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Bifurcation and Numerical
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Behavior in Astrocytes
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In this paper, the dynamical analysis of Ca2+ oscillations in astrocytes is theoretically

investigated by the center manifold theorem and the stability theory of equilibrium point.

The global structure of bifurcation and evoked Ca2+ dynamics are presented in a human

astrocyte model from a mathematical perspective. Results show that the difference in

appearance and disappearance of Ca2+ oscillations is partly due to two subcritical Hopf

bifurcation points. In addition, the numerical simulations are performed to further verify

the effectiveness of the proposed method.
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INTRODUCTION

Ca2+ as an important second messenger in the cytosol is critical for synaptic neurons and glia cells
in the brain [1]. The oscillatory changes in concentration of Ca2+ are called Ca2+ oscillations and
play an active part in the transmission of chemical and electrical signaling process [2]. Astrocytes
comprise approximately 50% of the volume of human brain and exhibit not only neuron-dependent
Ca2+ oscillations but also spontaneous Ca2+ waves [3]. It was demonstrated that the frequencies
and amplitudes of Ca2+ oscillations play key roles in Ca2+ signal transduction in the nervous
system [4]. Recent results from experiment calcium release-activated calcium channel (CRAC) have
shown that it is effective for the control in inhibiting neuronal excitability by enhancing calcium
release from astrocytes [5].

It was generally considered that Ca2+ oscillations in astrocyte take place in response to external
stimuli, inducing the release of neuro-active chemicals [6, 7]. This view began to change as several
lines of evidence indicate that these oscillations can also be formed spontaneously [8]. Nevertheless,
the mechanism and functional role involved in these stochastic spontaneous Ca2+ waves are still
not well-understood. Basically, Ca2+ signal transmission of astrocytes in the brain may vary owing
to certain bifurcation principles, and different chemical information is typically characterized by
frequency, amplitude, and spatial Ca2+ propagation [9]. Dynamical mechanisms that underlie
the Ca2+ waves have been investigated from both theoretical and experimental points of view in
recent years [10–18]. Therefore, the stability and bifurcation analysis are fundamental to investigate
the appearance and disappearance of spontaneous Ca2+ oscillations in astrocytes. In the last
decades, existing mathematical models helped explore the possible dynamical mechanism of these
oscillatory activities in neuronal excitability [19–23].
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STABILITY OF EQUILIBRIUM POINT AND
BIFURCATION ANALYSIS

In the present work, we apply an extension of the one-pool model
proposed by Lavrentovich and Hemkin as a specific example of
the stability of equilibrium point and the bifurcation scenario.
This model consists of three main variables: cytosol Ca2+

concentration (Cacyt), Ca
2+ concentration in the endoplasmic

reticulum (Caer), and IP3 concentration in cell (IP3). The
equations and meanings of each expression in the model are
given as follows:











dCacyt
dt

=vin−koutCacyt+vCICR−vserca+kf
(

Caer−Cacyt
)

,
dCaer
dt

=vserca−vCICR−kf
(

Caer−Cacyt
)

,
dIP3
dt

=vPLC−kdegIP3,

(1)

where

vserca = vM2

(

Ca2cyt

Ca2cyt + k22

)

,

VPLC = vp

(

Ca2cyt

Ca2cyt + k2p

)

,

vCICR = 4vM3





knCaACa
n
cyt

(

Cancyt + knCaA

) (

Cancyt + knCaI

)





×

(

IPm3
IPm3 + kmip3

)

(

Caer − Cacyt
)

.

The details of each parameter can be found in Table 1 and [4].

ANALYSIS OF STABILITY AND
BIFURCATION OF EQUILIBRIA

In the following, vin is chosen as the bifurcation parameter,
corresponding to Ca2+ inflow into the cytosol through the
astrocyte’s membrane.

