize geometries. This is what we want to discuss
in this article.

In section 2, we review the standard Wilsonian picture for a
φ4-theory in four flat spacetime dimensions, emphasizing how to
find a UV fixed point in the bare coupling constant space of the
theory. In section 3, we discuss how to use the Wilsonian picture
for the theory of quantum geometry denoted Causal Dynamical

1Using a description like this we assume we are so close to a continuum limit

that we can use a continuum language for the observables, rather than referring

explicitly to the lattice. In addition, note that a procedure like this will not

leave all observables unchanged, but only the physical coupling constants. One

could follow another renormalization procedure, where the action contained “all

possible coupling constants.” In this space one could follow a path which leaves all

observables invariant.

Triangulations (CDT), which has been suggested as a theory
of quantum gravity. Section 4 discusses some examples where
“quantum distances” appear in correlation functions, whether
these distances are observables and to what extent the “fractal
structure” of quantum geometry can be observed. Finally, section
5 contains a discussion.

2. APPROACHING A UV FIXED POINT

Let us consider a φ4-field theory on a four-dimensional
hypercubic lattice with periodic boundary conditions. We
assume that the lattice has L1, L2, L3, and L4 lattice links in the
four directions, and that Li≫1. The total number of lattice points
is N = L1 · · · L4. If the lattice spacing is a0, the corresponding
physical volume is V = Na40. Let n = (n1, . . . , n4) denote
the integer lattice coordinates of the vertices. The corresponding
spacetime coordinates will be xn = a0n. A scalar field φ0 lives on
the lattice vertices and we write φ0(n) or φ0(xn). The lattice field
theory action is

S[φ0,m0, λ0; a0] =
∑

n

a40

(1

2

4
∑

i=1

(φ0(n+ î)−φ0(n))
2

a20
+ 1

2
m2

0φ
2
0(n)+

1

4!
λ0φ

4
0(n)

)

,

(1)

where î denotes a unit vector in direction i. The action is
characterized by two so-called “bare,” dimensionless coupling
constantsm0a0 and λ0. A correlation function is defined as

〈φ0(n1) · · ·φ0(nk)〉 =
∫
∏

n dφ0(n) φ0(n1) · · ·φ0(nk)e
−S[φ0 ,m0 ,λ0;a0]

∫
∏

n dφ0(n)e−S[φ0 ,m0 ,λ0;a0] .

(2)

We obtain the same action if we simultaneously change a0 → a,
set a0φ0 = aφ, m0a0 = ma and leave λ0 unchanged, and we
have trivially

ak0〈φ0(n1) · · ·φ0(nk)〉a0 ,m0 ,λ0 = ak〈φ(n1) · · ·φ(nk)〉a,m,λ0 . (3)

In the theory we also have renormalized coupling constants mR

and λR, which are determined by some explicit prescription,
allowing us to “measure” them. For instance, mR can be defined
from the exponential fall-off of the two-point function, while
λR can be defined as the connected four-point function at
zero momentum. We thus have mRa0 = 1/ξ , where ξ is the
dimensionless correlation length of the two-point φ-correlator,
measured in units of the lattice spacing. Similarly, there is an
explicit definition of λR. Let us state how to measure these
quantities on the lattice since we will use the same techniques in
the case of gravity. We choose one of the lattice axes as the “time”
direction and define the spatial average

80(n
t) :=

∑

En
φ0(En, nt), En = (nx, ny, nz), (4)
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and we have

〈80(n
t
1)80(n

t
2)〉c = const. e−|nt1−nt2|/ξ + · · · , (5)

where the subscript c in 〈·〉c is the connected part, and the dots
indicate terms falling off faster at large time differences. The
exponential decay for large |nt1−nt2| determines the physical mass
mR = 1/(a0ξ ). Similarly, we can define the susceptibilities

χk :=
∑

nt1 ,...,n
t
k−1

〈80(n
t
1) · · ·80(n

t
k−1)80(0)〉c (6)

and the second moment

µ2 :=
∑

nt

(nt)2〈80(n
t)80(0)〉c. (7)

One then obtains2 (in the case 〈φ0(n)〉 = 0 where there is no
symmetry breaking)

λR = −16χ4

µ2
2

. (8)

a0 is a fictitious parameter in the above formulation in the
sense that if we make the above-mentioned change from
(a0,φ0,m0, λ0) to (a,φ,m, λ0) we obtain the same ξ and the same
λR, whilemR changes in a trivial way since ξ is unchanged.

Let us choose a value for λR. For given values (m0a0, λ0) of the
bare coupling constants we obtain a value λR(m0a0, λ0). Among
these there will be sets (m0(s)a0, λ0(s)), parameterized by some
parameter s, such that λR(m0(s)a0, λ0(s)) = λR. They form a
curve in the (m0a0, λ0)-coupling constant space. Note that this
curve is unchanged if we change a0 → a andm0 → m = m0a0/a
and consider the (ma, λ0)-coupling constant plane.Moving along
this curve, the correlation length ξ (s) will change, so we can
exchange our arbitrarily chosen parameter s with ξ . If we reach
a point along the curve where ξ = ∞, we have reached a second-
order phase transition point in the (m0a0, λ0)-coupling constant
plane. This point can now serve as a UV fixed point for the φ4-
theory, since we are free to insist that mR is constant along the
curve provided that we redefine a such that mRa(ξ ) = 1/ξ . This
will define a(ξ ) as a function of ξ , and – since we are free to
define the lattice theory with a(ξ ) instead of a0 – if we at the
same time make a trivial rescaling of m0 to m(ξ ) = m0a0/a(ξ ),
we will in this redefined theory obtain the same ξ and λR. Thus,
it can be viewed as a rescaling of the lattice to smaller a while
keeping the continuum physics (i.e., mR and λR) constant. In
particular, the correlation length in real spacetime is kept fixed
since |x|corr ≡ ξa(ξ ) = 1/mR. In the limit ξ → ∞ the lattice
spacing goes to zero and we have our continuum quantum field
theory with the cut-off removed.

