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In this review paper we survey recent achievements in anomalous heat diffusion, while

highlighting open problems and research perspectives. First, we briefly recall the main

features of the phenomenon in low-dimensional classical anharmonic chains and outline

some recent developments in the study of perturbed integrable systems and the effect of

long-range forces and magnetic fields. Selected applications to heat transfer in material

science at the nanoscale are described. In the second part, we discuss of the role of

anomalous conduction in coupled transport and describe how systems with anomalous

(thermal) diffusion allow a much better power-efficiency trade-off for the conversion of

thermal to particle current.

Keywords: anomalous transport and diffusion, non-linear chains, Kardar Parisi Zhang equation, thermoelectricity,
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1. INTRODUCTION

Anomalous diffusion is a well-established concept in statistical physics and has been used to
describe many diverse kinetic phenomena. Detailed insights have been gained by generalizing the
motion of Brownian particles, as done for the continuous-time random walk and for Lèvy flights
and walks. A formidable body of literature on the topic exists; we refer to, for example, Klages et al.
[1] as well as the present issue for an overview.

The above particle models are based on a single-particle description, whereby a single walker
performs a non-standard diffusive motion. How do the features of anomalous diffusion emerge
when dealing with a many-body problem? What are the conditions for a statistical system
composed of many interacting particles to yield effectively anomalous diffusion of particles
or quasi-particles? Another question concerns how such anomalies in diffusion are related to
transport and whether they can somehow be exploited to achieve some design principle, such as
efficiency of energy conversion. In fact, although thermoelectric phenomena have been known
for centuries, it is only recently that a novel point of view on the problem has emerged [2].
Generally speaking, the renewed research activity is motivated also by the possibility of applying
the thermodynamics and statistical mechanics to nano- and micro-sized systems, with applications
in molecular biology, micro-mechanics, nano-phononics, etc. This involves dealing with systems
far from the thermodynamic limit, where fluctuations and interactions with the environment are
critically relevant and need to be understood in detail.

In this article, we first review how anomalous energy diffusion arises in lattices of classical
oscillators as a joint effect of non-linear forces and reduced dimensionality (and in this respect
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we will mostly discuss one-dimensional chains). This amounts
to saying that the anomalous dynamics of energy carriers is
an emergent feature stemming from correlations of the full
many-body dynamics. As a consequence, Fourier’s law breaks
down: the motion of energy carriers is so correlated that they
are able to propagate faster than diffusively. In the second part
of the paper, we discuss how this feature influences coupled
transport and how it can be used to enhance the efficiency of
thermodiffusive processes.

We conclude our review of the multifaceted problem of heat
transport in classical systems with a short summary of possible
extensions to the quantum domain, with reference to related
open problems that merit attention in the near future.

2. ANOMALOUS HEAT TRANSPORT IN
CLASSICAL ANHARMONIC LATTICES

The presence of a heat conductivity that diverges with the
system size in a chain of coupled non-linear oscillators was first
pointed out in Lepri et al. [3, 4]. This marked the beginning
of a research endeavor that, over more than two decades, has
been devoted to understanding the mechanisms giving rise
to anomalous transport in low-dimensional systems. Far from
being a purely academic exercise, this research has unveiled the
possibility of observing such peculiar effects in nanomaterials,
such as nanotubes, nanowires, or graphene [5, 6]. Extended
review articles on this problem have existed for many years [7, 8],
while a collection of works about more recent achievements can
be found in Lepri [9] and a review article [10] in the present issue.
Here it is useful to first provide a short summary of the state of
the art in the field, while the main part of the paper will focus
on recent achievements that point to promising and challenging
directions for future investigations.

In any model where anomalous transport has been observed,
it emerges as a hydrodynamic effect due to a combination of
reduced space dimensionality and conservation laws, yielding
non-standard relaxation properties even in a linear response
regime. As a reference we consider the basic class of models
represented by a Hamiltonian of the following form:

H =
L
∑

n=1

[

p2n
2m

+ V(qn+1 − qn)

]

. (1)

Typical choices for the interaction include the famous
Fermi-Pasta-Ulam-Tsingou (FPUT) potential, where
V(x) = VFPUT(x) ≡ 1

2x
2 + α

3 x
3 + β

4 x
4, and the rotor (or

Hamiltonian XY) model, where V(x) = VXY (x) ≡ 1 − cos x.
With regard to conservation laws, in d = 1 anomalous transport
has been generically observed in Hamiltonian models of type
(1), where energy, momentum, and the “stretch” variable
∑

n(qn+1 − qn) are conserved. It is worth recalling that any
approach aiming to describe out-of-equilibrium conditions,
such as stationary transport processes, has to be based on the
hydrodynamic equations associated with such locally conserved
quantities. One-dimensional oscillator models with only one
conserved quantity, such as the Frenkel-Kontorova or φ4 models

[11], or two conserved quantities, such as the rotor model
[12, 13] or the discrete non-linear Schrödinger lattice [14, 15],
instead show standard diffusive transport. Intuitively, this is
due to the presence of scattering sources for acoustic waves
propagating through the lattice induced by the presence of a
local non-linear potential, which breaks translation invariance
(i.e., momentum conservation). This argument does not apply to
the rotor model, where only the stretch variable is not conserved,
owing to the angular nature of the qn variables; in any case
standard diffusion is allowed because of the boundedness of the
cosine potential. Concerning dimensionality, in d = 3 normal
diffusion regimes are expected to characterize heat transport
in non-linear lattices. Only in d = 2 can one find evidence
of a diverging heat conductivity that exhibits a logarithmic
dependence on the system size L [16–18].