For convenience, let x = Cacyt, y = Caer, z = IP3, and r = vin,
we first rewrite model (1) as the following form:











































ẋ = r − x+ 0.5y− 15x2

x2+0.01
−

3.466x2.02z2.2(x−y)
(x2.02+0.022)(z2.2+0.0063)

,

ẏ = 0.5x− 0.5y+ 15x2

x2+0.01
+

3.466x2.02z2.2(x−y)
(x2.02+0.022)(z2.2+0.0063)

,

ż = 0.05x2

x2+0.09
− 0.08z.

(2)

The equilibrium of system (2) meets the following equations:















x =
r

kout

z =
vpx

2
(

x2+k2p

)

kdeg

y =
vserca−vCICR+kfx

kf

(3)

TABLE 1 | Model parameters for which all results are computed unless otherwise

stated.

vM2 15 µM/s vM3 40.0 s−1 kout 0.5 s−1

kdeg 0.08 s−1 k2 0.1µM m 2.2

kCaA 0.15µM kCaI 0.15µM n 2.02

kip3 0.1µM kp 0.3µM kf 0.5 s−1

Let x0, y0, and z0 be the roots of Equation (2) and
x1 = x – x0, y1 = y – y0, and z1 = z – z0, we have the
following representations:



























































ẋ1 = r − (x1 + x0) + 0.5
(

y1 + y0
)

−
15(x1+x0)

2

(x1+x0)
2+0.01

−

3.466(x1+x0)
2.02(z1+z0)

2.2(x1+x0−y1−y0)
(

(x1+x0)
2.02+0.022

)(

(z1+z0)
2.2+0.0063

) ,

ẏ1 = 0.5 (x1 + x0) − 0.5
(

y1 + y0
)

+
15(x1+x0)

2

(x1+x0)
2+0.01

+
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.022

)(

(z1+z0)
2.2+0.0063

) ,

ż1 =
0.05(x1+x0)

2

(x1+x0)
2+0.09

− 0.08 (z1 + z0) .

(4)

The corresponding equilibrium is (0, 0, 0), and system (4) has
the same properties with the equilibrium of system (2). With
simple calculation, it is easy to calculate the Jacobian matrix of
system (4),

A = (aij)3×3 =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

where

a11 =
30x3

(

x2 + 0.01
)2

−
30

x2 + 0.01
−

3.465966x2.02z2.2

σ

−
7.0012517x1.02z2.2

(

x− y
)

σ
+

14.002503x3.04z2.2
(

x− y
)

σ
(

x2.02 + 0.021622
) − 1,

a12 =
3.465966x2.02z2.2

σ
+ 0.5,

a13 =
7.6251256x2.02z3.4

(

x− y
)

σ
(

z2.2 + 0.00630957
) −

7.625125x2.02z1.2
(

x− y
)

σ
,

a21 = −
30x3

(

x2 + 0.01
)2

+
30

x2 + 0.01
+

3.465966x2.02z2.2

σ

+
7.0012517x1.02z2.2

(

x− y
)

σ
−

14.002503x3.04z2.2
(

x− y
)

σ
(

x2.02 + 0.021622
) + 0.5,
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a22 = −
3.465966x2.02z2.2

σ
− 0.5,

a23 = −
7.6251256x2.02z3.4

(

x− y
)

σ
(

z2.2 + 0.00630957
) +

7.625125x2.02z1.2
(

x− y
)

σ
,

a31 =
0.1x

x2 + 0.09
−

0.1x3
(

x2 + 0.09
)2
,

a32 = 0,

a33 = −0.8,

σ =
(

x2.02 + 0.02166228
)2 (

z2.2 + 0.0063095
)

.

And one can easily obtain the following characteristic equation:

λ3 + Q3λ
2
+ Q2λ + Q1 = 0,

where

Q1 = − (a11 + a22 + a33) ,

Q2 = a11a22 + a11a33 + a22a33 − a13a31 − a12a21 − a32a23,

Q3 = a31a13a22 + a12a21a33 + a32a23a11 − a11a22a33

− a12a23a31 − a13a21a32.

