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Mathematical models of SARS-CoV-2 (the virus which causes COVID-19) spread are

used for guiding the design of mitigation steps and helping identify impending breaches

of health care system surge capacity. The challenges of having only lacunary information

about daily new infections and mortality counts are compounded by geographic

heterogeneity of the population. This complicates prediction, particularly when using

models assuming well-mixed populations. To address this problem, we account for

the differences between rural and urban settings using network-based, distributed

models where the spread of the pandemic is described in distinct local cohorts with

nested SE(A)IR models, i.e., modified SEIR models that include infectious asymptomatic

individuals. The model parameters account for the SARS-CoV-2 transmission mostly

via human-to-human contact, and the fact that contact frequency among individuals

differs between urban and rural areas, and may change over time. The probability that the

virus spreads into an uninfected community is associated with influx of individuals from

communities where the infection is already present, thus each node is characterized by

its internal contact and by its connectivity with other nodes. Census data are used to set

up the adjacency matrix of the network, which can be modified to simulate changes

in mitigation measures. Our network SE(A)IR model depends on easily interpretable

parameters estimated from available community level data. The parameters estimated

with Bayesian techniques include transmission rate and the ratio asymptomatic to

symptomatic infectious individuals. The methodology predicts that the latter quantity

approaches 0.5 as the epidemic reaches an equilibrium, in full agreement with the

May 22, 2020 CDC modeling. The network model gives rise to a spatially distributed

computational model that explains the geographic dynamics of the contagion, e.g., in

larger cities surrounded by suburban and rural areas. The time courses of the infected

cohorts in the different counties predicted by the network model are remarkably similar

to the reported observations. Moreover, the model shows that monitoring the infection

prevalence in each county, and adopting local mitigation measures as infections climb

beyond a certain threshold, is almost as effective as blanket measures, andmore effective

than reducing inter-county mobility.
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1. INTRODUCTION

Predicting the spread of COVID-19 is critical to public
health decision making, including decisions to relax mitigation
measures in different communities. Data on the number of
individuals testing positive for the novel coronavirus in every
county of the USA is updated continuously and used to inform
mathematical models for predicting how the pandemic will
evolve. A COVID-19 forecasting algorithm based on newly daily
infections was recently proposed [1]. The novelty of the virus and
the current lack of testing capacity for the general population add
to the challenges of the task, and can explain the wide variability
seen in model predictions.

The use of mathematical models to study the dynamics of
infectious diseases has a long history. Classical populationmodels
[2] have been used extensively to study the spread of epidemics
for nearly a century. The models commonly assume that the
populations in the various compartments are homogenous, in
the sense that all individuals behave similarly, and well-mixed,
i.e., transmission affects all individuals in a compartment at
once [3–5]. These models can be useful to understand the
overall dynamics of an epidemic and provide fairly realistic
predictions for a homogeneous population, but may not have
enough resolution when the population consists of communities
with different socio-urban characteristics or demographics. The
need for models that account for the diverse modes of social
interaction within each community has been acknowledged for
a long time, and the mobility pattern among communities is
particularly crucial when trying to forecast the effects of different
measures to contain and control the transmission. The concept
of metapopulation, intended as a group of spatially separated
populations that have some kind of interaction, was initially
introduced in a study of insect pests [6] and later used in
conjunction with networks to introduce a spatial dimension in
modeling transmission of disease. The network aspect comes
from the transfer of individuals among the nodes, and the level
of communication between any pair of nodes is determined
by the mobility network [7]. Information about the mobility
network can be gleaned from census data, cell phone data, or
from domestic or international air travel schedules, as relevant
for the spatial scale of the model.

In Wang and Li [8], the authors advocate network
metapopulation models for describing the spread of SARS and
the outbreaks of A(H1N1) influenza, and A(N7H7), known as
avian flu. The common feature of these three epidemics was the
speed at which their incidence spread over a wide geographic
range: in 2003, before being contained, SARS-CoV spread from
Hong Kong to over 30 countries on 4 continents, and in 2009
A(H1N1) spread in 3–4 months to 214 countries and overseas
territories or communities. By comparison, SARS-CoV-2 has
spread to nearly every country in the world in less than 6
months, following a pattern similar to that of a wild fire. Human
recurrent commuting data in metapopulation network models
have been used to study changes in contagion processes [9–
11]. For a comparison of large scale computational approaches
to epidemic modeling, in particular agent-based approach vs.
structured metapopulation models, see Ajelli et al. [12]. Changes

in human mobility pattern are often enforced at the outbreak of
an epidemic to keep it localized to the original hotspot, however
the effectiveness of travel bans for containing a pandemic has
been questioned [13–16]. To contain the COVID-19 pandemic,
measures to control human mobility have varied from the ban
of most international flights from affected areas, to the near
full suppression of traffic between communities in regions with
high prevalence of infections. In addition, changes in mobility
have occurred in reaction to the spread of epidemics [17–19]. As
reported in Poletti et al. [20], the changing perception of risk did
indeed affect the 2009 H1N1 pandemic dynamics.

A commonly observed pattern of COVID-19 spread is that
once the virus enters densely populated communities with no
mitigation measures in place, the disease is likely to flare up
rapidly, infecting a large number of individuals in a short
amount of time, with the risk of overwhelming the local health
system, as has been the case in the region around Milan, Italy
and in New York City. Not surprisingly, the first COVID-19
infection inmany countries has been recorded in cities that, being
major economic hubs or tourist centers, with significant contacts
with previously infected areas. Contact between communities is
responsible for the spread of COVID-19, and patterns of contact
need to be taken into consideration when predicting where the
next hot spots are likely to emerge.