The main distinctive feature of anomalous heat transport in
one-dimensional Hamiltonian models of anharmonic lattices is
that the finite-size heat conductivity κ(L) diverges in the limit
L → ∞ of a large system size [3] as

κ(L) ∝ Lγ ,

with 0 < γ ≤ 1 (the γ = 1 case corresponds to integrable
models, such as the Toda lattice discussed in section 2.2). This
implies that this transport coefficient is, in the thermodynamic
limit, not well-defined. In the linear response regime, this is
equivalent to finding that the equilibrium correlator of the energy
current J(t) displays, for long times t, a non-integrable power-law
decay of the form

〈J(t)J(0)〉 ∝ t−(1−δ) , (2)

with 0 ≤ δ < 1. Accordingly, the Green-Kubo formula yields an
infinite value of the heat conductivity and allows one to establish
the equivalence of the exponents, i.e., γ = δ, provided that
the sound velocity is finite [4]. In Figure 1 we show two typical
simulations of the FPUT model demonstrating the results above.

The most basic issue of the anomalous feature relates to
anomalous dynamical scaling of the equilibrium correlation of
the hydrodynamic modes. A simple way to state this is that
fluctuations of the conserved quantities with small wavenumber
k evolve on time scales of order τ (k) ∼ |k|−z . For standard
diffusion one has z = 2. Within the non-linear fluctuating
hydrodynamics approach it has been shown [19, 20] that models
like (1) belong generically to the universality class of the famous
Kardar-Parisi-Zhang (KPZ) equation, originally formulated in
the context of growing interfaces. It is well-known that this
equation in d = 1 is characterized by the dynamical exponent
z = 3/2. The origin of this non-trivial dynamical exponent can
be traced back to the non-linear interaction of long-wavelength
modes. This leads to the prediction γ = (2− z)/z = 1/3 (at
least in the linear response regime), a value that should be largely
universal, as confirmed by many numerical experiments.

The above consideration applies generically to anharmonic
chains with three conservation laws [20]. There is, however, the
possibility of having a different universality class depending on
the number of conserved quantities [21] or on the non-linear
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FIGURE 1 | Anomalous thermal conductivity for the FPUT model with cubic

and quartic potential terms (α = 0.25, β = 1): (A) finite-size conductivity

measured in the non-equilibrium steady state; (B) power spectrum S(ω) of

heat current fluctuations [i.e., the Fourier transform of 〈J(t)J(0)〉]. The long-time

tail in (2) corresponds to a divergence ω−δ at small frequencies. The inset of

(B) displays the logarithmic derivative δeff = d log10 S/d log10 ω. The data are

compatible with δ = γ = 1/3 (dashed lines). Microcanonical simulations are

performed at energy density 0.5.

coupling between the hydrodynamic modes [20]. For instance,
model (1) with an even potential V(x) = V(−x) should belong
to a different universality class having a different exponent γ . In
fact, the precise value of γ is still somewhat controversial: the
theoretical prediction from the mode-coupling approximation
of the hydrodynamic theory yields γ = 1/2 [20, 22, 23], while
kinetic theory yields γ = 2/5 [24], a value closer to thatmeasured
numerically [25, 26] (see also [27, 28] for related results on
exactly solvable models). The existence of the two classes can be
demonstrated either by directmeasurement of the exponents [25]
or via suitable changes of the thermodynamic parameters. For
instance, a non-linear chain with a symmetric potential subject to
a suitable pressure acting at its boundaries may exhibit a change
from exponent γ = 1/2 to γ = 1/3 [29]. This observation is
relevant to possible experimental verification of anomalous heat
transport, as it indicates that the pressure or torque applied to
any one-dimensional material should be taken into account for a
correct comparison with theoretical predictions.

A physically intuitive way to describe anomalous heat
transport is to think in terms of a Lévy walk, namely an
ensemble of random walkers performing free ballistic steps
with finite velocity for times that are power-law distributed
[30]. This simple description accounts very well for many
features of anharmonic lattices and fluids in various non-
equilibrium settings [31–33]. For instance, energy perturbations
propagate superdiffusively [31, 34, 35]: an initially localized
perturbation of the energy broadens, and its variance grows in
time as σ 2 ∝ tη with η > 1. These empirical observations
have a theoretical justification within the framework of non-
linear fluctuating hydrodynamics. Indeed, the theory predicts
a hydrodynamic “heat mode” that has the characteristic shape
given by a Lévy-stable distribution [see [20, 36] for details].
Further support comes frommathematical results: superdiffusive
behavior has been proven for one-dimensional infinite chains

of harmonic oscillators undergoing stochastic collisions that
conserve energy and momentum [37, 38]. In the same spirit,
the more difficult case of non-linear oscillators with conservative
noise has been discussed [39]. For exponential interactions (the
Kac-van Moerbecke model), superdiffusion of energy has again
been demonstrated, and a lower bound on the decay of the
current correlation function has been obtained [40]. In reference
[20] it is argued that such models should also belong to the
KPZ class.

