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Amongst the numerous models introduced with SOC, the Forest Fire Model (FFM) is

particularly attractive for its close relationship to stochastic spreading, which is central to

the study of systems as diverse as epidemics, rumors, or indeed, fires. However, since

its introduction, the nature of the model’s scale invariance has been controversial, and

the lack of scaling observed in many studies diminished its theoretical attractiveness.

In this study, we analyse the behavior of the tree density, the average cluster size and

the largest cluster and show that the model could be of high practical relevance for the

activation dynamics seen in brain and rain studies. From this perspective, its peculiar

scaling properties should be regarded as an asset rather than a limitation.

Keywords: forest fire model, critical density, residence times, largest cluster, scale invariance, cluster size

distribution, average cluster size, data collapse

1. INTRODUCTION

Soon after the seminal paper introducing Self-Organised Criticality (SOC) [1], it was suggested that
examples of SOC could include models describing the spread of activation in a manner reminiscent
of forest fires or infectious diseases. The degree to which these models were examples of scale
invariance and criticality instantly became a subject of intense debate, see, e.g., [2, 3]. Despite the
controversy and indications that the Drossel-Schwabl Forest Fire Model [2] lacks scale invariance
[4, 5], the dynamics of the model is of a type that seems of direct relevance to many real systems
such as the brain [6] and precipitation [7]. So if for no other reason, it is still worthwhile to
develop a better understanding of the behavior generated by this kind of stochastic spreading and
relaxation dynamics and to develop ways to probe the dynamics which can be applied to data from
real systems.

SOC focuses on criticality in the sense of equilibrium statistical mechanics, and for this reason,
one typically looks for scale invariance and dynamics that can tune sharply to a critical point.
Conversely, broad crossover behavior is not seen as properly belonging to the SOC paradigm.
However, the relevance of a theoretical scientific framework is, in the end, determined by how
useful it is for the description and analysis of real systems. Seen from this perspective, it is of
importance to bear in mind that exact fine-tuning to a completely scale-invariant state is not
always observed in systems that exhibit SOC-like behavior. This is demonstrated, e.g., by the
studies of the size distribution of rain showers [7], and the bursts of brain activity measured
during fMRI scans [6]. Indeed, neither study finds sharp critical behavior but, despite the
systems being of totally different microscopic nature, both identify similar indications of critical
behavior in terms of approximate power laws and even features reminiscent of peaked, or perhaps
diverging, fluctuations or susceptibilities. Moreover, both studies find that the dynamics pulls
the systems into a crossover region of large fluctuations within which one most frequently
finds configurations to reside. In other words, in both cases, the distribution of residence times,
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i.e., the amount of time spent at a certain value of the control
parameter, is found to exhibit a broad peak centered about what
appears to be a critical-like value of the control parameter. From
our experience with equilibrium critical phenomena, one would
expect a broad peak for small system sizes only, and that the width
of the peak will shrink with increasing system size. Therefore, for
systems as big as the atmosphere or with as many components as
the brain, broad peaks would not be expected.

The experimental observations in [6, 7] suggest that the
dynamics couples the control parameter to the fluctuations in
a way that makes the system move around in a critical region,
rather than tuning to a critical point. This is similar to suggestions
previously put forward, such as [8, 9]. Intuitively, one may
imagine something like the following in the case of precipitation:
nucleation of drops can happen at a particular value of the vapor
content. The vapor in the atmosphere over the ocean gradually
builds up toward that value, and sometimes overshooting may
even occur before nucleation is seeded. When precipitation
events occur, a significant amount of vapor is removed from the
atmosphere, and one observes oscillations between subcritical
and supercritical regions. For some reason, the coupling between
the driving (vapor formation) and the response (precipitation)
produces such large fluctuations that a precise tuning to the
critical value of the control parameter is excluded. A parallel
situation may take place in the brain as neurones have to go
through a refractory period before they are able to fire again
after discharge.

A link between the behavior observed in brain activity and
rainfalls [6, 7] and the Forest Fire Model was already suggested
in [10]. Inspired by these studies, we analyse in detail the
residence time distribution (which corresponds to the tree
density distribution in the FFM) and its relationship to the order
parameters used in standard percolation [11] and the brain study
[6], namely the average cluster size and the normalized size of
the largest cluster. We find that there is indeed a critical-like
region where the fluctuations peak up and where the system
seems to spend most of the time, exactly like in the brain and rain
observations. Furthermore, analyzing the distribution of the non-
normalized largest cluster, we find that it displays scale invariance
for our reachable system sizes and that its first moment seemingly
grows superlinearly with the activity θ , in a way that reminds
the superlinear growth of the instantaneous correlation length
observed in [12].