After a simple calculation, we have the following equations:

Q1 =
30x

x2 + 0.01
−

30x3
(

x2 + 0.01
)2

+
6.93193x2.02z2.2

σ11

+
7.00125x1.02z2.2

(

x− y
)

σ11
−

14.0025x3.04z2.2
(

x− y
)

(

x2.02 + 0.02166
)3 (

z2.2 + 0.0063
)

,

Q2 = −

(

0.1x3

(

x2 + 0.09
)2

−
0.1x

x2 + 0.09

)(

7.62512x2.02z1.2
(

x− y
)

σ21

−
7.62512x2.02z3.4

(

x− y
)

σ22
(

z2.2 + 0.0063
)2

)

−
24x3

σ23
+ 0.5 (σ22 + 0.5)

+
0.55455x2.02z2.2

σ21
+

0.5601x1.02z2.2
(

x− y
)

σ22

−
1.1202x3.04z2.2

(

x− y
)

σ24
+

2.4x

x2 + 0.01
+ 0.12,

Q3 = 0.004

(

3.465966x2.02z2.2
(

x2.02 + 0.02166
)2 (

z2.2 + 0.0063
)

)

,

where

σ11 =
(

x2.02 + 0.02166
)2 (

z2.2 + 0.0063
)

,

Q21 =
(

z2.2 + 0.0063
)

σ22,

Q22 =
(

x2.02 + 0.02166
)2
,

Q23 =
(

x2 + 0.01
)2
,

Q24 =
(

x2.02 + 0.02166
)3 (

z2.2 + 0.006309
)

,

Owing to the meaning of x, y, z and r, special conditions meet
the needs whether there exists equilibrium of system (4) when
r ∈ [0.02, 0.06].

We consider the Hurwitz matrix using coefficients Qi of the
characteristic polynomial:

H1 = (Q1) , H2 =

(

Q1 1
Q3 Q2

)

, H3 =





Q1 1 0
Q3 Q2 1
0 0 Q3



 .

It is easy to verify that the eigenvalues of the linearized system
are negative or have a negative real part if the determinants of the
three Hurwitz matrices are positive:

det (Hi) > 0, i = 1, 2, 3,

Consider the stability and bifurcations of system (4) for varying
parameter vin in the case of the following Routh–Hurwitz criteria:

Q1 > 0, Q3 > 0, Q1Q2 > Q3.

The corresponding two values can be obtained:

r1 = 0.02383, r2 = 0.05944.

After the computation based on the Routh–Hurwitz criteria,
when we choose r1 = 0.02383,

Q1 = 68.4381 > 0, Q3 = 0.02838 > 0, Q1Q2

− Q3 = 0.775418 > 0.

As r2 = 0.05944,

Q1 = 60.5333804 > 0, Q3 = 0.64149 > 0, Q1Q2

− Q3 = 0.027890411 > 0.

It can be seen that all the two values satisfy the Routh–Hurwitz
criteria. After using the normal form method, one can easily
obtain the following conclusions:

(1) r < 0.02383, there is a stable node of system (4);
(2) r = 0.02383, and system (4) has a non-hyperbolic

equilibrium O1 = (0.04766, 3.96096098, 0.0153858);
(3) 0.02383 < r < 0.05944, system (4) has an

equilibrium (saddle);
(4) r = 0.05944, and there exists a non-hyperbolic equilibrium

O2 = (0.11886, 0.6665221778, 0.0847979);
(5) r > 0.05944, there is a stable node.