The approach to this assumed UV fixed point is governed by
the so-called β-function3, which relates the change in λ0 to the

2For a detailed discussion see the book [1].
3A priori the β-function is a function of λ0 andm0a0, but one can show that close

to the fixed point one can ignore them0a0-dependence.

change in a(ξ ) = 1/(mRξ ) as we move along the trajectory of
constantmR, λR,

− a
dλ0

da

∣

∣

∣

mR ,λR
= ξ

dλ0

dξ

∣

∣

∣

mR ,λR
= β(λ0). (9)

Denote the fixed point by λ∗0 , and assume4 that λ∗0 6= 0. Since
λ0(ξ ) stops changing when ξ → ∞, we have β(λ∗0) = 0 and
expanding the β-function to first order one finds

λ0(ξ ) = λ∗0 + const. ξβ ′(λ∗0), β ′(λ0) =
dβ

dλ0
. (10)

It is seen from (10) that the existence of a UV fixed point implies
that β ′(λ∗0) < 0.

In a theory like φ4 in four dimensions it is not clear that there
exists a UV fixed point. The non-existence of such a fixed point
will show up in the following way: no matter which value of λR
we choose, following the curve of constant λR in the (m0a0, λ0)-
coupling constant plane, the correlation length ξ will never
diverge along the curve. This implies that there is no continuum
limit of the theory with a finite value of the renormalized coupling
constant. This seems to be the case for the φ4-theory in four
dimensions [2]. It does not mean that there are no points in
the (m0a0, λ0)-coupling constant plane with infinite correlation
length. In fact, there is an entire curve of such points where the
lattice model undergoes a second-order phase transition between
the broken and unbroken symmetry5 φ → −φ. However, these
points are not related to a UV fixed point, but are related to an
infrared fixed point of the theory. They cannot be reached on a
path of constant λR physics and they cannot be used to define an
interacting quantum φ4-field theory in the limit where the lattice
spacing goes to zero.

It will be convenient for us to reformulate the above coupling
constant flow in terms of so-called finite-size scaling. For a
regular hypercubic lattice in d dimensions with lattice spacing a,
the physical volume is Vd =Nda

d, where Nd is the total number
of hypercubes. To make sure that Vd can be viewed as constant
along a trajectory of the kind described above, with mR and λR

kept fixed, we keep the ratio between the linear size L = N
1/d
d

of the lattice and the correlation length ξ fixed. In terms of the
renormalized mass mR and the lattice spacing a(ξ ), the ratio can
also be written as

ξd

Nd
= 1

(a(ξ )mR)dNd

= 1

md
RVd

. (11)

Thus, if we are moving along a trajectory of constant mR and
λR in the bare (m0a0, λ0)-coupling constant plane and change
Nd according to (11), the finite continuum volume stays fixed.
Assuming that there is a UV fixed point, such that a(ξ ) →
0, we see that Nd goes to infinity even if Vd stays finite,
and furthermore, again from (11), that the dependence on the

4If λ∗0 = 0, we have a so-called Gaussian fixed point and the formula (10) has to be

modified slightly.
5In the parametrization chosen here, symmetry breaking can occur when we also

allow negative values of the bare coupling constantm2
0 in (1).
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correlation length ξ in (10) can be substituted by a dependence

on the linear size N
1/d
d

in lattice units of the spacetime, leading to

λ0(Nd) = λ∗0 + const. N
β ′(λ∗0)/d
d

. (12)

As we saw above, the absence of a UV fixed point could be
deduced by the absence of a divergent correlation length along
a trajectory of constant physics in the (m0a0, λ0)-plane (i.e.,
a trajectory with constant mR, λR). In the finite-size scaling
scenario this is restated asNd not going to infinity along any such
curve of constant physics.

We have outlined in this section in some detail how to
define and follow lines of constant physics in the φ4-lattice
scalar field theory, because we want to apply the same technique
to understand the UV behavior of lattice theories of quantum
gravity. The most important lesson is that one is automatically
led to UV fixed points (if they exist), if one follows trajectories of
constant continuum physics.

3. CDT

3.1. The Lattice Gravity Program
Causal Dynamical Triangulations (CDT) represent an attempt
to formulate a lattice theory of quantum gravity (for reviews
see [3, 4]). The spirit is precisely that of lattice field theory: one
has a continuum field theory with a classical action, and defines
formally a quantum theory via the path integral. However, the
formal path integral needs to be regularized and one way to do
this is to use a lattice regularization, where the length of the
lattice links provides the UV cut-off. The idea is then to search
for a UV fixed point where the lattice spacing a can be taken to
zero while continuum physics is kept fixed, following the same
philosophy as outlined above for the φ4-theory. Immediately
a number of issues arise. (1) Given the continuum, classical
theory, what is a good lattice regularization of this theory?
(2) The classical Einstein-Hilbert action is perturbatively non-
renormalizable. The situation is thus somewhat different from the
φ4-theory in four dimensions. The latter exists as a perturbative
theory in mR, λR, the mass and the coupling constant, and it
makes sense to ask whether there exists a non-perturbatively
defined quantum field theory, independent of a cut-off for given
physical values mR, λR. For a classical action which is non-
renormalizable it is not clear that the correct way to search for
a UV-complete theory is to keep a lattice version of the classical
action in the lattice path integral and then search for UV fixed
points. (3) What are the physical observables in quantum gravity,
and how does one stay on a path of constant physics when
changing the lattice spacing in the search for a UV fixed point?
Let us discuss these points in turn.

(1) The so-called Regge prescription [5] provides a way to
assign local curvature to piecewise linear geometries defined
by a (d-dimensional) triangulation and the resulting Regge
action is a version of the Einstein-Hilbert action to be
used for piecewise linear geometries. A convenient feature
of the Regge formalism is its coordinate independence.