2. MODEL DESCRIPTION

As reported in [3], the original forest fire model proposed in
[13] was revised in [2] and became known in the literature as
the Drossel-Schwabl Forest Fire Model (DS-FFM), despite the
resulting model coinciding with the one introduced a few years
before in [14] as Self-organised percolation. In the following, we
will analyse the model proposed in [2, 14] and refer to it simply
as forest fire model (FFM). The FFM consists of a dissipative
dynamic that involves the occupation of empty sites (planting
of trees) and the removing of clusters of trees (burning of a

forest). In the following, we will restrict our simulations to a two-
dimensional square grid with periodic boundary conditions and
side length L. Our implementation follows [4, 10, 12, 15–17], and
is summarized by the following pseudocode [10]. An efficient
implementation of the FFM can be found at [18].

Algorithm 1: Forest Fire Model

while True do
for i = 1:θ do

select randomly a site s
if s is empty then

s becomes occupied
end if

end for

select randomly a site s
if s is occupied then

collect statistics
burn the cluster connected to s

end if

end while

Clusters are computed considering 4 neighbors for each site
(2 horizontal and 2 vertical). In order to avoid finite-size effects,
θ has to be tuned, taking into account the system size L2. In
our simulations, we keep fixed the ratio k = θ

L2
as in [12]. The

great majority of the simulations are done at k = 10−3, but
we also present results for smaller values of k in Figures 3, 10.
Since the model is known for taking a long time to thermalize,
we performed 5 · 106 burning steps for thermalization and 106

to collect the statistics as in [4]. The only exception is for the
heatmaps in Figures 7, 8, where 107 datapoints were used to
produce the statistics.

3. RESULTS

3.1. The Distribution of Densities
To compute the distribution of the densities P(ρ), we assign one
spatially averaged density ρ to each generated configuration and
sample the distribution over the ensemble. In this way, we obtain
an object that is equivalent to the distribution of residence times
in [6, 7]. In the early studies of the FFM, the average density of
trees 〈ρ〉 was assumed to behave as

〈ρ〉 = ρ∞ − aθ−b (1)

Where ρ∞ is the supposedly asymptotic density of trees and a
and b are two constants. The value of the power was estimated
as b = 0.47 in [19, 20] and b = 0.5 in [15]. However, it was
noted in [5] that for θ & 104 the average density starts to deviate
dramatically from the estimates made at lower values, ending
up to be more than 100 standard deviations higher than the
expected value for θ ∼ 105, and seemingly growing as a pure
power law for θ & 104. Assuming that the power law behavior
holds asymptotically in θ , it was estimated in [5] that the tree
density would reach the percolation density (ρp ≃ 0.5927 . . .)
for θ ∼ 1040.
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FIGURE 1 | Distribution of densities P(ρ) computed at different values of θ and

fixed L = 1, 000. The x-axis has been rescaled by θ0.02 to align the peaks.

To avoid finite-size effects, in [5] the values of θ and L were
chosen as follows: for every value of θ , several simulations were
carried out at different system sizes, and it was verified that the
distribution of the rms radius, cluster sizes, and burning time
were independent of L. The distribution of densities, on the other
hand, depends strongly on the system size. For a fixed value of
θ , increasing the system size would make the variance of the
distribution decrease as L−2 in the absence of finite size effects [4].
Conversely, fixing L and increasing θ would lead to an increase in
the standard deviation and 〈ρ〉, as can be seen in Figure 1. In the
following, we will focus our attention on the behavior of P(ρ) for
increasing system sizes and fixed values of k.

In Figures 2, 3 we plot the distribution of densities rescaling
the x-axis by θν , and tune ν to align the peaks of the distributions
computed at different values of θ . Interestingly, in both cases
the curves seem to collapse on the same shape for quite a
wide range of θ , suggesting that the distribution has reached a
stationary state and that increasing θ would imply only a shift
of 〈ρ〉. However, increasing θ even further clearly shows that
the asymptotic behavior suggested by the data collapse is only
transient, as the curves start to deviate considerably from the
shape observed at lower values of θ , as can be seen in Figure 4.
Rescaling ρ by θ0.005 one can align the position of the peaks in
Figure 4 for θ & 104, but it is clear that, in order to perform a
data collapse, the y-axis must be rescaled as well, as the height of
the peaks decreases with θ .