It has been established that the SARS-CoV-2 is transmitted
through respiratory droplets and that symptoms go from non-
existent to life-threatening. The range of clinical presentation
has also been wide and includes constitutional, respiratory,
gastrointestinal, dermatologic, and musculoskeletal signs and
symptoms. Unlike the case for SARS, where virus transmission
appears to have occurred primarily after the emergence of
symptoms, there is evidence that viral shedding of SARS-CoV-
2 occurs, and may even peak, during the few days just prior to
symptom onset [21]. The potential for pre- or oligosymptomatic
transmission was supported early in the pandemic by the report
of cases with mild symptoms [22], and significant spread of the
infection by asymptomatic cases became a concern from the start
of the outbreak. The recommendations to maintain at least 6 feet
of social distance from other individuals and to wear face masks
in public places are addressing the concerns about asymptomatic
infections, as are state-level bans on large gatherings. As of
May 22, 2020, the Center for Disease Control and Prevention
(CDC) in its Modeling COVID-19 Planning Scenarios stated
that, based on the available data, asymptomatic cases constitute
approximately 35% of all infections, and that the absence of
symptoms does not reduce infectiousness. These values are
higher than earlier estimates [23] of 14% of total cases, assumed
to be nearly half as infectious as reported symptomatic ones.

Classical mathematical models for the spread of epidemics
subdivide the population into cohorts of susceptible (S), infected
(I), and Recovered (R) individuals, (classical SIR models of
[2]), with the possible addition of a fourth Exposed (E) cohort,
accounting for the incubation time before infection onset (SEIR
models). Both SIR and SEIR models assume that the underlying
population and the subpopulations within each compartment are
well-mixed, a necessary condition for the mean field description
to be accurate. In the case of COVID-19, the lack of immunity
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of the population due to the novelty of the virus and the
ease of transmission through respiratory droplets make its
spread very sensitive to the type and frequency of contacts
among individuals in the community. Such contacts may depend
strongly on population density; therefore, to reduce violation
of the mean field assumption, communities with differing
population densities should be modeled separately.

In addition to different contact rates, traffic between
communities also plays an important role in the spread of the
pandemic, as individuals arriving from an area with a large
number of infections act as potential vectors for the virus
previously uninfected communities. Although homogenized
SIR and SEIR models are not suited to account for these
important aspects of the spread of COVID-19, they can form the
fundamental units of a metapopulation model of interconnected
communities, with separate sets of parameters accounting
for community-specific settings. In addition to providing a
more realistic explanation of the geographic pattern of spread,
metapopulation models can also be used to test which changes
in commuting patterns are more likely to keep the pandemic
under control.

Finally, it is important that COVID-19 models acknowledge
the time dependency of model parameters, as the pathogen may
mutate and the number and type of contacts change in response
both to mitigation measures imposed and to population’s
awareness of risks, and ongoing adherence to public health
guidance. The time course of key parameters can provide valuable
insight into the spread patterns and aggressiveness of the disease,
as well as into the effectiveness of various mitigation measures.

In this time when different states in the USA are debating
whether relaxing mitigation strategies and travel restrictions are
likely to create new hot spots in areas little affected by the
pandemic, a predictive model that can be adapted to different
regions can have an immediate applicability. In response to these
needs, the aim of this study is to adopt a new network model of
COVID-19 spread to understand the dynamics of the pandemic
in a network of 18 counties in the region of Northeast Ohio
around Cleveland, and a network of 19 counties in Southeast
Michigan around Detroit. The computational model within
each county, referred to as SE(A)IR, includes an asymptomatic,
infected, and infectious cohort to account for the transmission
by asymptomatic individuals, and it addresses all of the points
discussed above: The model parameters may be variable in time,
and up to date Bayesian computational tools are used to inform
the model on a daily basis regarding the progression of the
epidemic, providing also an estimate of the uncertainties of the
estimates. The metapopulation model uses census data to track
population density and the movement of individuals between
communities [24]. Importantly, the model gives an estimate
of the size of the asymptomatic cohort based on the observed
new infection count. Finally, to avoid introducing intractable
or uninterpretable parameters that could limit usability and
interpretability, the basic model is as simple as possible without
overlooking some fundamental characteristics of COVID-19.
The output comprises interpretable quantities that can be
immediately communicated to public health and health system
decision makers, and allow a comparison with existing model

predictions. The computational framework can be shown to
reproduce within reasonable uncertainty the observed timeline
of spread between the communities included in this study; and
the predictive skills over relatively short time windows, up to a
few weeks, can be demonstrated. The network model predictions
suggest that while human mobility is the pathway for the
spreading of the virus, reducing traffic between the communities
by itself is not an effective way to contain the epidemic.
Furthermore, the simulations show that local social distancing
triggered by case prevalence is essentially as efficient mitigation
measure as a state-wide blanket social distancing strategy.