The geometry of the piecewise linear manifold defined by
a triangulation is entirely determined by the lengths of
the links and how the d-dimensional simplices are glued
together. Regge originally wanted to use this prescription
to approximate a given classical geometry with arbitrary
precision without using coordinates. In the path integral
we will use it in a different way. We restrict ourselves to
triangulations where all links have the same length a, and
then sum in the path integral over all such triangulations of
a given topology, using as our lattice action the Regge action
for the triangulations. In this way, a becomes a UV cut-off
and the hope is that this class of piecewise linear geometries
can be used to approximate any geometry which would be
used in the continuum path integral over geometries6.

A good analog is the representation of the propagator
G(x, y) of a free particle in Euclidean space as the path
integral over all paths in Rd from x to y, with the action being
the length of the path. This integral can be approximated
by the sum over all paths on a hypercubic lattice with
lattice links of length a. This set of paths is dense in the
set of all continuous paths when the distances between
paths are measured with the same metric used to define
the Wiener measure for the set of continuum paths from
x to y (see [6] for a detailed discussion with the geometric
perspective relevant here). We call the way of performing the
path integral over geometries7 described above Dynamical
Triangulations (DT) [7–9]. The “proof of principle” that
this method works is two-dimensional quantum gravity.
Seen from a classical gravitational perspective it is a trivial
theory since the Einstein action in two dimensions is just a
topological invariant. For a fixed topology the Einstein term
does not contribute to the path integral, which implies that
the action reduces to the cosmological constant times the
spacetime volume. Thus, if we also fix the spacetime volume
in the path integral, the action is just a constant and the path
integral becomes a sum over all geometries of fixed topology
and fixed spacetime volume with constant weight. This
integral is still highly non-trivial and “maximally quantum”
in the sense that whatever the action is, in the limit h̄ → ∞
the weight of a configuration in the path integral will be 1.
The integral can be performed in the continuum, giving rise
to Liouville quantum gravity [10–13]. At the same time one
can also sum over the triangulations analytically [14]. One
can then verify that in the triangulated case one recovers the
continuum result when the lattice spacing vanishes, a → 0.
It is also important to note that the continuum limit of this

6The continuum path integral over four-dimensional geometries has not yet

been constructed in any mathematically rigorous way, but one expects that the

geometries will includemany “wild” geometries which are continuous but nowhere

differentiable. In this sense the set of piecewise geometries proposed is a set of

“nice” geometries.
7It should be emphasized that it is a sum over geometries, not a sum over

metrics gij defining a geometry. In a gauge theory this would correspond to a

sum over equivalence classes of gauge fields, something one has only been able

to dream about.
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lattice theory is fully diffeomorphism-invariant in the sense
that it is identical with a diffeomorphism-invariant theory8.

While DT works beautifully in two-dimensional
spacetime, the generalizations to higher dimensions [15–17]
have not been successful yet. The major obstacle has been
the nature of the phase diagram of the lattice theory. The
goal was to find a UV fixed point where one can define a
continuum theory when removing the cut-off. In our usual
understanding this requires a second- or higher-order phase
transition. One has found phase transitions in the bare
coupling constants, but so far they have been first-order
transitions only [18, 19] (see [19–21] for recent attempts to
avoid the first-order transitions). This led to the suggestion
that one should use a somewhat different ensemble of
triangulations, denoted Causal Dynamical Triangulations
(CDT) [22–26]. The difference with the DT ensemble is that
one restricts the triangulations to have a global time foliation,
which can be viewed as a lattice version of the requirement
of global hyperbolicity in classical General Relativity. While
the DT formalism is inherently Euclidean, one can view
the CDT triangulations as originating from triangulations
of geometries with Lorentzian signature. The construction
is such that one can analytically continue each individual
piecewise linear triangulation to Euclidean signature. In
addition, the associated Regge action also transforms as
one would naïvely expect, namely, as iS[LG] = −S[EG],
where “LG” is the Lorentzian geometry and “EG” the rotated
Euclidean geometry. The path integral is then performed
over these Euclidean piecewise linear geometries. It turns
out that the phase diagram of CDT is highly non-trivial
and possesses phase transition lines of both first and second
order [27–33]. We will provide some details below. It
should be emphasized, again with the φ4-example in mind,
that the mere existence of a second-order line of phase
transitions does not ensure that there is a UV fixed point in
the theory.

(2) There are at least three ways to try to resolve the problem
of the non-renormalizability of the Einstein-Hilbert action.
One way is to view the theory as an approximation to a
larger theory which is renormalizable. The Standard Model
of Particle Physics is the prime example of how this works.
Phenomenologically, the weak interactions were described
by a four-fermion interaction, which is non-renormalizable.
However, this is a low-energy effective action, which in the
Standard Model is resolved into a gauge theory with massive
vector particles (the W and Z particles). Thus, new degrees
of freedom were introduced, which made the electroweak
theory renormalizable. Similarly, the effective low-energy
theory of strong interactions, involvingmesons and hadrons,
was not renormalizable, and again the introduction of
new degrees of freedom (the quarks and gluons) made
the theory renormalizable. In the case of gravity, string
theory represents such an extension of degrees of freedom,

8No coordinates were introduced at any point in the lattice theory, so agreement

with a diffeomorphism-invariant theory means that all coordinate-invariant

quantities which can be calculated agree.

but one which is much more drastic than the extensions
represented by the Standard Model. And importantly, while
the extension by the Standard Model was dictated by
experiments, no string-theoretic extension of gravity has yet
been forced upon us by experiments.

