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Cryptocurrencies are distributed systems that allow exchanges of native (and non-)

tokens between participants. The availability of the complete historical bookkeeping

opens up an unprecedented possibility: that of understanding the evolution of a

cryptocurrency’s network structure while gaining useful insights into the relationships

between users’ behavior and cryptocurrency pricing in exchange markets. In this article

we review some recent results concerning the structural properties of the Bitcoin

Transaction Networks, a generic name referring to a set of three different constructs:

the Bitcoin Address Network, the Bitcoin User Network, and the Bitcoin Lightning

Network. The picture that emerges is of a system growing over time, which becomes

increasingly sparse and whose mesoscopic structural organization is characterized by

the presence of an increasingly significant core-periphery structure. Such a peculiar

topology is accompanied by a highly uneven distribution of bitcoins, a result suggesting

that Bitcoin is becoming an increasingly centralized system at different levels.

Keywords: blockchain, bitcoin, complex networks, centralization, inequality, null models

1. INTRODUCTION

A cryptocurrency is an online payment system for which the storage and verification of
transactions—and therefore the safeguarding of the system’s consistency itself—are decentralized,
i.e., do not require the presence of a trusted third party. This result can be achieved by securing
financial transactions through a clever combination of cryptographic technologies [1].

Bitcoin, the first andmost popular cryptocurrency, was introduced in 2008 by Satoshi Nakamoto
[2]. It consists of a decentralized peer-to-peer network to which users connect to exchange property
in the account units of the system, i.e., to perform transactions of bitcoins. Each transaction
becomes part of a publicly available ledger, the blockchain, after having been validated by so-called
miners, i.e., users who verify the validity of issued transactions according to the consensus rules
that are part of the Bitcoin protocol [3, 4]. A new block, containing transactions known to the
miner since the last block, is “mined” every 10 min on average, thereby adding new transactions
to the blockchain; thus these transactions are “confirmed,” in turn enabling users to spend the
bitcoins they received through them1. The cryptography protocols that Bitcoin rests upon aim
to prevent the so-called double-spending problem, i.e., the possibility of the same digital token
being spent more than once in the absence of a central party that guarantees the validity of the
transactions [1, 2]; remarkably, the transaction-verification mechanism Bitcoin relies on allows
its entire transaction history to be openly accessible, a feature that, in turn, allows researchers to
analyze Bitcoin transactions in different network representations.

1In practice, the so-called “6 confirmations” rule is followed: once a transaction is included in a block that is followed by at

least six additional blocks [5], the transaction can be safely considered confirmed.
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The gain in Bitcoin’s popularity has given rise to new
problems for its community, including (i) the lack of scalability
of the transaction-verification method, i.e., the relatively low
maximumnumber of transactions that can be verified per second,
especially when compared with mainstream competitors, such as
centralized payment networks, (ii) the increased concentration of
mining power in mining pools, which implies that the verification
mechanism in the network is becoming less and less distributed,
and (iii) the tendency of users to hoard. In order to overcome
these problems, which threaten the overall functioning of Bitcoin
as a medium of exchange, new instruments have been adopted.
Proposed in 2015 [6], the Bitcoin Lightning Network (BLN) is a
“Layer 2” protocol that can operate on top of blockchain-based
(Bitcoin-like) cryptocurrencies by creating bilateral channels for
off-chain payments which are then settled concurrently on the
blockchain, once the channels are closed. As both the transaction
fees and the blockchain confirmation are no longer required, the
network is spared from avoidable burdens; moreover, the key
features of Bitcoin, i.e., its decentralized architecture, its political
organization, and its wealth distribution, are no longer sacrificed,
while the circulation of the native assets is enhanced.