2. MATERIALS AND METHODS

2.1. Predictive Models of COVID-19
In the absence of data from previous outbreaks, mathematical
and statistical models, e.g., CHIME: COVID-19 Hospital Impact
Model for Epidemics, and the IHME models by C. Murray and
collaborators, are the main tools to predict how the COVID-19
outbreak will progress, including estimates of how many patients
will need to be hospitalized, the expected number of admissions
to ICU and the type of resources that the health systems
should have ready. In the current active epidemic outbreak,
computational methods capable of dynamic model updating as
data are gathered are of key importance.

2.2. A SE(A)IR Model of COVID-19 Spread
In epidemiology, classical compartment models such as SIR and
SEIR [2] have been used successfully to model epidemics for
nearly a century. In the case of COVID-19, there is evidence of
exposed individuals shedding the virus already a few days before
developing any symptoms. In fact, according to some recent
laboratory tests, the amount of virus released is largest right
before the onset of the symptoms, and over the next few days
it starts to decay [21, 25]. Moreover, the presence of antibodies
in individuals who did not report any symptoms of COVID-
19, points toward a presence of a potentially large number
of asymptomatic infectious individuals, who spread the virus
without being detected [26, 27], in particular when testing is
reserved for individual with clear symptoms. Furthermore, if the
I cohort in the SEIR model comprises symptomatic infected and
infectious individuals who have tested positive for COVID-19, it
is reasonable to assume that most of them will be in some form
of isolation, hence with limited contribution to the spreading of
the infection.

To account for the possibility that the
asymptomatic/oligosymptomatic infectious pool is mostly
responsible for the spread of the infection, we introduce a
cohort A of infected, infectious, and asymptomatic individuals
in the SEIR model, and assume that this cohort is principally
responsible for new infections. At the time of writing this article,
the available data comprise almost exclusively the number of
reported symptomatic daily new infections, which does not
allow inference on the size of the asymptomatic cohort. To
avoid introducing ill-defined assumptions about the prevalence
of symptoms, we combine the E and the A compartments into
a single asymptomatic compartment E(A). As demonstrated
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in Calvetti et al. [28], this allows us to directly estimate the
E(A) cohort size from available data. While losing some of the
time resolution of the model, this approximation gains indirect
observability that is essential in tracking the virus spread. To
underline this interpretative difference, and the embedding of the
asymptomatic A cohort in E, we refer to the model as SE(A)IR
model. Figure 1 shows a schematic compartment diagram
and the governing equations, illustrating the modification
to the standard SEIR model to account for asymptomatic
infectious individuals.

When used for interpretation of real data, the classical
compartment models usually suffer from two limitations: (i) The
model parameters are constant in time, while the population
interaction is a dynamic process, and (ii) the models operate
under the hypothesis that the population is well-mixed, while in
reality the data are an aggregate of underlying sub-populations
with a complex interaction structure. Below is the description
of our contribution and findings, with an emphasis on two
particular cases, population models of Northeastern Ohio and
Southeastern Michigan in the period from early March 2020 to
early May 2020.

2.3. Bayesian Estimation of the SE(A)IR
Parameters
The governing equations of the SE(A)IR model (see Figure 1)
depend on a number of parameters reflecting the characteristics
of the epidemic: more precisely, β > 0 is the infectivity rate,
or probability of contagion, r the number of contacts per day
of infectious and susceptible cohorts, η = 1/Tinc the incubation
rate in days, the reciprocal to the expected time of incubation of
the disease, γ = 1/Trec the expected recovery rate, Trec being
the expected number of recovery days, and µ the mortality rate.
The latter three parameters (incubation, recovery, and mortality
rates) are strongly pathogen dependent and to some extent
sensitive to factors like demographics and co-morbidities, but
for modeling purposes, they can be considered independent of
time. Arguably, the most important parameter is the product βr,
controlling the rate at which susceptible individuals are infected.
While the value of β depends mostly on the infectivity power of
the virus, the factor r, accounting for the frequency of contacts

between infectious and susceptible individuals, may change
significantly with population-level behavior, whether voluntary
or enforced. In fact, the effectiveness of the measures can be
directly monitored by estimating this quantity, and in particular,
the time dependency of it.

In the methodology that we propose, for each subpopulation
of individual counties, the product rβ is assumed to be time
dependent, and is estimated using a Bayesian filtering technique
known as particle filtering (PF), discussed by Liu and West
[29] and Arnold et al. [30–32]. In PF, thousands of realizations
(particles) of the model, each consisting of its own set of
parameter values and cohort sizes, simulate the day-by-day
propagation of the epidemic. Each day, the predictions of the
particles for the next day are computed and compared to the
new data, and particles whose predictions are in better agreement
with the data are retained and replicated, while particles which
explain the data less well are discarded. After this “survival
of the fittest” step, the replicated particles are proliferated
through a randomization, guaranteeing a rich variability of
the particle cloud to account for the variations in the next
time step. Since the effects of changing mitigation strategies
are reflected in the value of rβ , this quantity is updated daily,
thus providing a time series for each particle. As pointed out,
unlike in standard epidemiologic model, we do not assume that
the quantity is constant. In our current model, the parameter
rβ is estimated by particle filtering while the values of η and
γ are kept fixed. A systematic study of the sensitivity of the
results to the values of η and γ , reported in Calvetti et al. [28]
indicate that in general, while changes in the incubation and
recovery time can be seen in the estimate of the reproduction
number R0, the predicted number of new infections and the
ratio of asymptomatic to symptomatic cases remains essentially
unaltered as the parameters vary within a range. The PF
model, informed with the daily new number of confirmed
cases, estimates an approximate 0.5 ratio of asymptomatic to
symptomatic infectious cases over a wide range of different
communities, which is in full agreement with the CDC suggestion
on May 26, 2020 [33] that approximately 35% of the infectious
individual do not develop symptoms. However, according to the
model, most infections are due to the asymptomatic cohort. The