Another way to address the non-renormalizability of
the Einstein-Hilbert action is to modify the way we view
the quantum theory in the case of gravity. Loop quantum
gravity represents such a route. There are still a number
of issues that need to be addressed in this approach, in
particular, how to obtain ordinary GR in the limit where
h̄ → 0. We will not discuss this approach any further. The
lattice regularization of gravity fits naturally into the third
framework, called asymptotic safety [34]. Here one relies on
the existence of a non-perturbative UV fixed point in some
quantum field theory, whose bare Lagrangian can contain
many other terms in addition to the Einstein-Hilbert term.
The UV properties of the theory are defined by this fixed
point, which one should be able to approach in such a way
that the lattice spacing scales to zero, while keeping a finite
number of observables fixed and only adjusting a similar
number of bare coupling constants. This is highly non-
trivial since using naïve perturbation theory will create an
infinite set of new counterterms which cannot be ignored.
In the CDT theory we will look for such UV fixed points
by enlarging the Einstein-Hilbert action slightly. It would
perhaps be preferable to work with amore general action, but
there are significant numerical limitations which prevent us
from exploring this in a systematic way. On the other hand,
invoking Occam’s razor, CDT quantum gravity in its present
form is a perfectly viable candidate theory of quantum
gravity, without any compelling reasons to generalize it. The
use of the renormalization group in the continuum provides
strong evidence for the existence of such a UV fixed point
[35–39]. However, some truncations are used to obtain these
results, whose validity is difficult to assess quantitatively. This
provides a strong motivation to search for such a fixed point
in lattice quantum gravity, which is an independent way to
define quantum gravity non-perturbatively.

(3) One of the steps in the search for a UV fixed point is
to choose a suitable set of physical observables to be kept
fixed along the path to the putative UV fixed point. In the
case of pure gravity this becomes non-trivial. For the φ4-
theory, one could choose to keep the coupling constants
mR and λR fixed, because the correlators of the scalar
field can be deduced from observations, and the coupling
constants can be expressed in terms of these correlators,
as mentioned earlier. In a theory of quantum gravity, the
concept of a correlator as a function of the distance between
two spacetime points is problematic, since the distance is
itself a function of the geometry we are integrating over in
the path integral. Thus, the concept of a correlation length
becomes non-trivial, and the whole Wilsonian approach to
renormalization—based on having a divergent correlation
length on the lattice when one approaches the UV fixed
point—needs to be clarified. Even the relation between the
UV cut-off (the length a of a lattice link) and any actual
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physically measurable length is not clear a priori. We will
return to this in more detail in section 4.

3.2. Phase Diagram for CDT
In DT and CDT the Regge action for a given piecewise linear
geometry appearing in the path integral becomes very simple.
In dimensionless units, where the lattice spacing a is set to 1,
the DT Regge action for a four-dimensional triangulation T
consisting of N4 four-simplices, glued together to form a four-
dimensional closed manifold in such a way that it contains N0

vertices, is given by9

S[T] = −κ0N0(T)+ κ4N4(T). (13)

In this formula κ0 ∝ a2/G0, where G0 is the bare
gravitational coupling constant, while κ4 is related to the
cosmological coupling constant. Remarkably, no details of
the triangulation except for the global quantities N4 and
N0 appear in Equation (13). In the case of CDT we have
a foliation in one direction, which we denote the time
direction. The triangulation thus consists of a sequence of three-
dimensional time-slices, where each slice has the same fixed
three-dimensional topology (typically that of S3 or T3). Each of
the time-slices is triangulated, constructed by gluing together
equilateral tetrahedra. Neighboring time-slices are joined by
four-dimensional simplices, which come in two types: (4, 1)-
simplices with four vertices in one time-slice and one vertex
in one of the neighboring time-slices, and (3, 2)-simplices, with
three vertices in one time-slice and two vertices in one of
the neighboring time-slices. The Regge action is slightly more
complicated for such a triangulation (see [3] for a detailed
discussion) and has the form

S[T] = − (κ0 + 61)N0(T)+κ4
(

N4,1(T)+ N3,2(T)
)

+1N4,1(T),
(14)

where N4,1(T) and N3,2(T) denote the number of (4, 1)- and
(3, 2)-simplices in the triangulation T. For 1 = 0 one recovers
the simpler functional form (13). Here we will view 1 as an
additional coupling constant10, with no immediate continuum
interpretation. We thus have the lattice partition function

Z(κ0,1, κ4) =
∑

T

e−S[T], (15)

and the first task is to find the phase diagram in the coupling
constant space. We have three coupling constants, κ0,1, and
k4. k4 is multiplying the total number of four-simplices and
acts like a cosmological constant. In the numerical simulations
it is convenient to keep the volume N4 of spacetime fixed.
One can subsequently perform simulations with different total
volumes and study finite-size scaling as a function of the total
volume, as already mentioned in the discussion of the φ4-
model. Keeping N4 fixed implies that we have to fix k4. This

9We assume here that N0 and N4 are large, since the Euler characteristic of the

closed manifold in principle also appears in (13), but is ignored.
10Originally in CDT, 1 was associated with an asymmetry between the lengths of

lattice links in the time direction and in the other directions.

FIGURE 1 | The CDT phase diagram. Phase transition between phase CdS

and Cb is (most likely) second order, as is the transition between Cb and B,

while the transition between CdS and A is first order. The transition between

CdS and B is still under investigation, but preliminary results suggest a

first-order transition.

leaves us with two coupling constants, κ0 and 1. In Figure 1

we show the phase diagram of CDT, determined from Monte
Carlo simulations. The diagram is surprisingly complicated and
part of it is still under investigation. We refer to the original
articles for a careful discussion [27–32, 40]. What is important
for the present discussion is that in phase CdS in Figure 1, which
we denote the de Sitter-phase, geometries with continuum-like
properties are found. Thus, we would like to start with some bare
coupling constants (κ0,1) in that phase, calculate the values of
some physical observables, and then follow the path of constant
physics by changing the bare coupling constants until we reach a
second-order phase transition point on the phase transition line
separating the CdS and Cb phases. If it exists (which is not at all
granted), this point will then be a UV fixed point.