Bitcoin is almost 10 years old; however, while a large amount
of literature concerning either the purely financial or the purely
engineering aspects of it exists (e.g., prediction of the exchange
rate between Bitcoin and the US dollar [7], statistical properties
of the exchange rate [8], statistical properties of Bitcoin daily
log-returns [9], comparison of Bitcoin volatility with that of the
exchange rates of major global currencies [10, 11], identification
of factors influencing the Bitcoin price [12], predictability of
the Bitcoin price via machine-learning techniques [13], the
interplay between social interactions and movements of the
Bitcoin price [14, 15], and the problem of de-anonymization of
Bitcoin users [16–20]), only recently have researchers started to
investigate the structural properties of Bitcoin. In Kondor et al.
[21], the authors consider the network of transactions between
addresses at the weekly time scale, showing the emergence
of power-law distributions and that the number of incoming
transactions reflects the wealth of nodes; in Javarone and Wright
[22], the network of transactions between users is studied
at the macroscale, in order to check for its small-worldness;
in Parino et al. [23], the authors investigate the network of
international Bitcoin flows, identifying socio-economic factors
that drive Bitcoin adoption across countries. In general, however,
the works analyzing Bitcoin from a network perspective provide
a quite limited view of its evolution, focusing either on a single
representation of the network or on a relatively short period of
time; even those studies that address the problem from a wider
perspective [24, 25] are often limited to a purely descriptive
analysis and do not compare empirical observations with the
outcomes of proper models.

In this article we summarize the results of three papers
[26–28], providing a comprehensive overview of the empirical
traits that characterize Bitcoin evolution and framing them
within models rooted in statistical physics. In Bovet et al.
[26], the authors analyzed the local properties of two Bitcoin
representations, the Bitcoin Address Network (BAN) and the
Bitcoin User Network (BUN), and looked for the presence

of correlations between (exogenous) price movements and
(endogenous) changes in the topological structure of the
networks. In Bovet et al. [27], the mesoscale structure of the
BUN is examined; particular attention is paid to identifying the
best network model able to describe the structure; in addition,
the same exercise as above is carried out, i.e., comparison of the
evolution of purely structural properties and the appearance of
price bubbles in a cyclical fashion. Lastly, in Lin et al. [28], the
evolution of the BLN’s topology is investigated, revealing that the
BLN is becoming an increasingly centralized system and that the
“capital” is becoming increasingly unevenly distributed.

2. DATA

As previously mentioned, Bitcoin relies on a decentralized public
ledger, the blockchain, that records all transactions between
Bitcoin users. A transaction is a set of input and output addresses;
the output addresses that are “unspent,” i.e., not yet recorded
on the ledger as input addresses, can be claimed—and therefore
spent—only by the owner of the corresponding cryptographic
key. This is the reason one speaks of pseudonimity: an observer
of the blockchain can see all unspent addresses but cannot link
them to the actual owners.

2.1. The Bitcoin Address Network (BAN)
The BAN is the simplest network that can be constructed from
the blockchain records. From a technical point of view, it is a
directed weighted graph whose nodes represent addresses; the
directions and weights of the links between nodes are provided by
the input-output relationships defining the transactions recorded
on the blockchain. The BAN was considered over a period of
9 years, from 9th January 2009 to 18th December 2017, at the
end of which the data set consisted of 304,111,529 addresses,
between which a total number of 283,028,575 transactions were
performed. In terms of traded volume, the transactions between
addresses amounted to 4,432,597,496 bitcoins.