Let r = r0, x1 = x – x0, y1 = y – y0, z1 = z – z0, and r1 = r – r0,
the equilibrium of system (4) is (x0, y0, z0). In order to apply the
center manifold theorem with bifurcation parameter vin, a new
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variable r1 is introduced in the original model. On the basis of
dr1/dt = 0, we have the following:































































































ẋ1 = (r1 + r0) −
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.02166

)(

(z1+z0)
2.2+0.00631

)

−
15(x1+x0)

2

(x1+x0)
2+0.01

− (x1 + x0) + 0.5
(

y1 + y0
)

,

ẏ1 =
15(x1+x0)

2

(x1+x0)
2+0.01

+
3.466(x1+x0)

2.02(z1+z0)
2.2(x1+x0−y1−y0)

(

(x1+x0)
2.02+0.02166

)(

(z1+z0)
2.2+0.00631

)

+0.5
(

x1 + x0 − y1 − y0
)

,

ż1 =
0.05(x1+x0)

2

(x1+x0)
2+0.09

− 0.08 (z1 + z0) ,

ṙ1 = 0.

(5)

r1 = 0, O(x1, y1, z1, r1) = (0, 0, 0, 0) is the equilibrium of system
(5), which has a same conclusion as the one of system (2) in
stability and bifurcations.

For r0 = 0.02383, the Jacobian matrix of system (4) has the
following form:









−67.6083 0.71022 115.6304 1
67.1083 −0.71022 −115.6304 0
0.05041 0 −0.08 0

0 0 0 0









.

We have the eigenvalues of equilibrium point O1 = (0, 0, 0, 0) of
system (5): ξ 1 =−68.3987, ξ 2 = 0.0204i, ξ 3 =−0.0204i, ξ 4 = 0,
and the eigenvectors have met the following matrix:









−0.7097 −0.0018− 0.0406i
0.7045 0.9989

−0.0018+ 0.0406i 0.1217
0.9989 −0.9877

0.0005 −0.0072− 0.0238i
0 0

−0.0072+ 0.0238i −0.0767
0 0.0608









.

Suppose









x1
y1
z1
r1









= U













u
v
w
s













,

where

U =









−0.7097 −0.0018 0.0406 0.1217
0.7045 0.9989 0 −0.9877
0.0005 −0.0072 0.0238 0.0767

0 0 0 0.0608









.

System (5) has the following form









u̇
v̇
ẇ
ṡ









=









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















u
v
w
s









+









g1
g2
g3
g4









, (6)

and









ẋ1
ẏ1
ż1
ṙ1









= U









u̇
v̇
ẇ
ṡ









⇒









u̇
v̇
ẇ
ṡ









= U−1









ẋ1
ẏ1
ż1
ṙ1









= U−1









f1
f2
f3
0









,

where

f1 = g14 − 15g211/
(

g211 + 0.01
)

− g11 + 0.5g12

− [3.465966222g11
2.02g13

2.2
(

g11 − g12
)

]

/
[

(

g11
2.02

+ 0.02166228889
)2 (

g13
2.2

+ 0.006309573445
)

]

,

f2 = 15g211/
(

g211 + 0.01
)

+ 0.5
(

g11 − g12
)

+ [3.465966222g11
2.02g13

2.2
(

g11 − g12
)

]

/
[

(

g11
2.02

+ 0.02166228889
)2 (

g13
2.2

+ 0.006309573445
)

]

,

f3 = 0.05g211/
(

g211 + 0.09
)

− 0.08g13,

g11 = x1 + x0 = −0.7097u− 0.0018v+ 0.0406w+ 0.1217s

+ 0.04766,

g12 = y1 + y0 = 0.7045u+ 0.9989v− 0.9877s+ 3.96096,

g13 = z1 + z0 = 0.0005u− 0.0072v+ 0.0238w+ 0.0767s

+ 0.01538,

g14 = 0.0608s+ 0.02383.

Furthermore,









g1
g2
g3
g4









= U−1









f1
f2
f3
0









−









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















u
v
w
s









,

where

U−1
=









−1.3929 0.0146 2.3761 0.0280
0.9824 0.9908 −1.6758 16.2432
0.3264 0.2994 41.4599 −48.0914

0 0 0 16.4474









.