For a fixed θ , we found that P(ρ) is well fitted by a Gaussian
distribution. In Figure 5, we plot the mean and standard
deviations of P(ρ) for k = 10−3 and find that the average density
seemingly increases as a power-law for θ & 104, in agreement
with the numerics presented in [5]. Although the mean µ(θ)
seems to enter an asymptotic regime after θ & 104, it is less

FIGURE 2 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−3. Although rescaling the x-axis by θ0.018 seems to make it possible to

perform a data collapse for θ ∈ [250, 1000], this does not hold for larger values

of θ .

FIGURE 3 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−4. Although rescaling the x-axis by θ0.008 seems to make it possible to

perform a data collapse for θ ∈ [2000, 3025], this does not hold for larger

values of θ .

convincing whether the standard deviation σ (θ) has reached its
asymptotic form.

If we assume a Gaussian behavior for P(ρ) and that the mean
and the standard deviation behave as

µ = aθνµ and σ = bθνσ . (2)
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FIGURE 4 | Distribution of densities P(ρ) computed at different values of θ and

k = 10−3. The x-axis has been rescaled by θ0.005 to align the position of the

peaks at large values of θ .

FIGURE 5 | Log-log plot of the mean and standard deviation of P(ρ) as a

function of θ .

then plotting P(ρ)σ (θ) vs. ρ−µ
σ

should produce a standard
normal distribution for systems at θ & 104. To estimate the
asymptotic behavior, we used the last six data points for µ(θ) and
the last three data points for σ (θ) in Figure 5, finding

a = 0.388± 0.001 and νµ = 0.0049± 0.0003

and

b = 0.007± 0.004 and νσ = 0.099± 0.047

using 95% confidence bounds.

FIGURE 6 | Data collapse for the distribution of densities P(ρ) and k = 10−3

obtained by inputting the estimated values of µ and σ into a Gaussian

distribution. The x-axis and the y-axis have been rescaled in order to make all

the curves collapse on a standard normal distribution.

Using these estimates, we find that a data collapse seems to
hold well for very large values of θ , as can be seen in Figure 6.
However, such extrapolations have to be taken with great care,
firstly because of the small data available for the fit and the not so
convincing behavior of σ (θ), and secondly because the average
density can never exceed 1, meaning that the apparent power-law
growth has to stop at some point.

Since νσ > νµ, the fluctuations grow at a faster rate than the
average, as one would expect for a system close to criticality. From

the ratio σ (θ)
µ(θ)

∼ 0.018 · θ0.094, one can obtain a crude estimate

for when the fluctuations would become of the same order of
magnitude as the average. This would happen at θ ∼ 1018 and
〈ρ〉 ≃ 0.478. However, this argument can hardly hold, as it would
imply that within two standard deviations, we would have values
of the densities that exceed ρ = 1, which is, of course, impossible.
Therefore, we can conclude that for k = 10−3 and within the
Gaussian approximation, we can expect the standard deviation
to be smaller than the average, despite growing at a faster rate.

As a reference, we computed a rough estimate of the value
θ∗ that would correspond to an average density equal to the
percolation threshold µ(θ∗) = ρp. This gives θ∗ ∼ 1037, which
is consistent with the estimate made in [5] once the confidence
bounds on a and νµ are taken into account for both datasets.
However, there is no reason why the asymptotic density of the
FFM should be the same as the critical percolation density, as
even for very large systems the clusters would still be correlated
and therefore intrinsically different from a percolation process.

Like previous studies of the FFM, we are unable to settle
the true asymptotic scaling behavior of the model, which is
still unreachable with today’s computers. However, we showed
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that effectively, the distribution of densities remains Gaussian
for very large system sizes and significant ranges of θ . In the
next section, we will study the relationship between P(ρ) and
the order parameters used in percolation and in [6], and show
that P(ρ) defines a wide region where one can observe critical-
like behavior.

3.2. The Most Frequently Visited Region
Even though the studies of precipitation [7] and brain activity
[6] related their findings to critical behavior, both observed a
remarkable broad onset of the order parameter, which is certainly
not the behavior seen as one approaches the critical point of a
second-order phase transition of an infinite system. The absence
of a sharp onset of the order parameter is remarkable because,
for system sizes like the earth atmosphere or the human brain,
one would not expect any significant finite-size effect if the
usual phenomenology of equilibrium phase transitions were
any guidance.