2.2. The Bitcoin User Network (BUN)
Since the same owner may control several addresses [18], one
can define a network of “users” whose nodes are clusters of
addresses. These clusters are derived by implementing different
heuristics provided by the state-of-the-art literature [16, 17, 29,
30]. The “user networks” thus obtained should not be regarded as
perfect representations of the actual networks of users, but rather
as attempts to group addresses while minimizing the presence
of false positives. Two heuristics have been employed here:
the multi-input one (based on the assumption that addresses
appearing as input to the same transaction are controlled by the
same user) and the change address one (based on the assumption
that a new address appearing as output of a transaction and with
the smallest amount of transferred money must belong to the
input user). The BUN was considered over the same period as
the BAN (i.e., 9 years from 9th January 2009 to 18th December
2017), at the end of which the data set consisted of 16,749,939
users, between which a total number of 224,620,265 transactions
took place. In terms of traded volume, the transactions between
users amounted to 3,114,359,679 bitcoins.
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2.3. The Bitcoin Lightning Network (BLN)
The BLN is constructed similarly to the way the BAN is defined.
It is a directed weighted graph whose nodes are addresses
exchanging bitcoins on “Layer 2.” Three different representations
of the BLN have been studied so far: the daily, the weekly, and
the daily-block representations. While a daily/weekly snapshot
includes all channels that were found to be active during that
day/week, a daily-block snapshot consists of all channels that
were found to be active at the time the first block of the day
was released (hence, the transactions considered for the daily-
block representation are a subset of those constituting the daily
representation). The BLN was considered over a period of 18
months, from 14th January 2018 to 13th July 2019, at the end
of which the network consisted of 8,216 users, 122,517 active
channels, and 2732.5 transacted bitcoins.

2.4. Notation
Although information about the magnitude of transactions is
available, the BAN and the BUNwere analyzed as binary directed
networks; as such, they are completely specified by their binary

asymmetric adjacency matrices, A
(t)
BAN and A

(t)
BUN, at time t. The

generic entry a
(t)
ij is equal to 1 if at least one transaction between

address (user) i and address (user) j takes place, i.e., if bitcoins
are transferred from address (user) i to address (user) j, during
the time snapshot t and is equal to 0 otherwise. The BLN, on
the other hand, is a weighted undirected network, represented

by a symmetric matrix W
(t)
BLN whose generic entry w

(t)
ij = w

(t)
ji

indicates the total amount of money exchanged between i and j,
across all channels, at time t; here, we will focus mainly on its

binary projection B
(t)
BLN, whose generic entry is b

(t)
ij = b

(t)
ji = 1 if

w
(t)
ij = w

(t)
ji > 0 and b

(t)
ij = b

(t)
ji = 0 otherwise.

3. RESULTS

3.1. The Bitcoin Address Network and the
Bitcoin User Network
Let us start by reviewing results on the BAN and the BUN at the
weekly time scale. Similar results have been obtained for the BAN
and the BUN at the daily time scale [26].

3.1.1. Basic Statistics
We begin by commenting on the evolution of some basic
statistics characterizing the BAN and BUN that, as noted
elsewhere [19], have started to evolve in amore stationary fashion
since mid-2011. As Figure 1 shows, both the number of nodes
N and the number of links L =

∑

i

∑

j( 6=i) aij increase steadily

over time, irrespective of the representation considered; the link
density d = L

N(N−1)
, however, decreases, meaning that the system

is becoming sparser. The dependence of d on N can be better
specified, from a mathematical point of view, upon observing

that the average degree kin = kout =

∑

i

∑

j(6=i) aij

L = L
N is either

constant (for the BUN) or limited (for the BAN) over time [26];
hence, it follows that L ∝ N and d ∼ N−1.

3.1.2. Degree Distributions
Generally speaking, both out-degrees and in-degrees are
characterized by heavy-tailed distributions, indicating that a large
number of low-connectivity nodes coexist with a few hubs whose
degree is several orders of magnitude greater. A visual inspection
of the functional form of the degree distributions suggests that
the out-degrees distribution follows a power law [26, 31]. To test
this hypothesis Bovet et al. [26] employed an algorithm based
on a double Kolmogorov-Smirnov statistical test [32]; they found
that the hypothesis above cannot be rejected, at a 0.05 confidence
level, for almost half of the considered snapshots.

Of particular interest is the evolution of the out-degrees
standard deviation, especially in regard to its informativeness
about exogenous events. As an example, consider the failure
in February 2014 of Mt. Gox, a quasi-monopolist exchange
market at the time. This event deeply affected the overall
Bitcoin structure: the percentage of snapshots for which the null
hypothesis (that the out-degrees distribution follows a power law)
can be rejected was ≃ 50% before February 2014 and dropped to
≃ 25% afterwards.