FIGURE 1 | The compartment diagram of the SE(A)IR model. Compared to the standard SEIR model, the flux E → R has been added, and the non-linear interaction

term is modified by the replacement I → E + fI. Here, 0 < f < 1 accounts for the fact that diagnosed symptomatic individuals are in partial isolation, contributing less

to the infection than the asymptomatic individuals (A) embedded in the exposed cohort E of the model. In the presented calculations, the value f = 0.1 is used.
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estimation of the model parameters from daily counts rather
than from the cumulative number of infections has been shown
to reduce the bias as well as to lead to better forecasts and
uncertainty quantification [34].

The data used for estimating the parameters and the cohort
sizes comprise the daily count of confirmed new, presumed
symptomatic, infections I, while no direct data of the cohort
size of asymptomatic and exposed E(A) is available. Therefore,
estimating the time evolution of the state vector (S,E(A), I,R)
together with the parameter rβ provides direct information
about the number of asymptomatic individuals. One of the key
parameters of interest to us is the ratio ρ = E(A)/I. It turns out
that this ratio tends toward a time dependent equilibrium value,
ρ → ρ∗, as the infection progresses, allowing us to define in a
very natural way an equivalent of the basic reproduction number
R0 of the SE(A)IR model. In the classical SIR model, the basic
reproduction number is defined as a dimensionless quantityR0 =
(rβ)/(γ + µ), and a wealth of literature exists for generalization
and estimation of R0 for more complex models, see, [35–40], as
well as some critical views on its usefulness, as in Li et al. [41]. For
the current model,

R0 = ρ∗
η

γ + µ
,

and the equilibrium value ρ∗ can be estimated in a
straightforward manner if an estimate for the product βr is
available, see Figure 5 for further clarification of the symbols.
The novel R0, which depends on rβ and therefore on time, has a
similar role in the model as it has in the SIR model, that is, the
infections spreads only if R0 > 1, thus giving a useful summary
for policy makers of the success of the mitigation efforts.
Conversely, the above formula provides a means of estimating
ρ∗ and thereby the size of the asymptomatic cohort if R0 has
been estimated from the data, e.g., by fitting an exponential to
the cumulative data of infected individuals.

One of the advantages of the particle filtering approach over
data fitting approaches is that it allows us to assess the model
uncertainties. At each time step, thousands of realizations of
every quantity of interest are computed, and of those realizations,
one can generate histograms, posterior intervals of different
degrees of belief, expectations, and median values. In particular,
the time traces of the quantities are not summarized in a single
curve but are presented as posterior envelopes, or credible
envelopes of given level of belief. Moreover, the particles can
be propagated in the future to provide predictive envelopes of
future data.

2.4. Metapopulation Network Models of
COVID-19 Spread
The travel of individuals carrying the virus between communities
is the main engine for spreading pandemics, both at the local and
global level. The pattern followed by the spread of COVID-19,
similar to that of the 1918 influenza, indicates that at first, the
flair-up occurs typically in larger cities with a high population
density, then moving to smaller, more rural communities when
the number of new infected in the cities has already decreased.
The predictions of mathematical models for the COVID-19

spread in a network of diverse connected communities can be
used to understand where the next hot spots are likely to occur,
and to design mitigation measures to keep the epidemic from
overwhelming the healthcare system.

As pointed out in the literature [8], well-mixed compartment
models have a limited capability for explaining the dynamics of
the epidemics in large heterogenous populations, as they ignore
the local dynamics depending on population density, segregation
of diverse groups, and geographic separation of communities.
In line with the county by county reporting of infections,
metapopulation network models (MNM) are an appropriate tool
to address the population inhomogeneity. To model the effect of
daily commuter traffic on COVID-19 spread, an MNM can be
designed as a directed graph where the counties constitute the
nodes and the weights of the directed edges are proportional to
the number of commuters between pairs of counties. Although
the epidemic within each county can be described locally with a
SE(A)IR model, the model cohorts need to be adjusted to reflect
the movement of individuals between counties, thus affecting the
infection dynamics.

The interaction between the subpopulations can be built
in the interaction term of the SE(A)IR model, see Figure 2

for an explanation. Infections in a given node arise through
contacts between susceptible residents of the node with infectious
individuals in target nodes of the commuting traffic, the
domiciliary node included, plus the infections that happen in the
home community, e.g., during weekends and evenings. These two
infection mechanisms are included in the model with weights
proportional to the average time spent in work/leisure outside the
home community and the time spent at home. Each community
has its own characteristic number rj of daily contacts, the number
being presumably higher in densely populated urban centers than
in sparsely populated rural communities with fewer interaction
opportunities. The value of rj will decrease in response to the
adoption and adherence to mitigation measures that discourage
group gatherings.

2.5. Two Network Models: Northeast Ohio
and Southeast Michigan
The methodology was tested with the daily updated infection
data corresponding to 18 counties in Northeast Ohio, listed
in Table S1, and with 19 counties in Southeast Michigan, see
Table S2. The comparison of the two regions is of particular
interest, as they both represent a population with similar
cultural background and to some extent similar demographics
and mixtures of dense urban areas, suburban commuter
communities and rural areas. However, the mitigation measures
were introduced slightly differently, and at a different stage of
the epidemic.