While the activation dynamics characteristic of precipitation
and brain phenomena are not at all similar to thermal
equilibrium dynamics, both systems are at least at a schematic
qualitative level similar to the dissipative dynamics of the FFM,
with its cycles of loading and discharging. Here we want to
investigate further the relationship between the distribution of
residence times and the order parameter suggested in [10] and
to determine to what extent the FFM exhibits an onset region
similar to those observed in rain and brain. If that is the case,
we may perhaps take this as indicative of a kind of "universality"
different from the stringent universality definition we know from
equilibrium systems and more of a pragmatic nature. Needless
to say, could such a universality be established, it may be a
great help in attempts to classify the behavior of activation
dynamics in complex systems. Furthermore, it could be taken as
indicative of a level of emergent behavior that is independent of
the microscopic details, since rain and brain clearly do operate on
totally different substrates.

We are of course just repeating the original hope of SOC
research and suggesting that systems of entirely different nature
may indeed exhibit similar emergent collective behavior, even
if the dynamics does not operate in a critical state, but rather
is found to inhabit a broad region of approximately scale-free
nature. Crucial for our suggestion is the observation that the
true asymptotic behavior of the FFM appears to happen for such
enormous systems sizes that they hardly are of relevance to real
macroscopic systems. In contrast, the quasi-scale free behavior
observed in the FFM for intermediate system sizes [4, 5] may
very well be helpful for the understanding of observations such
as those presented in [6, 7].

To investigate the presence of a critical-like region in the FFM,
we focus on the onset of measures that characterize the clusters of
trees and keep track of the frequencies at which the system visits
different regions of the parameter space. The order parameter for
precipitation [7] was taken to be the precipitation rate and for the
brain [6], the normalized size of the largest cluster of activated
voxels in the fMRI scans—a choice that appears very natural in
the light of ordinary percolation analysis.

FIGURE 7 | Heatmap representing the bivariate histogram of the average

cluster size and the density.

FIGURE 8 | Heatmap representing the bivariate histogram of the normalized

largest cluster and the density.

In Figures 7, 8 we present the contour plot of the bivariate
histograms of the average cluster size [11] 〈S〉 vs. the density
ρ, and of the largest cluster normalized to the number of trees
Smax vs. ρ. The color map represents the probability of observing
a certain point in the parameter space, which is the same as
the proportion of time spent by the system at that point. To
create the heatmaps, we sampled 107 configurations and grouped
points with similar probabilities for better visual representation.
Therefore, the histograms are not perfectly normalized. The

Frontiers in Physics | www.frontiersin.org 5 September 2020 | Volume 8 | Article 257

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Palmieri and Jensen The Subtleties of Criticality

study of both the average cluster size 〈S〉 and the normalized
largest cluster Smax is inspired by the resemblance between the
clusters of sites occupied by trees and the ordinary geometrical
percolation transition. In percolation, either 〈S〉 or Smax are used
to construct an order parameter.

It is clear from the heat-maps that the density around ρ∗ ≃ 0.4
stands out and that precisely like in the precipitation study [7],
and even more so in the brain study [6], ρ∗ is indicative of
an onset of the order parameter. Furthermore, the region over
which the creation of large events happens is very broad, and the
system spends a significant fraction of time in the critical region.
We know from the Gaussianity of P(ρ), see Figure 6, that this
region stays broad for any reachable system size and values of θ .
This very much suggests that the FFM’s quasi-tuning to a critical
region is a stylistic feature of important relevance.

3.3. The Distribution of the Largest Cluster
We now turn our attention to the non-normalized largest cluster,
which we indicate with 3 to distinguish it from Smax. For a
fixed system size and θ , we find that the distribution of the
largest cluster P(3) is very well fitted by a Fréchet distribution,
which corresponds to the class of extreme value statistics with
a power-law tail. The good agreement of P(3) with a Fréchet
distribution implies that the correlations between consecutive
configurations generating the clusters are sufficiently weak to
be ignored.

Although the distribution of cluster sizes does not obey simple
scaling [4, 5], it was found in [12] that the distribution of
instantaneous correlation lengths is scale-invariant for k = 10−3

and system sizes at least as big as θ = 9, 000. Given that P(λ) is
fat-tailed, we now turn our attention to its scaling properties and
see if simple scaling applies.