Bovet et al. [26] also argued that the presence of heavy-tailed
distributions may be explained by a mechanism similar to that of
preferential attachment: new, or occasional, users “preferentially”
connect to already well-connected nodes (exchange markets,
utility providers, etc.), thus leading to the formation of super-
hubs. Elsewhere it has been argued that the related mechanism
known as “fittest-gets-richer” or “good-gets-richer” [33] may be
also at work, with the computational resources of a node playing
the role of its fitness [22].

3.1.3. Bitcoin Structure vs. Bitcoin Price
The result concerning the evolution of the out-degrees
distribution suggests that the Bitcoin network structure indeed
carries signatures of exogenous events. As in this case, the non-
structural quantity par excellence is represented by the price of
the currency, it may be of interest to look for the presence
of correlations between the evolution of the price and the
evolution of purely topological quantities. Justification for such
an analysis rests upon the simple consideration that the price
of a cryptocurrency is ultimately related to the behavior of
users whose “network” activity translates into that of establishing
connections with other nodes, whence our expectation of finding
some traces of the aforementioned correlations.

The simplest analysis is based on drawing scatterplots of the
network size and network link density vs. the Bitcoin price (in
USD). As Figure 2 shows, a clear trend appears, indicating that
the price and the network size N (respectively, the link density
d) are overall positively (respectively, negatively) correlated
throughout the entire Bitcoin history. Notice, however, the trend
inversion that occurs immediately after the Mt. Gox failure; it is
a consequence of the prolonged price decrease observed in 2014–
2016, during which the network size increased by almost one
order of magnitude.

To further confirm the presence of a double regime, Bovet
et al. [26] inspected the correlation between the moments of the
out-degrees distribution and the Bitcoin price over time. To this
end, the so-called “ratio of price to its moving average” (RPMA)

Frontiers in Physics | www.frontiersin.org 3 December 2020 | Volume 8 | Article 286

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Vallarano et al. Bitcoin Transaction Networks

FIGURE 1 | Evolution of basic statistics, i.e., the number of nodes (A,B) and the link density (C,D) for two Bitcoin network representations, i.e., the BAN (A,C) and the

BUN (B,D) at the weekly time scale, from July 2010 to 18th December 2017 (i.e., for networks with at least 200 nodes). Although the network size increases, it

becomes sparser (irrespectively from the considered representation). Similar results are observed for the BAN and the BUN at the daily time scale. See also Bovet

et al. [26].

indicator was defined:

RPMAt = 100 log10

(

Pt
1
τ

∑t−1
s=t−1−τ

Ps

)

, (1)

where τ represents a tunable temporal parameter. As shown in
Bovet et al. [26], the standard deviation and the kurtosis diverge
as the network size becomes larger than the value corresponding
to the Mt. Gox failure, thus confirming the “two regimes”
hypothesis. Moreover, as Figure 2 shows, larger values of the
moments (observed after theMt. Gox failure) correspond to price
drops, while temporal snapshots corresponding to smaller values
of the same quantities seem to be characterized by price increases.

A multivariate Granger test [34] was also carried out to unveil
possible lagged correlations hidden in the data (see Figure 5 in
Bovet et al. [26]). For this purpose, the data were split into two
sub-samples, corresponding to the time periods 2010–2013 and
2014–2017, and the number of nodes N, the number of links L,
and the higher moments of the empirical out- and in-degrees
distributions were related to the log-returns of the Bitcoin price
(in USD) within each sub-sample. To sum up, when the BUN
is considered on the weekly time scale, a positive feedback loop
occurs between N and the price log-returns, whereas on the daily
time scale a price increase predicts an increase in the number of
nodes N but not vice versa. The causality structure is consistent
within the two sub-samples.