Through calculation, we have the following equations:

g1 = −1.3928f1 + 0.0146f2 + 2.3761f3 + 68.3987u,

g2 = 0.9823f1 + 0.9907f2 − 1.6757f3 + 0.0204w,

g3 = 0.3264f1 + 0.2994f2 + 41.4599f3 − 0.0204v,

g4 = 0.
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On the basis of the center manifold theory, one can conclude that
there exists a center manifold of system (5), and its form can be
expressed as

Wc
loc (O1) =

{

(u, v,w, s) ∈ R4
∣

∣ u

= h
∗

(v,w, s) , h
∗

(0, 0, 0) = 0,Dh
∗

(0, 0, 0) = 0
}

. (7)

Substituting Equation (7) into Equation (6), the following
equations can be derived as:









˙h
∗
(v,w, s)
v̇
ẇ
ṡ









=









−68.3987 0 0 0
0 0 −0.0204 0
0 0.0204 0 0
0 0 0 0

















h
∗

(v,w, s)
v
w
s









+









g1
g2
g3
g4









.

Let h (v, w, s) = av2 + bw2 + cs2 + dvw + evs + fws + . . . , and
the center manifold of system (5) is

N(h) = Dh ·





v̇
ẇ
ṡ



+ 68.3987h− g1 ≡ 0. (8)

Using the method of high-order partial derivatives, one can
obtain the following equations:

















136.79775 0 0 0.0406996 0 0

0 136.7975 0 −0.04082 0 0

0 0 136.7973 0 −0.000102 −0.00002

−0.040825 0.040699 0 68.39882 0 0

−0.000102 0 0 −0.000011 68.3987 0.020349

0 −0.0000226 0 −0.000051 −0.02031 68.39873

































a

b

c

d

e

f

















= 0.

Based on the center manifold theory, one can compute
a = −0.00094, b = −0.12224, c = −1.15703,
d = 0.03634, e = 0.10863, and f = −0.75265. So
the system that is confined to this center manifold is
as follows:

(

v̇
ẇ

)

=

(

0 −0.0204
0.0204 0

)(

v
w

)

+

(

f 1 (v,w)

f 2 (v,w)

)

, (9)

where

f 1 (v,w) = 0.014915s− 0.004304v+ 0.00382w+ 0.037228sv

− 0.257924sw+ 0.012455vw+ · · · ,

f 2(v,w) = 0.017292v− 0.269399s− 0.086114w+ 0.014479sv

− 0.100315sw+ 0.004844vw+ · · · .

Hence, it is easy to verify that

a =
1

16

[

f 1vvv + f 1vww + f 2vvw + f 2www
]∣

∣

(0,0)

+
1

16× 0.0204
[f 1vw(f

1
vv + f 1ww)

− f 2vw(f
2
vv + f 2ww)− f 1vvf

2
vv + f 1wwf

2
ww)]

∣

∣

(v=0,w=0,s=0)

= 0.1014870557 > 0,

d =
d(Re(ξ (s))

ds

∣

∣

∣

∣

(v=0,w=0,s=0)

= −0.0189 < 0.

From the discussion above, we summarize the
following conclusions.

Conclusion 1: A subcritical Hopf bifurcation occurs when
r passes through r0 = 0.02383 of system (2). r < r0, and the
equilibrium O1 is stable. r > r0, and the equilibrium loses its
stability; meanwhile, a stable periodic solution occurs, and system
(2) begins to oscillate.