Commuter data was procured from the Census Bureau’s
American Community Survey (ACS) of 2015. In the ACS,
commuter data for the residents of each county was compiled that
quantified the number of residents leaving the county for work
in another county. The focus of this study was on the 18 county
region that comprises Northeast Ohio and the 19 county region
the comprises Southeast Michigan, therefore the commuting
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FIGURE 2 | Schematic representation of a network model with three nodes, with only the in-links and out-links of C1 included. The symbol njk indicates the number of

residents of node Cj commuting to node Ck , the home community being an option, and Nk is the size of the population residing in node Ck , while N̂k is the size of the

population working in the community Ck . The average number of daily contacts in community Ck is rk , ν is the fraction of time spent in the destination of commute, and

1− ν is the fraction of time spent in the home community. Only the expression for the rate of change of S1 is shown: The first term corresponds to infections through

contacts of the susceptible portion S1 of the residents in C1 that have occurred in the commuting destinations and the second to infections in the home community.

data was used for commuter traffic within these regions only.
This is integrated into our model by computing njk from the
data from the ACS of the number of people commuting from
county j to county k. Commuting data for counties outside of
the region of interest is not used in this model, but the region of
interests were chosen to envelop the urban centers of Northeast
Ohio, (e.g., Cleveland, Akron, Canton, and Youngstown)
and Southeast Michigan (e.g., Detroit, Flint, Ann Arbor,
and Lansing).

3. RESULTS

Before reporting the results with the metapopulation network
model, we present some of the preliminary results obtained
with particle filter method for each individual county. This
information captures the characteristics of the transmission
within a community prior to accounting for the contribution
from the mobility. A discussion of the computational details can
be found in the manuscript [28].

3.1. Parameter Estimation in Individual
Communities
To get a preliminary estimate of the transmission rate in
each individual county, we used the particle filter with the
daily new infections data from all of the 18 + 19 counties,
and generated credibility envelopes for: The infection
rate parameter βr, the ratio of the asymptomatic and
infected cohort sizes ρ = E/I, the R0 derived from the
estimated parameter βr. Figures 3, 4 shows the outcomes for
select counties.

In the sample calculations, the recovery and incubation times
were kept constants. The incubation and recovery times represent
average approximations, the novelty of the virus leaving reliable
values open to discussion [21]. Based on literature [42–44], we
use Tinc = 7 days for the incubation period. For the recovery
time, we use Trec = 21 days. An analysis of how changing Trec

and Tinc affects the estimated parameter values and estimated

relative sizes of the symptomatic and asymptomatic cohorts can
be found in Calvetti et al. [28]. The key important parameter, the
transmission rate βr, seems not to be overly sensitive to changes
in the parameters, and we found that, combined with the network
model, decreasing Trec from 21 to 14 days had minimal effects on
the predicted spread of the infection. Figure 5 sheds some light
on how the R0 changes if different values were used. Here, the
R0 value is plotted against the transmission rate with different
combinations of the two time constants.

Figure 6 illustrates of the prediction skill of the PF method.
In the figure, the last 10 days’ data are left out from the PF
update and the state/parameter estimation is stopped early.
Consequently, the state and parameter values for each particle
are propagated forward for 10 days without data-based updating,
and the predicted average of new cases for each particle is
calculated. These average values are used as means for a Poisson
process, and random realizations of predicted new cases for each
particle are computed. Finally, the predicted data are used to
calculate the predictive envelopes of a given level of belief. In
general, the true data may not fall in the predicted intervals,
but in general, the algorithm anticipates the trend rather well.
Observe that the predictions are not based on curve fitting, as
the dynamics are determined by the full state vector containing
components (susceptible and asymptomatic cohorts) that are not
directly observed.

3.2. Visualization of the Predictions of the
Network Model
One of the central questions in the network model is how to trace
the spreading of the infection between the nodes. To see if the
network model is realistic, we estimate the delay of the onset of
infection in the nodes after the infection is started in one of them.
To validate the results with real data, the infection is initiated in
the node with the first confirmed case: In Ohio, the first infection
was reported on 3/9/2020 in Cuyahoga County (Cleveland) and
in Michigan on 3/10/2020 in Wayne County (Detroit).
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FIGURE 3 | The daily new infection data from two counties, Summit County in Ohio (Akron) and Genesee County in Michigan (Flint). The blue envelopes represent the

50% (dark) and 75% (light) posterior model uncertainty of the expected value of new infections, and the red curve represents the median. The dark gray columns are

the number of deceased (not used in the estimation). The vertical gray shading indicates the period in which the state-wide mitigation measures were adopted (Ohio:

3/15/20–3/19/20, Michigan: 3/16/20–3/23/20). The number of particles is 5 000. In the model, the new infection count is assumed to be Poisson distributed around

the expected value.