3.1.4. Analysis of the BUN Mesoscale Structure
We now review the results concerning the mesoscale structure
of the BUN. A recently proposed method [35] based on
the surprise score function was adopted by Bovet et al. [27]
to assess the statistical significance of a peculiar mesoscale
organization known as the core-periphery structure. According
to the interpretation proposed in de Jeude et al. [35], revealing
the core-periphery structure by minimizing the surprise means
distinguishing the partition that is least likely to be explained by
the null model known as the random graph model (RGM) relative
to the null model known as the stochastic block model (SBM); see
also Appendix A. As Figure 3 shows, a core-periphery structure
is indeed present; more precisely, during 2014–2015 the core
size amounts to ≃ 30% of the total network size; but after 2016
it seems to shrink back to 2010–2013 levels. The presence of a
core-periphery structure indicates that the BUN is characterized
by subgraphs with very different link densities—evidence that
cannot be accounted for by a model, such as the RGM, with just
one global parameter.

A closer inspection of the BUN core-periphery structure
reveals it to be even richer. In fact, the core portion of the BUN is
the strongly connected component (SCC) of a bow-tie structure
whose remaining portions (the IN and OUT components) make
up the BUN periphery [27]. More specifically, while the SCC is
the set of nodes that are mutually reachable (i.e., there exists a
directed path from any node to any other node within the SCC),
the IN and OUT components are defined, respectively, as the
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FIGURE 2 | Correlation between the Bitcoin price in USD, the basic statistics (number of nodes and link density -A,B) and the moments of the out-degrees

distribution (C,D) for the BUN at the weekly time scale. Additionally, each dot representing an observation is colored according to the value of the Ratio between the

current Price and its Moving Average (RPMA) indicator. The vertical, dashed line coincides with the bankruptcy of Mt. Gox. Purely structural quantities are correlated

with exogenous quantities as the Bitcoin price; see, for example, the evolution of the out-degrees standard deviation whose larger values (observable after the Mt.

Gox failure) correspond to price drops. See also [26].

set of nodes from which the SCC can be reached and the set
of nodes that can be reached from the SCC. Hence, the picture
provided by the evolution of the core-periphery structure can be
further refined as follows: since 2016 both the SCC and the OUT
component have shrunk while the IN component has become the
dominant portion of the network [27]. Other SCCs are visible but
are negligibly small relative to the largest one, which seems to
indicate that they are, in fact, single nodes pointing to (or pointed
to by) hubs.

An additional analysis aimed at better quantifying the extent
to which a generic, purely topological quantity X and the Bitcoin
price are related can be carried out by plotting the evolution of

the temporal z-score

z
(t)
X =

X(t) − X

sX
, (2)

where X =
∑

t
Xt

T is the mean over a sample of values covering
the period T before time t (in our case, the year before t) and

sX =

√

X2 − X
2
is the corresponding standard deviation. For

example, the choice X = σ [kout] allows price drawdowns to
be revealed and, in some cases, anticipated [26]; in the 3-years

period 2010–2012, as well as after 2017, the price rises as z
(t)
σ [kout]

increases, whereas drawdowns occur in periods during which

Frontiers in Physics | www.frontiersin.org 5 December 2020 | Volume 8 | Article 286

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Vallarano et al. Bitcoin Transaction Networks

FIGURE 3 | Evolution of the percentage of nodes belonging to the core portion of the BUN on the weekly time scale. During 2012–2013 the core portion of the BUN

steadily rises until it reaches ≃ 30% of the network; then, during 2014–2015, it remains fairly constant; during the last 2 years covered by our data set (2016–2018),

the core portion of the BUN shrinks and the percentage of nodes belonging to it falls back to pre-2012 levels. The vertical dashed line coincides with the bankruptcy

of Mt. Gox.