3.3. Observables and the UV Limit
What kind of observables can we use in CDT in search of
a UV fixed point? We have no fields we can associate with
lattice vertices or the centers of (sub)-simplices11. However,
we have geometric quantities, like the Regge curvature which
is assigned to two-dimensional sub-simplices in the four-
dimensional triangulation, and we also have the trivial field
“1(n),” which assigns the real number 1 to each four-simplex
and which turns out to be quite useful12. At the same time,
for any given geometry we can talk about geodesic distances
between vertices or (sub)-simplices. This can be transferred to
the quantum gravity theory in the path integral formalism, where

11One can in principle associate by hand a coordinate system to each simplex,

compute transition functions between the different coordinate systems and assign

metric tensor fields gij to each simplex, but this becomes very cumbersome and

has so far not been useful in a DT or CDT context. It would also re-introduce a

coordinate dependence which is clearly unwanted.
12As observed in [41], if one assumes the existence of a time foliation and expands

the general continuum effective action for quantum gravity to quadratic order,

one obtains naturally a projection on the constant mode when integrating certain

correlators over space, as we will do in (18) and as was done in (4) in flat spacetime.

In this sense one is naturally led to 1(n) for such integrated correlators.
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FIGURE 2 | The average spatial volume 〈N3(n
t )〉N4

as a result of MC measurements for N4 = 362.000. The best fit (19) yields indistinguishable curves at given plot

resolution. The bars indicate the average size of quantum fluctuations δN3(n
t ).

one can talk about correlations between some of these quantities
when they are separated by a certain geodesic distance. The
subtlety lies in the fact that this distance has to be fixed outside the
path integral, since we are integrating over geometries that define
what we mean by distance. We will return to this point in section
4. Here wewill use it in a specific CDT context where the situation
is simpler. CDT is special because we have a time foliation, which
on the lattice becomes an explicit time coordinate, namely, the
nt labeling of the various time-slices. In this sense the set-up
in CDT is precisely the lattice set-up one would use in proper-
time gauge in Hořava-Lifshitz gravity (HLG) [42, 43], although
the presence of a preferred time in CDT is not associated with a
breaking of four-dimensional diffeomorphism invariance (see [4]
for a related discussion).

Let us introduce the notation 〈O〉N4 for a quantity O. It
signifies the average of the quantity O, calculated using the
partition function (15), but for fixed discrete four-volume N4.
(In practice the “calculation” means that we are performing MC
simulations.) Now we can define the CDT version of (4) for the
trivial field φ(n) = 1:

N3(n
t) = 1

2

∑

En(nt)
(1+ 1). (16)

The notation is as follows: each time-slice is assigned a lattice
time nt . On this time-slice each three-simplex (tetrahedron)
is assigned a label En(nt) by analogy with the notation for the
hypercubic lattice in Equation (4). This notation is only symbolic,
since the three-dimensional triangulations are not regular and
different time-slices need not contain the same number of

three-simplices N3(n
t). Each of these three-simplices belongs

to precisely two (4,1)-simplices, whose trivial fields “1” are
represented in the sum in (16), and we divide by 2 to obtain
N3(n

t). On a regular lattice, this number is of course trivial
and fixed, but here it can vary, as mentioned, and becomes a
dynamical variable. We now calculate averages and correlation
functions like in (5), i.e., we calculate

〈N3(n
t)〉N4 (17)

and

〈N3(n
t
1)N3(n

t
2)〉c = 〈N3(n

t
1)N3(n

t
2)〉N4 − 〈N3(n

t
1)〉N4〈N3(n

t
2)〉N4 .
(18)

Figure 2 shows the average of N3(n
t) over many

configurations in the case where the topology of the spatial
slices is that of S3. It also shows the size of the fluctuations, i.e.,

it is a plot of 〈N3(n
t)〉 and δN3(n

t) =
√

〈N2
3 (n

t)〉c from (17) and

(18). In the region where 〈N3(n
t)〉 > 100, the curve in Figure 2

fits perfectly to the functional form

Ncl
3 (n

t) := 〈N3(n
t)〉 = N4

3

4ωN
1/4
4

cos3

(

nt

ωN
1/4
4

)

, (19)

where ω depends on κ0 and 1. Despite the fact that no
background geometry enters into the path integral, a background
volume profile appears to emerge. It is identical to a (Euclidean)
de Sitter universe volume profile and the configurations created
by theMC simulations can be viewed as quantum geometries that
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fluctuate around this background.While this is very interesting13,
our main question here is whether we can use (17) and (18)
to follow a path in the bare coupling constant space (κ0,1)
toward a UV fixed point in the same way as for the φ4-theory.
More precisely, we want to identify physical observables. Since
we can perform the MC simulations for various finite volumes
N4, we want to use finite-size scaling to identify a possible
UV fixed point.

A few starting remarks are in order. We have replaced a
real field φ(n) with 1(n) in (16) and (18). Thus we cannot
necessarily expect an exponential fall-off and a corresponding
correlation length ξ like in (5). However, in the solvable two-
dimensional models of both CDT and DT one does find an
exponential fall-off related to the field 1(n) [45, 46]. This fall-off
is related to the cosmological constants of the models, and the
“mass” goes to zero with a vanishing cosmological constant. In
four-dimensional gravity we expect massless gravitons (and thus
maybe no exponential fall-off), but as shown in [41], there are
terms in an effective continuum action of quantum gravity, which
can lead to such an exponential fall-off, e.g., the non-local term

ŴNL = − b2

96πG

∫

d4x
√
g R

1

12
g

R, (20)

where 1g is the scalar Laplacian defined in the geometry related
to the metric gij(x). Expanding the fluctuations to quadratic
order around flat spacetime, b will appear as a mass term. We
might observe such terms in case of toroidal topology, where the
fluctuations we observe seem to be around flat spacetime. If the
spatial topology is S3, the contributions from a term like (20)
would mix with contributions from the cosmological term via the
curvature of the background geometry used for S3. Thus, there
might be a number of sources for an exponential fall-off of the
(spatial) volume-volume correlator.