In order to measure 3, one has to maintain and keep
track of all clusters at all times, which makes the task more
computationally intensive than just sampling the density ρ. For
this reason, we analyzed systems sizes that are smaller than those
used for the analysis of P(ρ). In our simulations, we used k =

10−3 and values of θ up to 4000, but we also checked the scaling
for k = 5 · 10−4.

Assuming that simple scaling holds, we can expect P(3)
to follow

P(3) = aG

(

3

3c(θ)

)

3−τ (3)

for 30 ≪ 3 ≪ 3c, where 30 is a constant lower cutoff and
3c is an upper cutoff that diverges with θ . In Equation (3), a is
a constant metric factor, τ is the critical exponent, and G is a
universal function that decays quickly for 3≫3c. The form that
is usually assumed for the upper cutoff is 3c = bθν , where b is
another constant metric factor and ν is the spatial dimensionality
of the observable 3 [3].

If the data are consistent with the simple scaling ansatz, then
it is possible to perform a data collapse by plotting P(3)3τ vs.
the rescaled variable 3

3c
for different values of θ . In Figure 9,

we performed a data collapse using ν = 1.055 and τ = 1.04.
We also estimated the critical exponents analyzing the first two
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FIGURE 9 | Data collapse for the distribution of the largest cluster P(3) at

k = 10−3.

moments of Equation (3) and fitting the data with 〈3〉 = c1θ
α1

and 〈32〉 = c2θ
α2 , obtaining

c1 = 10.7± 0.8 and α1 = 1.04± 0.01

and

c2 = 110± 36 and α2 = 2.11± 0.04

using 95% confidence bounds.
From the exponents of the first two moments one can easily

recover ν and τ using Equation (3):

ν = α2 − α1 τ = 2−
α1

ν
(4)

Using our estimates for α1 and α2, we get

ν = 1.07± 0.04 τ = 1.03± 0.04 (5)

using 95% confidence bounds.
These estimates for ν and τ are consistent with the ones

obtained via data collapse and that have been used in Figure 9.
Finally, we applied the whole procedure a second time using a
smaller value of k, namely k = 5·10−4 and θ up to 2000. From the
data collapse in Figure 10 we obtained an estimate of ν = 1.065
and τ = 1.04, while fitting the first two moments we obtained:

c1 = 12.0± 0.7 and α1 = 1.05± 0.01

and

c2 = 148± 15 and α2 = 2.12± 0.02
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FIGURE 10 | Data collapse for the distribution of the largest cluster P(3) at

k = 5 · 10−4.

which are consistent with the data collapse and with those
estimated for k = 10−3.

Although we had to restrict our simulations to values of θ <

104, we observe a very robust scaling for the largest cluster 3,
which is not observed in the distribution of cluster sizes P(S) over
the same range of θ [4]. Interestingly, we found that 〈3〉 ∼ θ1.04,
a super-linear growth which indicates that the correlations in
the system increase rapidly with θ . This behavior is consistent
with the analysis of the distribution of instantaneous correlation
lengths P(ξ ) performed in [12], where it was found that the
average instantaneous correlation length grows as 〈ξ 〉 ∼ θ0.56

over the same range of θ .

4. DISCUSSION

SOC was very much inspired by the successes of the
renormalization group studies of equilibrium critical phenomena
of the 1970-ties and its phenomenal understanding of the origin
of universality classes. Initially, the discussions of SOC focused
on accurately establishing the scaling behavior and related
scaling exponents of the various models thought to represent
the SOC phenomenology. The original sandpile model [1] was
disappointingly far from simple scaling, and also the FFM turned
out to behave very differently from the familiar scaling observed
in equilibrium models such as the Ising model or geometrical
percolation. Though there is at least one class of SOCmodels that
exhibits clear scaling, namely the class represented by the Manna
model [21], the beauty of strict scaling and universality classes
defined by scaling exponents seems not to really capture the less
than ideal critical behavior frequently observed in real systems,
such as our two examples from rain and brain.