FIGURE 4 | Sample outputs of the PF algorithm. The top row shows results based on daily new confirmed positive cases in Summit County (OH), and the second

row in Genesee County (MI). In each plot, the envelopes represent the 50% (dark) and 75% (light) posterior belief. From left to right: The estimate of the rate of

transmission βr, the ratio of number of asymptomatic and symptomatic individuals, and the estimated basic reproduction number R0. In the middle column, the

dashed curve represents the equilibrium value of the ratio, and in the right column, the horizontal dashed line indicates the critical value R0 = 1. The gray vertical

shading indicates the dates when the respective state started the social distancing measures. Observe that the drop in R0 and rβ appear with a lag of about a week.
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FIGURE 5 | The variation of R0 as a function of the transmission rate βr with respect to recovery time (left) and incubation time (right). The red arrows indicate the

direction of growth of the time constants Trec or Tinc, respectively. The derivation of the formula for R0 is given in Calvetti et al. [28]. In the form given here, it is implicitly

assumed that the infection is in its outbreak phase, and no herd immunity is present.

FIGURE 6 | Examples of the prediction skill of the PF method. The PF updating is stopped 10 days before the last data, and the particles are propagated using the

last update of the states as initial values, and corresponding estimates for the parameter βr. The predicted infections are drawn from Poisson distribution, and the 50

and 75% predictive intervals for the data are computed. The true data are shown as stem plots. Observe that the predicted trend corresponds well to the estimated

R0 shown in Figure 4.

3.2.1. Reference Case
Using the estimated transmission rates for the two regions of
interest, we are able to delineate differences in contact frequency
r between urban and rural counties. Contact frequencies for
each county were chosen to be in line with the peak estimated
transmission rate, which presumably corresponds to the contact
frequency before state issued stay-at-home orders were fully
in place. The simulation was then initiated with one infected
individual in Cuyahoga County andWayne County, respectively,
and run for 20 weeks.

Plotting the percentage of infected individuals relative to
the population over a map of the counties of interest in
Southeast Michigan and Northeast Ohio in Figure 7, we are
able to observe the dynamics of the spread of COVID-19
infections over the two regions. For Southeast Michigan, we
note the initial rise in infections in Wayne County, as well
as the two neighboring, densely populated communities of
Oakland County and Macomb County, which form the greater
Detroit metropolitan area. As the infection spreads in the
Detroit metropolitan area, surrounding counties begin to see a

rise in infection. However, this spread does not correlate with
physical proximity but rather with commuter traffic, as seen
with Lapeer County, a sparsely populated county physically
bordering Macomb County and Oakland County, however, with
no interstate connection to either. Lapeer County experiences a
spike in cases nearly 10 weeks after the initial infection in Wayne
County. As the infection takes hold in each county, the number
of the infected peaks before slowly decreasing, with differences
in the relative peak values due to the differing populations of
each county.

Observing the result of the Northeast Ohio simulations in
Figure 8, we find that the spread of infection takes longer to
fully realize in Cuyahoga County. This is in part due to the
lower estimated transmission rates for the set of Ohio counties,
reflecting a lower frequency of contacts. Once the infection has
taken hold in Cuyahoga County, the infection then spreads to
neighboring counties and grows in the urban population centers
of Mahoning, Stark, and Summit counties, as well as Lake and
Lorain counties, which contain suburban bedroom communities
that have highways that connect to Cuyahoga. Similarly to what
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FIGURE 7 | Map of the counties in the region of interest of (A) Southeast Michigan and (B) Northeast Ohio, where the color on the county corresponds to the fraction

of the population that is infected for the reference case of section 3.2.1.

FIGURE 8 | Plots of the relative (left to right) susceptible, exposed, infected, recovered, and deceased populations for the reduced traffic study (section 3.2.1) for (A)

Wayne, Genesee, and Sanilac counties in Southeast Michigan and (B) Cuyahoga, Summit, and Holmes counties in Northeast Ohio. Note the relative scale for the

y-axis.

was observed for Southeast Michigan, we note that the number
of the infected peaks quickly before subsiding at slower rate.

In Figure 8we plot the relative number of susceptible, exposed
(asymptomatic), infected, deceased, and recovered population
for three counties of differing population densities for both
Southeast Michigan and Northeast Ohio. In Michigan the focus
is on Wayne County (high density, population of 1, 257, 584),

Genesee County (medium density, population of 405, 813), and
Sanilac County (low density, population of 41, 170). We observe
the initial sharp spike from Wayne County, followed by a spike
in Genesee County. Sanilac County experiences its spike as
the number of infected decreases in both Wayne and Genesee
Counties. Note that the relative peak in infections is higher in
Wayne County and Genesee County than Sanilac County. This
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FIGURE 9 | Map of the counties in the region of interest of (A) Southeast Michigan and (B) Northeast Ohio, where the color on the county corresponds to the fraction

of the population that is infected for the reduced traffic study of section 3.2.2.

highlights the role of population density and contact frequency
in the propagation of the epidemic.

In Ohio, we chose to examine Cuyahoga County (high density,
population of 1, 235, 072), Summit County (medium density,
population of 541, 013), and Holmes County (low density,
population of 43, 960), which correspond roughly to the same
profile as Wayne, Genesee, and Sanilac Counties, respectively.
We observe that the relative peaks in infected population are
staggered, with Cuyahoga County experiencing the first spike
in infections, followed soon after by Summit County, and
eventually by Holmes County. We also note that the height of
the peak for relative number of infections is fairly similar for
both Cuyahoga and Summit Counties. That is in part due to
the relatively similar contact frequency within the two counties,
whereas Wayne County has a much higher contact frequency
than Genesee County. Holmes County, which has lower contact
rate and population, experiences amuchmilder peakmany weeks
after the peaks in the other two counties.