r0 = 0.05944, eigenvalues of equilibrium point O2 = (0, 0, 0,
0) of system (3) are ξ 1 =−60.5573, ξ 2 = 0.1029i, ξ 3 =−0.1029i,
and ξ 4 = 0, respectively. System (5) has the following form:









u̇
v̇
ẇ
ṡ









=









−60.5573 0 0 0
0 0 −0.1029 0
0 0.1029 0 0
0 0 0 0

















u
v
w
s









+









g1
g2
g3
g4









, (10)









u̇
v̇
ẇ
ṡ









= U−1









f1
f2
f3
0









,

where

U =









−0.71 0.0393 0.1915 0.1341
0.7042 −0.9695 0 −0.9748
0.0012 0.1328 0.0654 0.1654

0 0 0 0.067









,

f1 = g14 −
15g211

(

g211 + 0.01
) − g11 + 0.5g12

−

[

3.465966222g11
2.02g13

2.2
(

g11 − g12
)]

[

(

g112.02 + 0.02166228889
)2 (

g132.2 + 0.006309573445
)

] ,
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f2 =
15g211

(

g211 + 0.01
) + 0.5

(

g11 − g12
)

+

[

3.465966222g11
2.02g13

2.2
(

g11 − g12
)]

[

(

g112.02 + 0.02166228889
)2 (

g132.2 + 0.006309573445
)

] ,

f3 =
0.05g211

(

g211 + 0.09
) − 0.08g13.

And g1j
(

j = 1, . . . , 4
)

have the following different formulae:

g11 = x1 + x0 = −0.71u+ 0.0393v+ 0.1915w+ 0.1341s

+ 0.1189,

g12 = y1 + y0 = 0.7042u− 0.9695v− 0.9748s+ 0.6664,

g13 = z1 + z0 = 0.0012u+ 0.1328v+ 0.0654w+ 0.1654s

+ 0.0848,

g14 = 0.067s+ 0.05944,









g1
g2
g3
g4









= U−1









f1
f2
f3
0









−









−60.5573 0 0 0
0 0 −0.1029 0
0 0.1029 0 0
0 0 0 0

















u
v
w
s









,

(11)

which reduce to the following equations:

g1 = −1.0337f1 + 0.3727f2 + 3.0268f3 + 60.5573u,

g2 = −0.7508f1 − 0.7607f2 + 2.1985f3 + 0.1029w,

g3 = 1.5436f1 + 1.5379f2 = 10.7708f3 − 0.1029v,

g4 = 0.

The center manifold of system (5) is

N(h) = Dh ·





v̇
ẇ
ṡ



+ 60.5573h− g1 ≡ 0,

where

u = h
∗

(v,w, s), h
∗

(0, 0, 0) = 0,Dh
∗

(0, 0, 0) = 0.

And thus, the following equation can be obtained:

















105.4628 0 0 0.04089 0 0

0 105.462 0 0.04077 0 0

0 0 105.4628 0 0.00001678 −0.0001493

0.040771 −0.0408 0 52.7313 0 0

0.000067 0 0 −0.0000746 652.73142 −0.02044

0 −0.00014 0 0.0000339 0.0203859 52.7313498

































a

b

c

d

e

f

















= 0.

We compute a = 1.073869652, b = 0.3254214051,
c = 1.590904144, d = 0.8641549, e = 2.5838022, and
f = 1.1901543. So the system confined to the center manifold of
system (5) is

(

v̇
ẇ

)

=

(

0 −0.1029
0.1029 0

)(

v
w

)

+

(

f 1 (v,w)

f 2 (v,w)

)

, (12)

where

FIGURE 1 | (A) Bifurcation diagram of the equilibrium of system (2) in the (vin, Cacyt)-plane. (B) Bifurcation diagram of the equilibrium of system (2) in the (vin,

Caer)-plane. Points HB1 and HB2 are the Hopf bifurcation points.
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f 1 (v,w) = 0.079838w− 0.013612v− 0.034559 s−0.671091sv

− 0.309119sw− 0.224447vw+ · · · ,

f 2(v,w) = 1.423469sv− 0.168005v− 0.204689w− 0.145723s

+ 0.655680sw+ 0.476081vw+ · · · .