Equation (19) shows that for fixed κ0 and 1 we have a
well-defined scaling with N4. The same is true for the volume-
volume correlator, where the MC data (for spatial topology S3) is
consistent with the formula

〈N3(n
t
1)N3(n

t
2)〉c = γ 2N4F

( nt1

ωN
1/4
4

,
nt2

ωN
1/4
4

)

, (21)

√

〈N2
3 (n

t)〉c = γ
√

N4 G
( nt

ωN
1/4
4

)

. (22)

Here γ depends on κ0 and 1. F is some scaling function which
only depends slightly on κ0 and 1, and G =

√
F. Unfortunately,

we cannot really use Equation (21) to extract a correlation length
ξ independent of N4. If any ξ could be associated with the
correlator, it would already be “maximal,” i.e., of order ωN1/4,
the whole average time-length of the universe, without any fine-
tuning of the bare coupling constants. A condition like (11) then

13The dominant “semiclassical background geometries” seem to depend on the

topology of space (as do classical solutions of Einstein’s equations). If we change

the topology of space from S3 to T3, the dominant volume profile will be constant.

However, the phase diagram is unchanged [40, 44].

becomes empty14 and we thus have to find other measures to
keep continuum physics constant, when taking the lattice spacing
to zero.

Figure 2 is for a specific value of N4 and, as remarked above,
we already have a scaling for fixed values of the bare coupling
constants κ0 and 1. Equations (19), (21), and (22) are these
scaling formulas. We see that the height of 〈N3(n

t)〉 will grow as

N
3/4
4 , while the fluctuations only grow as N

1/2
4 . For fixed (κ0,1)

in phase CdS, the fluctuations will thus decrease relative to the
volume for N4 → ∞. The interpretation of this is that for fixed
κ0 and 1 the limit N4 → ∞ is one where V4 = N4a

4 goes to
infinity while a stays constant.

An attempt to replace the φ4-observables (mR, λR) with
geometrical observables is the following. The physical volume of
spacetime is V4 = N4a

4. Similarly, the volume of a time-slice is
V3(t) = 〈N3(n

t)〉a3, t = nta. Let us attempt to take a continuum
limit where V4 and V3(t) are finite, while N4 → ∞. Such a limit
would force a → 0, which is what we want. How do we ensure
that N4 → ∞ forces a → 0? For the scalar field we had the
correlation length ξ and mR which monitored a(ξ ). Here we will
insist that the relative size of V3(t) and the quantum fluctuations
δV3(t) stay unchanged if we scale N4 → ∞. This would be
expected if V3(t) can be interpreted as a physical continuum
three-volume in the limit N4 → ∞. Thus we require that (for
sufficiently large N4)

√

(〈N2
3 (n

t)〉c)N4

〈N3(nt)〉N4

= δV3(t)

V3(t)
, independent of N4. (23)

From (19) and (22) this requirement implies that

ω(κ0,1) γ (κ0,1) = const. N
1/4
4 . (24)

ω and γ are constants independent of N4 for fixed κ0 and 1.
Starting out with some (κ0,1) and a four-volume N4(0) in phase
CdS, and then increasing N4 will force us to change (κ0,1) if
(24) is to be fulfilled. Continuing to increase N4 will trace out a
path in the (κ0,1)-coupling constant plane, and the endpoint for
N4 → ∞ will be a candidate for a UV fixed point.

The coupling constant flow related to (24) was investigated
in [47] and the conclusion was like in the φ4-case. There seems
to be no starting point in phase CdS which leads to a curve
where N4 → ∞. In fact, while both ω and γ change somewhat
when changing the coupling constants, their product does not
change much. We conclude that this particular renormalization
group analysis has not led us to a UV fixed point candidate. But
even stronger, Equation (23) expresses the simple requirement
that if we have a continuum universe of a certain size, it will
have quantum fluctuations of a certain size. However, our model
does not meet this requirement when we relate discretized and
continuum variables in themost natural and simple-minded way.

There are a number of possible interpretations of this result.
Firstly, on the technical side, since the analysis in [47] was made,

14The situation might be different in the case of toroidal spatial topology, where

the time extent of the universe is not dynamically adjusted to the total four-volume

N4. This is presently under investigation.
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we have obtained a better understanding of the phase diagram.
At the time of the analysis in [47] phase CdS was assumed to
extend all the way down to phaseB. Currently themost promising
phase transition line for a higher-order transition is the CdS-
Cb transition line, and the endpoint of that transition line in
particular. We now have a chance to approach this fixed point
in an easier way using toroidal spatial topology. This is presently
being explored. Secondly, we may be thinking of the quantum
universe in the wrong way. In our reasoning we are applying
some standard logic related to fluctuations to a macroscopic
quantity like the three-volume of the universe. Maybe that is
wrong. On the other hand, we have tried to estimate the size of
the quantum universes by constructing the effective action for the
three-volume, and comparing with mini-superspace expressions.
The universes are estimated to have linear sizes not larger than
20 Planck lengths [3] for the N4-values we are using. Therefore,
a picture like that of Figure 2 should be correct: for a continuum
universe of this size we expect significant quantum fluctuations.
Thirdly, although we tried to emulate the flat-space quantum
field theoretic way of looking for UV fixed points, we have not
(yet) been able to identify a divergent correlation length, which
is a crucial ingredient of the Wilsonian approach to quantum
field theory and the renormalization group. It is the source of
universality and dictates the way one moves from the regularized
quantum field theory on the lattice to the continuum quantum
field theory. There seems no reason that there should not be
massless long-range excitations in a theory of gravity related to
a universe like ours. However, it is much less clear what kind
of excitations one would observe in a quantum universe of the
size of 20 Planck lengths, and to what extent one can talk about
scaling the lattice spacing a to zero compared to the Planck
length. The estimates referred to above led to a lattice spacing
of twice the Planck length. If these estimates can be trusted, our a
is far from sub-Planckian. However, it is possible that the global
conformal mode of the metric, whose effective behavior we are
studying, is not well-suited for extracting a correlation length. In
other words, it may not be possible to push the lattice spacing
to a sub-Planckian region while maintaining an interpretation
that is based on notions which are closely related to classical
geometry, like “volume profiles.” The question of whether there
is a correlation length in non-perturbative quantum gravity and
whether its divergence relates to a UV phase transition therefore
leads us to an even more basic question: what is “length” in
quantum gravity, when in the path integral one integrates over
the geometries that classically define the length? We turn to a
discussion of this question in the next section.