3.2.2. Reduced Traffic
In order the examine the role of commuting on the spread of the
disease, we run a simulation reducing the number of commuters
from other counties to 1% of the original amount, while keeping
the contact frequency unchanged inside each county. This would
be akin to nearly shutting down each county but allowing people
to continue to move about in their county. Plotting the relative
population of infected on the counties of each region in Figure 9,

we find a similar picture to the reference case for both Southeast
Michigan and Northeast Ohio, with the virus spreading initially
at the source of the infection before spreading to surrounding
counties. However, the speed at which the infection spreads to
surrounding counties is diminished.

Examining the curves in Figure 10 of the different SE(A)IR
compartments for the same previous three counties for each
region, we find the point in time when peak infections occur for
counties that are not the source of the infection to be delayed with
respect to the reference case. Note that in the reference case, the
nature of the network caused a 1 to 2 week delay in peak infection
for Genesee and Summit Counties with respect to Wayne and
Cuyahoga Counties, while in this reduced traffic scenario, the
delay was more prolonged with 3 to 4 weeks difference. The
overall peak of each of the curve remained similar in profile to
what was observed in the reference case. This study shows that
while the reduction in commuter traffic may delay the rise of
infection, it does not attenuate the severity of the disease.

3.2.3. Varying Contact Frequency
When estimating the transmission rate in the individual counties
using the reported cases, we noted an initial increase before
settling to a lower value. This decrease shortly follows the
promulgation of stay-at-home orders in both Michigan and
Ohio. To account for this, we present a simulation where the
frequency of contacts is varied such that it initially has the
higher value of the reference case before shifting to a lower
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FIGURE 10 | Plots of the relative (left to right) susceptible, exposed, infected, recovered, and deceased populations for the reduced traffic study (section 3.2.2) for (A)

Wayne, Genesee, and Sanilac Counties in Southeast Michigan and (B) Cuyahoga, Summit, and Holmes Counties in Northeast Ohio. Note the relative scale for the

y-axis.

contact frequency after 2 weeks. In Figure 11, we observe that
the virus initially spreads to the three counties that constitute
the core of the Detroit metropolitan region before the lower
contact frequency regime begins. After the introduction of the
lower contact frequency regime, the infection does not spread
to other surrounding counties and is contained to the three
core counties, as seen in Figure 12. In Ohio, the lower contact
frequency regime occurs before the virus is able to gain a foothold
in Cuyahoga County. In Figure 12, we notice a small growth in
the number of infected, but not enough to result in an appreciable
number of infected individuals in the Northeast Ohio region.
These simulations illustrate the pivotal role of contact frequency
in determining the trajectory of the disease.

3.2.4. Physical Distancing in Response to a Trigger

Case Prevalence
To illustrate how this network model can be used to evaluate
public health policies, we introduce a scenario where a triggered
physical distancing regimen is in effect. In this simulation, a
higher contact frequency regimen is maintained within each
county until the infection rate is above 100 per 100,000, at which
point the county shifts to a lower contact frequency regimen.
Applying this regimen to our network model, we observe in
Figure 13 that the number of infected initially increases rapidly
for the three counties that make up the Detroit metropolitan
region, before the regimen shift occurs. This adaptive regimen
yields lower overall rates of infection in all three counties
and keeps the infection from spreading throughout the region
without restricting mobility in any way. In Figure 14, we find
that while the infection does grow slightly, the switch to a
lower contact frequency causes a flattening of the curve. In the
analogous simulation for Northeast Ohio, the infection increases
in Cuyahoga County and spreads to other counties (Figure 13),
but the overall number of infected people at peak is much lower
than for the reference case and reduced traffic study.

4. DISCUSSION

The outbreak of SARS-CoV2 in Wuhan, China, and its rapid
spread within a few months across Europe and the United States
has been closely followed in the hope to find ways to control
and contain the pandemic. One important question is, where the
pandemic will hit next, and how severely the next hotspot will
be affected. The geographic pattern followed by the spread of
COVID-19 has been rather consistent. As the epidemic moves
into a region, the initial hotspots are typically urban centers
with large population density and high contact rates, then the
infection moves to less crowded communities, where the peak is
reached at a later time. The rapidly changing situation and the
need of swiftly updating the information based on the inflow of
new data underline the importance of dynamic rather than static
models, and the capability of model updating on a daily basis. The
proposed Bayesian particle filtering approach combined with a
metapopulation network model seeks to address these needs.

The Bayesian particle filtering algorithm is applied to a
model on the community level that merges the asymptomatic
pre-infected cohort and asymptomatic, infected, and infectious
cohort. While this model simplification does not correctly
account for the asymptomatic non-infectious period of COVID-
19 that may be of some importance in modeling the spread,
the significant gain is that the asymptomatic infectious cohort
becomes tractable for state estimation, and allows us to directly
infer on its size from the data consisting of only new infected
symptomatic cases. In particular, in contrast to existing models,
no assumptions about the relative sizes of the symptomatic and
asymptomatic cohorts are needed. Despite this shortcoming of
the model, a very promising feature is that our prediction of
this ratio perfectly matches the best current estimate released by
the CDC. We point out that adding the pre-infectious cohort in
the model without loosing the observability of the asymptomatic
cohort is not as straightforward as it may appear. Addressing this
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FIGURE 11 | Map of the counties in the region of interest of (A) Southeast Michigan and (B) Northeast Ohio, where the color on the county corresponds to the

fraction of the population that is infected for the varying contact frequency study of section 3.2.3.