z
(t)
σ [kout]

decreases. Other possible choices are X = Ncore, the

number of core nodes, and X = r, the network reciprocity,

defined as r =

∑

i

∑

j(6=i) aijaji
∑

i

∑

j(6=i) aij
, i.e., the percentage of links having

a “partner” pointing in the opposite direction. Figure 4 plots
the evolution of the temporal z-scores for Ncore and r. Overall,
the two trends show some similarities, being characterized by
peaks that correspond to so-called bubbles, i.e., periods of
“unsustainable” price growth [36]; interestingly, such periods are
characterized by values of the inspected topological quantities
which are significant also in a statistical sense, as demonstrated
by the values of the corresponding temporal z-scores (in fact,
z(t) ≥ 2 in both cases). Moreover, peaks are also revealed in 2014–
2016, thus signaling some kind of “activity” missed by purely
financial indicators (e.g., the RPMA).

3.2. The Bitcoin Lightning Network
Let us now move on to results concerning the BLN.
In what follows we will focus on the daily-block
snapshot representation.

3.2.1. Basic Statistics
As observed for the BAN and the BUN, both the number of
nodes N and the number of links L =

∑

i

∑

j(>i) bij of the BLN

increase steadily over time, while the network becomes sparser.
Interestingly, however, the evolution of the BLN link density
seems to point to the presence of two regimes. As Figure 5 shows,
during the first phase (i.e.,N ≤ 103), L increases linearly inN and
the link density is well-described by the functional dependence
d ∼ N−1; afterwards, the decrease in link density slows down
and seems to indicate that L has started to grow in a super-linear
fashion with respect to N.

3.2.2. Analysis of the BLN Mesoscale Structure
Although blockchain-based systems are designed to eliminate
the need for a central authority to check the validity
of exchanges between nodes (i.e., transactions in the case

of cryptocurrencies) and authorize them, it is shown in
Lin et al. [28] that centralization may still be recovered
at a purely structural level. More precisely, the authors
considered two sets of quantities. First, they computed the
Gini coefficient

Gc =

∑N
i=1

∑N
j=1 |ci − cj|

2N
∑N

i=1 ci
(3)

for four centrality measures, the degree, closeness, betweenness,
and eigenvector centrality (respectively denoted by the symbols
ci = kci , c

c
i , b

c
i , and eci ; see also Appendix B and [37]),

and plotted it against the number of nodes. As shown in
Lin et al. [28], Gc increases for three out of the four
measures, namely the degree, betweenness, and eigenvector
centrality, but not for the closeness centrality, whose trend
remains basically flat. Since the Gini coefficient quantifies the
(un)evenness of a distribution, this result suggests that the
centrality of the nodes is becoming more and more unevenly
distributed. A concrete example is provided by the value Gkc

reaching ≃ 0.8 in the last snapshot of our data set; this
value is compatible with the picture of a network where 90%
of connections are incident to 10% of the nodes. In other
words, nodes exist that play the role of hubs, i.e., vertices
with a large number of connections, which are crossed by a
large percentage of paths and are connected to other well-
connected nodes.

Additionally, Lin et al. [28] computed the so-called
centralization indices, which encode comparisons between
the structure of a given network and that of a reference
network, i.e., the “most centralized” structure; see also
Appendix B. For the degree, closeness, and betweenness
centrality measures, it is the star graph; for the eigenvector
index, the star graph does not represent the maximally
centralized structure, although it is retained for consistency
with the other quantities. The evolution of the centralization
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FIGURE 4 | Evolution of the temporal z-score for the number of core nodes (top panel) and the reciprocity (bottom panel) for the BUN weekly representation. Shaded

areas indicate so-called bubbles, i.e., periods of price increase according to Wheatley et al. [36]. Additionally, each dot representing an observation is colored

according to the value of the ratio between the current price and its moving average (RPMA) indicator. Overall, the two trends show some similarities, with peaks

clearly visible in correspondence to so-called bubbles, identified by the shaded areas (see also Wheatley et al. [36]). Interestingly, these quantities are also significant in

a statistical sense, as the temporal z-scores reach values of z(t) ≥ 2.

indices indicates that the BLN is evolving not toward a star
graph (which is indeed a too-simplistic picture to faithfully
describe the BLN topology) but toward a suitable generalization
of it, i.e., the core-periphery structure [28] (see also later).
Incidentally, the presence of a core-periphery structure is
compatible with the aforementioned even distribution of
the closeness centrality, since by definition the closeness of
a core node does not differ much from the closeness of a
periphery node.