There is no doubt that the studies of the emergent dynamics
of real complex systems from biology, geophysics, astrophysics,
economics and more [22–24] keep identifying behavior which is

qualitatively in the spirit of the hopes and dreams behind SOC,
namely the lack of one characteristic scale in time and space, large
fluctuations and no need for specific external tuning. So if the
beauty of strict scaling and exact power laws does not carry over
from equilibrium critical phenomena, the question is how we
establish a systematic classification of the emergent phenomena
observed in completely different systems. The study of the FFM
and its comparison with the behavior of real systems suggests it
is possible to establish a useful phenomenological understanding
and classification reaching beyond the usual strict classification of
universality classes defined in terms of shared scaling exponents.

The study presented here confirms earlier investigations of
the behavior of the density ρ, and the change in the behavior
of 〈ρ〉 for very large system sizes. Although we observed that
the Gaussian behavior of P(ρ) holds at least until θ = 105,
we also showed that it is possible to obtain very good but
deceitful data collapses for P(ρ) at different ranges of θ . If, on
the one hand, this should serve as a warning for the analysis
of the asymptotic scaling behavior of the FFM and other out
of equilibrium systems, on the other hand, it shows that such
effective scaling could be of guidance in the understanding and
analysis of real systems that show similar dynamics.

Analyzing the average cluster size and the normalized largest
cluster, we found that the FFM exhibits very similar behavior to
the one observed in experimental studies of rain and brain [6, 7].
In particular, both studies and the FFM display a critical region
over which both the residence time distribution and the order
parameter peak up, meaning that the system spends most of the
time in a highly susceptible state.

From the study of the largest cluster 3 it emerges that,
although the FFM displays broken scaling in the distribution of
cluster sizes, the distribution P(3) appears to be scale-invariant
at least for θ < 104. Furthermore, P(3) displays a super-linear
growth of the first moment similar to the one observed for
the average instantaneous correlation length in [12]. It is clear
from the anomalous behavior of the density ρ that such results
should be taken with care, as the model seems to enter a new
regime when θ & 104. However, the robust scaling observed
both in the largest cluster and in the instantaneous correlation
length suggests that at least for system sizes below θ = 104

there is a fast and scale-free growth of the correlations with
the activity θ .

Although the FFM does not display the reassuring scaling
observed in equilibrium models, its phenomenology appears to
summarize elegantly and robustly the emergent dynamics of
spreading and recharging seen in such disparate phenomena as
rain precipitation and brain dynamics. Moreover, examples of
broken scaling and non-exact powerlaws are ubiquitous in nature
and in the scientific literature [25] and, for this reason, we believe
that the characteristic behavior of the FFM should be seen as an
asset rather than a limitation of the model.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Frontiers in Physics | www.frontiersin.org 7 September 2020 | Volume 8 | Article 257

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Palmieri and Jensen The Subtleties of Criticality

AUTHOR CONTRIBUTIONS

LP performed the numerical simulations and analyses and
produced the figures. Both authors discussed the results of the
simulations and jointly wrote the manuscript.

FUNDING

LP gratefully acknowledges an EPSRC-Roth scholarship (Award
Reference No. 1832407) from EPSRC and the Department of
Mathematics at Imperial College London.

ACKNOWLEDGMENTS

LP thankfully acknowledges the High-Performance Computing
facilities provided by the Imperial College Research Computing
Service (DOI: 10.14469/hpc/2232).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2020.00257/full#supplementary-material

REFERENCES

1. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of

the 1/f noise. Phys Rev Lett. (1987) 59:381–4. doi: 10.1103/PhysRevLett.

59.381

2. Drossel B, Schwabl F. Self-organized critical forest-fire model. Phys Rev Lett.

(1992) 69:1629–32. doi: 10.1103/PhysRevLett.69.1629

3. Pruessner G. Self-Organised Criticality: Theory, Models and Characterisation.

Cambridge: Cambridge University Press (2012).

4. Pruessner G, Jensen HJ. Broken scaling in the forest-fire model. Phys Rev E.

(2002) 65:056707. doi: 10.1103/PhysRevE.65.056707

5. Grassberger P. Critical behaviour of the Drossel-Schwabl forest fire model. N

J Phys. (2002) 4:17. doi: 10.1088/1367-2630/4/1/317

6. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo D. Criticality in large-scale

brain fMRI dynamics unveiled by a novel point process analysis. Front Physiol.

(2012) 3:15. doi: 10.3389/fphys.2012.00015

7. Peters O, Neelin JD. Critical phenomena in atmospheric precipitation. Nat

Phys. (2006) 2:393–6. doi: 10.1038/nphys314

8. Sornette D. Critical phase transitions made self-organized : a dynamical

system feedback mechanism for self-organized criticality. J Phys I France.