FIGURE 12 | Plots of the relative (left to right) susceptible, exposed, infected, recovered, and deceased populations for the varying contact frequency study

(section 3.2.3) for (A) Wayne, Genesee, and Sanilac Counties in Southeast Michigan and (B) Cuyahoga, Summit, and Holmes Counties in Northeast Ohio. Note the

relative scale for the y-axis.

modeling challenge, and other technical challenges that the delay
introduces, will be topics of future work.

Our contribution to the understanding of the geographical
pattern of the COVID-19 transmission joins the spatial model
of transmission in England and Wales [45], that uses census
data from 2011 for population density and human mobility,

and estimates the parameters from the China outbreak data.
Our methodology and goals are close to those of the dynamic
metapopulation network model in Li et al. [23] based on a
network of cities in China. Because of the novelty of the
SARS-CoV-2, the assumptions about important epidemiological
parameters have been updated several times since the beginning
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FIGURE 13 | Map of the counties in the region of interest of (A) Southeast Michigan and (B) Northeast Ohio, where the color on the county corresponds to the

fraction of the population that is infected for the triggered physical distancing regimen scenario of section 3.2.4.

FIGURE 14 | Plots of the relative (left to right) susceptible, exposed, infected, recovered, and deceased populations for the triggered physical distancing scenario

(section 3.2.4) for (A) Wayne, Genesee, and Sanilac Counties in Southeast Michigan and (B) Cuyahoga, Summit, and Holmes Counties in Northeast Ohio. Note the

relative scale for the y-axis.

of the outbreak, including the prevalence of asymptomatic
transmission as well as incubation and recovery times, as
reflected in the settings of these earlier models. Mutations in
the pathogen as it moves from continent to continent may
require calibration of the parameter values for the geographical
region of interest. Importantly, our model does not rely on

parameters estimated from data from Asia or Europe, but
estimates them directly from the local data. The current study
concentrated on 18 counties in Northeast Ohio and 19 counties
in Southeast Michigan, representing a mix of urban, suburban
and rural setting. However, as the network is constructed
on the basis of publicly available mobility data from the US
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FIGURE 15 | Counties in the Michigan (A) and Ohio (E) networks, (Map data © 2020 Google) with the main highways traversing them (B,F). (C,G) show the new

number of infected on April 4, 2020 and on April 16, 2020, respectively, with the corresponding model predictions (D,H).

Census database, the model can be adapted to any county
level network.

As the results show, the time courses of the reproduction
number and the transmission rate parameter for the model
describing the dynamics of the epidemics in each node,
estimated from the daily counts of recorded infections, vary
significantly from county to county, following a pattern that
can be understood in terms of the network connectivity and
social distancing measures. In particular, the time courses of the
transmission rate in the individual counties clearly demonstrate
the effect of mitigation measures on this parameter, mostly in
the form of reduced mobility and social distancing. During the
observation period included in this study, Ohio started the Stay
at home Ohio program on March 15, 2020, and canceled the
Democratic primary elections, originally scheduled forMarch 17.
A similar Stay at home Michigan program became effective on
March 23, 2020, although the Michigan primary elections had
taken place, as scheduled, on March 10.

The individual county level models were used to inform
the two network models, and it was found that the computed
simulations reproduce satisfactorily the observed spreading
patterns in both cases, showing the characteristic pattern of the
epidemic moving from dense urban centers outward, following
the highways that directly affect the commuter traffic between the
communities. Figure 15 shows the block of counties in Michigan
(a) and Ohio (e) in the network models and the main highways
traversing them (Figures 15B,F). Panels Figures 15C,G show
the daily reported number of infections on April 4, 2020 in
the Michigan counties, and on April 16, 2020 in the Ohio

counties, which are remarkably similar to the model predictions,
shown in Figures 15D,H. The numerical simulations with altered
rates of daily contacts clearly demonstrate the effectiveness
of social distancing measures in slowing down the epidemics.
In particular, two findings are worth highlighting: First, the
simulations demonstrate that compared to non-diversified social
distancing measures in all counties, equally effective is a strategy
in which social distancing measures are enforced only if the
relative frequency of infected individuals exceed a certain
threshold. This finding suggests an efficient and economically
less burdensome alternative to state-wide blanket mitigation
measures, however, it relies heavily on availability of extensive
testing. Our model echoes the finding in Karatayev et al. [46] that
local re-opening, and re-closing according to the prevalence of
infections can be a very effectivemitigationmeasure evenwithout
limiting intercounty communication. The second finding, in light
of the simulations, is the relative inefficiency of travel restrictions.
While mobility is undoubtedly the key factor in spreading of
epidemics, somewhat counterintuitively, the volume seems to be
only a secondary factor, determining how fast the spreading takes
place, and not how widely the epidemics spreads. This finding is
in line with the discussion in earlier [13–16], and more recent
[47] literature.

The current model does not include demographic information
such as age structure of the population that is believed to be an
important factor in predicting the severity and outcome of the
epidemics for different communities. The demographic data can
be introduced in the metapopulation model in a straightforward
manner, and preliminary tests are underway. Simultaneous and
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parallel estimation of the parameters of connected communities
will be part of the future work. As demonstrated in earlier articles
by the authors [48], the particle filtering technique is particularly
amenable for parallel computing.
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