In Lin et al. [28] the observations concerning the evolution
of the centrality measures and the centralization indices
were also benchmarked against the predictions for the
same quantities output by the maximum-entropy null
model known as the undirected binary configuration model
(UBCM; see also Appendix C). To this end, the authors
explicitly sampled the ensembles of networks induced by
the UBCM [38, 39] and compared the ensemble average of
each quantity of interest with the corresponding empirical
value. For technical reasons, the authors adopted an iterative,

reduced algorithm to solve the system of equations defining
the UBCM,

ki(A) =

N
∑

j( 6=i)=1

xixj

1+ xixj
, ∀ i H⇒

x
(n)
k

=
k(A)

∑

k′ [f (k
′)− δkk′ ]

(

x
(n−1)

k′

1+x
(n−1)
k

x
(n−1)

k′

) , ∀ k (4)

which enabled them to solve the system of equations within
tens of seconds even for configurations with millions of
nodes [27]; see also Appendix C. As Figure 6 shows, this
comparison reveals that the UBCM tends to overestimate the
values of the Gini index for the degree, the closeness, and
the betweenness centrality measures and to underestimate
the values for the eigenvector centrality. This seems to point
to a non-trivial (i.e., not reproducible by just enforcing
the degrees) tendency of well-connected nodes to establish
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FIGURE 5 | Evolution of the total number of nodes N (A), total number of links L (B) and link density d = 2L
N(N−1) (C) for the BLN daily-block snapshot representation.

As for the BAN and the BUN, the position d ∼ N−1 well describes the link density dependence on N (D), at least for the snapshots for which N ≤ 103. See also

Lin et al. [28].

connections among themselves—likely with nodes having a
smaller degree associated with them. Such a disassortative
structure could explain the less-than-expected level of
unevenness characterizing the other centrality measures,
as the nodes behaving as “leaves” of the hubs would
basically have the same values of degree, closeness, and
betweenness centrality.

For the analysis of the centralization indices, Figure 6 shows
that the UBCM underestimates both the betweenness and the
eigenvector centralization indices; in other words, a tendency
toward centralization “survives” even after the information
encoded in the degrees is properly accounted for, letting the
picture of a network characterized by some kind of more-
than-expected “star-likeness” emerge. This observation can be
better formalized by analyzing the BLN mesoscale structure via
optimization of the surprise; as observed for the BUN, a core-
periphery structural organization, whose statistical significance
increases over time, indeed emerges [28] (see also Figure 7).

In Bovet et al. [27], the authors also adapted the iterative,
reduced algorithm cited above for the resolution of the directed
binary configuration model (DBCM; see also Appendix C).

3.2.3. A Quick Look at the Weighted Structure of the

BLN
A quick look at the weighted structure of the BLN yields two
notable observations: both the total amount of exchanged bitcoins
and the unevenness of their distribution increase. This trend is
confirmed by the evolution the Gini coefficient, whose value
reaches 0.9 for the last snapshots of our data set. On average, over
the entire period, about 10% (50%) of the nodes hold 80% (99%)
of the bitcoins at stake in the network [28].

4. DISCUSSION

The public availability of the complete history of Bitcoin
transactions allows researchers to analyze the structure
characterizing different transaction networks, to inspect the

inter-dependency between the network dynamics and the
Bitcoin price, and to gain insight into the behavior of Bitcoin
users. Still, understanding of the mechanisms underlying the
joint evolution of these three entities remains far from complete.