4. QUANTUM LENGTH

In ordinary quantum field theory, lengths and distances are
defined with respect to a (flat) spacetime metric, which is part
of the fixed background structure. One simply has

〈φ(x)φ(y)〉 = f (|x− y|), (25)

where |x − y| is the invariant spacetime distance between the
spacetime points x and y. When trying to define correlation
functions like (25) rigorously, e.g., on the lattice as in (2), onemay

have to rescale fields, coupling constants and the lattice spacing
in order to obtain a finite continuum result, but the geodesic
distance |x − y| in (Euclidean) spacetime is not touched. The
situation is similar when we generalize to quantum field theory
on a fixed, curved background. The analog of the two-point
function (25) will still depend on the geodesic distance between
x and y, but also on other coordinate-independent quantities
involving the fixed spacetime geometry.

Moving on to quantum gravity, the path integral will contain
an integration over geometries, in addition to the integration
over field configurations. For these geometries, the geodesic
distance between x and ywill vary, as will the curvature invariants
associated with a given geometry. In the absence of any a priori
given background geometry, the only way in which a dependence
on a distance (or other geometric invariants) could reappear in
some propagator would be with respect to some “effective” or
“emergent” geometry, generated by the quantum dynamics, and
accompanied by quantum fluctuations15. The propagator should
also reflect this to some approximation, depending on the size
the geometric fluctuations. Such an “emergence” of a class of
dominant geometries is what one observes in theMC simulations
of CDT16 in phase CdS.

For reference, let us examine the situation in two-dimensional
quantum gravity, which we have argued is in some sense
maximally “quantum.” Suppose we have a universe with the
topology of a cylinder, where we fix the lengths of the two
boundaries to L and the area (the spacetime volume) to A. For
suitable values of L and A there will be a “minimal-area surface”
with constant negative curvature between the two boundaries.
Could this nice, classical geometry be the one that dominates the
path integral, such that the integration over geometries could be
approximated by considering only small fluctuations around it?
It turns out that the answer is no. However, if two-dimensional
gravity is coupled to a conformal field theories with a large
negative central charge the answer is yes.

Whichever the case may be in four dimensions, some
invariant notation of length or distance is clearly needed in
the quantum theory to construct any meaningful propagators
or n-point functions. Again, two-dimensional quantum gravity
may provide some guidance for how to proceed. When
discussing a quantum-gravitational generalization of (25), we
used coordinates x and y to label spacetime points, while
emphasizing the arbitrariness of this choice. In the context of
non-perturbative quantum gravity it is more convenient to base
the construction of invariant correlators on the notion of distance
instead. Thus, we integrate only over geometries where x and y
are separated precisely by a geodesic distance D. Equivalently,
for a given geometry and a given x, we average in the matter
functional integral over all points y which are separated a given
distance D from x, and then integrate over all geometries.
In this way we obtain a correlation function Gφ(x,D), which

15One can of course choose a fictitious “background” geometry and expand

everything around it. But nothing can depend on this geometry, which implies

that distances defined with respect to it will be as fictitious as the geometry itself.
16To be precise, the emergence of classical behavior refers only to those

aspects of geometry that are captured by the behavior in proper time t of the

three volume V(t).
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explicitly depends on what one could call the quantum distance
D. Generalizing (2), its definition is

Gφ(x,D) :=
∫

D[gµν ] e
−S[g]

∫

Dgφ e−S[g,φ]
∫

dy
√

g(y)φ(x)φ(y) δ(Dg(x, y)−D)
∫

D[gµν ] e−S[g]
∫

Dgφ e−S[g,φ]
,

(26)

where Dg(x, y) denotes the geodesic distance between x and
y in the geometry with metric gµν(x). Even in two-dimensional
quantum gravity, the expression (26) is too complicated to
compute analytically for a scalar field φ(x). However, for φ(x) =
1 – the “trivial” field we considered for CDT in section 3—one can
in the DT formalism write down a lattice version of (26), solve
analytically for the lattice propagator, and take the continuum
limit where the lattice spacing goes to zero [45, 48]. After the
continuum limit has been taken one finds

G1(x,D) ∝ D3F(D/V1/4), F(x) = 1+ O(x4), (27)

if one fixes the spacetime volume to be V . Equation (27) shows
that the quantum length D is very “quantum,” since it has an
anomalous dimension, which moreover is related to the fractal
dimension 4 of the quantum spacetime. If we set φ(y) = 1
in (26), the integral over y is the total volume (in this case the
total length) of all points at geodesic distance D from x, forming
a “spherical shell” Sx(D). For a smooth classical d-dimensional
geometry we expect Sx(D) ∝ Dd−1 for D sufficiently small. Here
we find instead

G1(x,D) = 〈Sx(D)〉 ∝ D3 for D≪ V1/4, (28)

which shows that the fractal dimension of two-dimensional
Euclidean quantum spacetime is 4. The important point here
is that the distance or length has become a quantum operator,
which is natural in a theory of quantum geometry. Since the
geodesic distance is a very complicated non-local quantity, it is
remarkable that the quantum average of this quantity, defined
in Equation (26) for φ(x) = 1, has a non-trivial well-defined
scaling dimension. However, its noncanonical value implies a
nonstandard scaling behavior of the quantum geodesic distance
D in the regularized DT-lattice theory for a spacetime volume
V = N2a

2, where N2 counts the number of triangles in the
triangulation. Namely, in a continuum limit where V stays finite
and N2 → ∞ (and thus a → 0), D on average involves only
a number of links ∝ 1/

√
a. This is very different from the

generic situation in the φ4-theory, where linear distance in the
continuum limit would scale ∝ 1/a. In the φ4-lattice scenario
a behavior ∝ 1/

√
a would correspond to zero length in the

continuum limit. However, it is possible and nontrivial on the DT
lattices because of the fractal structure of a generic triangulation.