(1992) 2:2065–73.

9. Zapperi S, Lauritsen KB, Stanley HE. Self-organized branching processes:

mean-field theory for avalanches. Phys Rev Lett. (1995) 75:4071–4.

doi: 10.1103/PhysRevLett.75.4071

10. Palmieri L, Jensen HJ. The emergence of weak criticality in SOC systems.

Europhys Lett. (2018) 123:20002. doi: 10.1209/0295-5075/123/20002

11. Christensen K, Moloney NR. Complexity and Criticality. London: Imperial

College Press (2005).

12. Palmieri L, Jensen HJ. Investigating critical systems via the

distribution of correlation lengths. Phys Rev Res. (2020) 2:013199.

doi: 10.1103/PhysRevResearch.2.013199

13. Bak P, Chen K, Tang C. A forest-fire model and some thoughts on turbulence.

Phys Lett A. (1990) 147:297–300. doi: 10.1016/0375-9601(90)90451-S

14. Henley CL. Self-organized percolation: a simpler model. Bull Am Phys Soc.

(1989) 34:838.

15. Grassberger P. On a self-organized critical forest-fire model. J Phys A Math

Gen. (1993) 26:2081–9. doi: 10.1088/0305-4470/26/9/007

16. Clar S, Drossel B, Schwabl F. Scaling laws and simulation results for the

self-organized critical forest-fire model. Phys Rev E. (1994) 50:1009–18.

doi: 10.1103/PhysRevE.50.1009

17. Schenk K, Drossel B, Clar S, Schwabl F. Finite-size effects in the self-organized

critical forest-fire model. Eur Phys J B Condens Matter Complex Syst. (2000)

15:177–85. doi: 10.1007/s100510051113

18. Pruessner G, Jensen HJ. Efficient algorithm for the forest fire model. Phys Rev

E. (2004) 70:066707. doi: 10.1103/PhysRevE.70.066707

19. Honecker A, Peschel I. Length scales and power laws in the two-dimensional

forest-fire model. Phys A Stat Mech Appl. (1997) 239:509–30.

20. Pastor-Satorras R, Vespignani A. Corrections to scaling in the forest-fire

model. Phys Rev E. (2000) 61:4854–9. doi: 10.1103/PhysRevE.61.4854

21. Manna SS. Two-state model of self-organized criticality. J Phys A Math Gen.

(1991) 24:L363–9. doi: 10.1088/0305-4470/24/7/009

22. Ball P. Critical Mass. How One Thing Leads to Another. New York, NY: Farrar,

Straus and Giroux (2004).

23. West G. Scale: The Universal Laws of Life and Death in Organisms, Cities and

Companies. London: The Orion Publishing Group (2018).

24. Krakauer DC, editor. Worlds Hidden in Plain Sight. Santa Fe, NM: The Santa

Fe Institute Press (2019).

25. Clauset A, Shalizi CR, Newman MEJ. Power-law distributions in empirical

data. SIAM Rev. (2009) 51:661–703. doi: 10.1137/070710111

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Palmieri and Jensen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 8 September 2020 | Volume 8 | Article 257

https://doi.org/10.14469/hpc/2232
https://www.frontiersin.org/articles/10.3389/fphy.2020.00257/full#supplementary-material
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.69.1629
https://doi.org/10.1103/PhysRevE.65.056707
https://doi.org/10.1088/1367-2630/4/1/317
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1038/nphys314
https://doi.org/10.1103/PhysRevLett.75.4071
https://doi.org/10.1209/0295-5075/123/20002
https://doi.org/10.1103/PhysRevResearch.2.013199
https://doi.org/10.1016/0375-9601(90)90451-S
https://doi.org/10.1088/0305-4470/26/9/007
https://doi.org/10.1103/PhysRevE.50.1009
https://doi.org/10.1007/s100510051113
https://doi.org/10.1103/PhysRevE.70.066707
https://doi.org/10.1103/PhysRevE.61.4854
https://doi.org/10.1088/0305-4470/24/7/009
https://doi.org/10.1137/070710111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	The Forest Fire Model: The Subtleties of Criticality and Scale Invariance
	1. Introduction
	2. Model Description
	3. Results
	3.1. The Distribution of Densities
	3.2. The Most Frequently Visited Region
	3.3. The Distribution of the Largest Cluster

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