This paper provides an overview of the most recent results
on the topic. One of the main messages concerns the possibility
of retrieving signals of exogenous events by analyzing the
blockchain-induced transaction networks; the best example is
provided by the failure of Mt. Gox in 2014, an event that
strongly affected the structure of both the Bitcoin Address
Network and the Bitcoin User Network. From this point of
view, out-degrees have been found to represent particularly
informative properties: higher moments of the out-degrees
distribution (such as the standard deviation, skewness, and
kurtosis) diverge as the network size becomes larger than the
observed value corresponding to the Mt. Gox failure; moreover,
the out-degrees heterogeneity rises during periods of price
decline (and vice versa).

This result has been further refined by a Granger causality
analysis, revealing that during the years 2010–2012 an increase
in the out-degrees standard deviation caused a price decline [26].
This finding, in turn, suggests a sort of behavioral explanation
for the price dynamics exhibited in the early stages of Bitcoin:
during periods in which the price continuously increased, more
traders were attracted to the system; the later-joining ones, likely
performing only a few transactions, linked to the network hubs
(usually exchange markets), which gained a large number of
connections over these weeks, thus causing the price to rise
even further.

Interestingly, analysis of the Bitcoin Lightning Network
reveals the same trends as observed for the BAN and BUN,
namely the emergence of an uneven distribution of the centrality
and the wealth of nodes and of a statistically significant core-
periphery structure. These results suggest a tendency of the
Bitcoin “Layer 2” network to become less distributed, a process
having the undesirable consequence of making this off-chain
payment network less resilient to random failures, malicious
attacks, etc. The emergence of hubs may be a consequence of
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FIGURE 6 | Top panels: comparison between the observed Gini index for the degree (A), closeness (B), betweenness (C) and eigenvector centrality (D) on the x-axis

and their expected value, computed under the UBCM (y-axis) for the BLN daily-block snapshot representation. Bottom panels: comparison between the observed

degree- (E), closeness- (F), betweenness- (G) and eigenvector- (H) centralisation measures and their expected value computed under the UBCM. Once the

information contained into the degree sequence is properly accounted for, a (residual) tendency to centralisation is still visible, letting the picture of a network

characterised by some kind of more-than-expected ’star-likeness’ emerge. See also [28].

FIGURE 7 | Core-periphery structure of the BLN daily-block representation on day 17 (left panel) and on day 35 (right panel), with core nodes shown in red and

periphery nodes in green. Adapted from Lin et al. [28].

the way the BLN is designed: as a route through the network
must be found and longer routes are more expensive (fees are
charged for the gateway service provided by intermediate nodes),

any two BLN users will search for a short(est) path; at the same
time, nodes have the incentive to become as central as possible,
in order to maximize the transaction fees they can earn. Hubs
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may thus have emerged as a consequence of the collective action
of users exhibiting one of the two aforementioned behaviors—
not surprisingly, since the very beginning of the BLN’s history.
Regarding the interconnectedness of hubs, previous results have
shown that mechanisms aimed at maximizing the centrality of
agents give rise to a core-periphery structure (regardless of the
notion of centrality the agents attempt to maximize) [40, 41].
As a final remark, we also note that the presence of “centrality
hubs” seems to be the source of another peculiarity of the BLN
structure, i.e., its small-worldness (a feature already revealed by
previous studies [42]).

The results reviewed in this article ultimately—and
consistently—point to a tendency toward centralization,
which has been observed in the Bitcoin network structure
at different levels [28, 43] and is evidence that deserves to
be investigated in greater detail. A natural extension of the
present work is to analyze the weighted counterparts of the
three constructs considered here. Of particular interest would be
analysis of the weighted centrality measures and centralization
indices considered in Lin et al. [28], the outcome of which
would help clarify to what extent the observation that binary and
weighted quantities are usually correlated in financial systems
holds true for cryptocurrencies as well. Other promising avenues
of research concern the analysis of different cryptocurrencies

and other blockchain-based systems, to understand whether
the mechanisms shaping the Bitcoin structure are also at work
elsewhere.
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