By computation, Conclusion 2 can be inferred as follows:

a =
1

16

[

f 1vvv + f 1vww + f 2vvw + f 2www
]
∣

∣

(0,0)

+
1

16× 0.1029
[f 1vw(f

1
vv + f 1ww)

−f 2vw(f
2
vv + f 2ww)− f 1vvf

2
vv + f 1wwf

2
ww)]

∣

∣

(v=0,w=0,s=0)

= 0.2483398204 > 0,

d =
d(Re(ξ (s))

ds

∣

∣

∣

∣

(v=0,w=0,s=0)

= −0.00069 < 0.

Conclusion 2: A subcritical Hopf bifurcation occurs when r
passes through r0 = 0.05944 of system (2). r< r0, the equilibrium
O2 is unstable, and system (2) begins to oscillate. r > r0, the
equilibrium O2 is stable, and the global oscillations of system
(2) vanish.

NUMERICAL SIMULATIONS

In order to investigate the bifurcation phenomenon in different
Ca2+ oscillation patterns, we study the generation process
with respect to the parameter vin. The bifurcation diagram
of the equilibrium of system (2) in the (Cacyt, vin)-plane
[(Cacyt, vin)-plane)] is shown in Figures 1A,B. Each point
of the curve (solid line) represents a stable equilibrium,
and the dashed line represents an unstable equilibrium. The
equilibrium undergoes the Hopf bifurcation twice, marked
by points HB1 and HB2 with respect to the bifurcation
parameter v1in = 0.0238 µM/s and v2in = 0.0594 µM/s.
When vin < v1in, there exists stable equilibrium of system
(2). As vin increases, the stable equilibrium loses its
stability at the point HB1 and returns to being stable
at HB2.

In Figure 2, we shall present the time evolutions of cytosol
Ca2+ concentration in this model for different values of
the parameter vin by numerical simulation. The left panels
represent time series of Cacyt comparison of parameter vin,
and the right panels are the corresponding Cacyt-Caer-IP3
phase portrait. For example, there is a single peak in this
type of oscillation for vin = 0.024 µM/s in Figure 2A, and
the corresponding 3D phase-space is shown in Figure 2B.
Around vin = 0.033 µM/s, it is seen that the number of
peak counts and peak magnitude begin to increase, as shown
in Figures 2C,D. Similarly, when vin = 0.052 µM/s, five
peaks were obtained (Figures 2E,F). Moreover, it should be
mentioned in Figures 2G,E, although the results for peak
magnitude look very similar and in agreement with the peak
counts, that the oscillatory vibration is significantly different
(Figures 2G,H).

FIGURE 2 | Spontaneous Ca2+ oscillations in astrocytes emerged at different

parts of the curve in Figure 1 relative to points HB1 and HB2. The left panels

denote the time evolution of Cacyt for different sets of parameter vin, and the

right panels denote the corresponding Cacyt-Caer-IP3 phase portrait. (A) vin =

0.024 µM/s, (B) portrait diagram as vin = 0.024 µM/s, (C) vin = 0.033 µM/s,

(D) portrait diagram as vin = 0.033 µM/s, (E) vin = 0.052 µM/s, (F) portrait

diagram as vin = 0.052 µM/s, (G) vin = 0.0593 µM/s, and (H) portrait diagram

as vin = 0.0593 µM/s.

CONCLUSION

In this paper, we have theoretically investigated the stability of
equilibrium and bifurcation of spontaneous Ca2+ oscillations
with a mathematical model in astrocytes. By choosing the
flow of Ca2+ from the extracellular vesicles through the
membrane and into the cytosol as the bifurcation parameter,
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we conclude that two subcritical Hopf bifurcation points play
an important role in the occurrence of Ca2+ oscillations.
By combining the theoretical analysis results in this paper,
we numerically gave the Hopf bifurcations, which agree with
the theoretical results. Our results may be instructive for
better understanding the role of spontaneous Ca2+ oscillations
in astrocytes. Because synchronization of different oscillatory
patterns may relate to bifurcation, we will give detailed research
in future.
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