Another related example where distances become quantum
comes from bosonic string theory, although in a string-
theoretical context it is usually not presented this way. Bosonic
string theory in d dimensions can be viewed as a theory of
two-dimensional quantum gravity with coordinates (ω1,ω2) on

the world sheet, coupled to d scalar fields Xi(ω1,ω2), taking
values in the target space Rd. Let us consider closed strings, and
the so-called tree-amplitude for the two-point function. This is
calculated by considering two infinitesimal loops separated by a
distance D in target space, summing in the path integral over all
surfaces Xi(ω1,ω2) with cylinder topology in target space, with
these loops as boundaries, weighted by the string action. One way
to carry out this calculation is to find the classical string solution
Xi
cl
(ω1,ω2) with the given boundaries, perform a split

Xi = Xi
cl + Xi

q (29)

and integrate over the quantum fields Xi
q. Just like in standard

quantum field theory, this integration will in general require
a regularization. In addition, to obtain a finite effective action,
Xi
cl

will need a wave function renormalization. However, the

distance D appears as a parameter in Xi
cl
and the wave function

renormalization of Xi
cl
in reality becomes a renormalization of

the distance D in target space, as shown in detail in [49, 50]. Like
in the case of pure two-dimensional quantum gravity mentioned
above, the need for a renormalization of the distance D can be
related to a fractal structure, in this case, the fractal structure of
the random surfaces embedded in Rd [49, 50].

The lesson to take away from this discussion is that unless
some yardstick emerges alongside a “dominant” geometry in a
non-perturbative path integral over geometries, or is provided
by hand through suitable boundary conditions, a notion of
(quantum) distance must be introduced in the Planckian regime.
As the above examples illustrate, such notions can be found, but
will typically behave nonclassically or even scale anomalously
relative to the volume. Clearly, this needs to be taken into
account when constructing and interpreting propagators and
other geometric observables, for example, in a renormalization
group analysis near a UV fixed point. Whether such a quantum
length possesses a large-scale classical limit or can be promoted
to a “physical” length needs to be investigated, and is certainly
not a given.

5. DISCUSSION

In the asymptotic safety scenario, quantum gravity is defined as
an ordinary quantum field theory at a UV fixed point. We have
shown here how one can in principle use computer simulations to
search for such a fixed point, in close analogy with the search for a
UV fixed point in a four-dimensional φ4-theory. The framework
of CDT quantum gravity is well suited to try and verify
the findings of the functional renormalization group analysis
in the continuum independently. One particular correlation
function, that of the spatial volume profile (equivalently, the
global conformal mode of the spatial metric), has already been
studied extensively, but so far no indication of a UV fixed
point has been seen. There could be many reasons for this.
Despite the compelling evidence from a body of work in the
continuum theory [35–39, 51]17, such a fixed point may not

17The calculation reported in [51] seems in particular to be close in spirit to the

CDT approach.
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exist, and the asymptotic safety scenario not realized as a way
to define quantum gravity beyond perturbation theory. Defining
trajectories of constant physics near the Planck scale through
an observable that describes the global shape of the universe
may be a wrong choice. As emphasized in [47], at the very least
one would like to repeat the analysis in terms of other, more
local observables. A new candidate may be the quantum Ricci
curvature [52, 53], currently under investigation. Our assessment
that the lattice version of δV3(t) is too small and does not
increase sufficiently when we move toward the CdS-Cb phase
transition line may be based on our incomplete understanding
of how quantum length and volume behave near the Planck
scale. Also, maybe we are not using an action which is general
enough to localize the UV fixed point? We are using the
Regge discretized version of the Einstein-Hilbert action with one
additional deformation parameter 1. From a continuum point
of view one could think of adding all kind of higher curvature
terms to the action. We have not done that for two reasons.
The firstly, in the formalism of CDT there are no simple natural
candidates for the higher curvature terms. The geometric Regge
prescription only exists for the R-term, and attempts to put in
by hand arbitrary ad hoc generalizations have not worked (see
[54] for old attempts). Secondly, the functional renormalization
group analysis sees clear evidence for a fixed point even if
one truncates the effective action to contain only the Einstein-
Hilbert term. From the lattice perspective the interpretation
of this is that one should be able to get quite close to the
fixed point by finetuning the two bare coupling constants κ0
and 1, even if we might not be able to reach all the way
to the fixed point. However, it is disappointing that we have
not really seen much sign of an approach to a fixed point, as
we would have expected from the continuum renormalization
group calculations. Another possibility that may be worthwhile
exploring is that the quantum-geometric phase transitions
in CDT are different from the more conventional Landau-
type phase transitions where the Wilsonian renormalization
group philosophy works so well. In particular, the CdS-Cb

transition may share traits with the topological phase transitions
occurring in condensed matter physics [55, 56]. The transition
is associated with the appearance of a localized structure in
an otherwise seemingly homogeneous and isotropic universe. It
was overlooked for a long time, since the order parameters that
exhibit the transition are also of a non-standard nature with
a strong topological flavor [33]. In addition, one has observed
long auto-correlation times in the MC simulations at the CdS-
Cb transition, presumably caused by major rearrangements of the
internal connectivity of the triangulations in connection with the
symmetry breaking. This is again reminiscent of some features
seen in topological phase transitions, some of which also have no
clear divergent correlation lengths associated with them. How to
relate such transitions to a UV fixed point in quantum gravity is
an interesting challenge.
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