A related distinctive feature of anomalous transport is that
the temperature profiles in non-equilibrium steady states are
non-linear, even for vanishing applied temperature gradients
[32, 41]. There is indeed a close connection with the fractional
heat equation, which has been demonstrated and discussed in
recent literature [10, 42].

2.1. The Importance of Being Small
As mentioned above, theoretical results on the problem of heat
transport in anharmonic chains are based on the fundamental
assumption that one should compute any relevant quantity in
the limits L → ∞ and t → ∞, performed in that specific
order. On the other hand, in any numerical simulation or for
real low-dimensional heat conductors, such as nanowires, carbon
nanotubes, polymers, or even thin fibers, one has to deal with
finite size and finite time corrections. These can be controlled
in a linear response regime if the mean free path of propagating
excitations, λ, and their mean interaction time, τ , are such that
λ ≪ L and τ ≪ t. It is a fact that when dealing with models of
anharmonic chains, such control is often not guaranteed, mainly
because of non-linear effects. This is a very relevant problem also
for interpreting possible experimental verifications of anomalous
transport in real systems as well as for designing nanomaterials
that exhibit deviations from the standard diffusive conductivity.

In fact, severe finite size effects invariably arise when one
tries to check predictions numerically. Very often, estimates
of the relevant exponents γ and δ systematically deviate from
the expected values and sometimes even seem to depend on
parameters [43–46]. If universality were to hold (as we believe),
these effects should be due to subleading corrective terms to
the asymptotics that are still relevant on the scales accessible
in simulations. Besides these issues, other unexpected effects
arise. For instance, for the FPUT [47], Toda [43], and Kac-
van Moerbecke [38] chains perturbed by conservative noise, the
exponent γ increases with the noise strength. Apart from the
problem of evaluating the precise exponents, this observation is
quite surprising since it suggests that greater stochasticity in the
model makes the systemmore diffusive, at least for finite systems.

Another example of finite size corrections being “amplified”
by non-linear effects is the case of anharmonic chains with
asymmetric potential, i.e., where V(x) 6= V(−x) as in the FPUT
model with α 6= 0. As shown in Figure 1, both equilibrium
and out-of-equilibrium measurements of the heat conductivity
in the presence of an applied thermal gradient are usually
consistent with KPZ scaling. However, in other temperature
regimes Fourier’s law appears to hold, i.e., thermal conductivity is
constant over a large range of sizes [48]. This has been traced back
to the relatively long relaxation time of mass inhomogeneities
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induced by the asymmetry of the interaction potential and acting
as scatterers of phonons [48]. Actually, it was later shown in
Wang et al. [49], Das et al. [50], and Chen et al. [51] that this
is a strong finite size effect, as it persists for relatively large
values of L and t. Yet, the expected theoretical prediction of
a diverging heat conductivity can be recovered in simulations
performed for sufficiently large values of L and t. It should be
pointed out that all of these speculations are based on numerical
results, and a theoretical approach capable of providing estimates
for the combination of non-linear and finite size corrections
to the hydrodynamics would be useful. Indeed, fluctuating
hydrodynamics can provide some kind of prediction: subleading
corrections to the leading asymptotic decay in (2) can be very
large and decay very slowly [20].

There are other aspects to finite size effects. A remarkable
example is the discrete non-linear Schrödinger equation, a well-
known model for atomic condensates in periodic optical lattices.
The model has two conserved quantities (energy and number
density) and exhibits normal diffusive transport [14]. However,
at very low temperatures another almost-conserved quantity (the
phase difference between oscillators) appears, and for a finite
chain and long times the dynamics is the same as that of a generic
anharmonic model, leading to KPZ scaling of correlations and
anomalous transport [52, 53]. Further unexpected features have
been reported also in Xiong and Zhang [54], where the authors
study this problem for the FPUT-β model (i.e., Equation 1) with
V = VFPUT and α = 0) with an additional local, also called
“pinning,” potential of the form

U(q) =
1

2

L
∑

n=1

q2n . (3)

This term breaks translational invariance, making energy the
sole conserved quantity. By varying the non-linear coupling β ,
one observes a crossover from ballistic transport, typical of an
integrable model, to an anomalous diffusive regime governed by
an exponent of the time correlation function, which corresponds
to a value of γ ∼ 0.2. The crossover occurs in the parameter
region 0.1 < β < 1. Numerical simulations performed for
a chain of a few thousands of oscillators show that further
increasing β seems to yield an increasing γ . The overall outcome
challenges the basic theoretical argument, which predicts that
an anharmonic chain equipped with a local potential should
exhibit normal diffusion. For the sake of completeness it is
worth mentioning that in this paper the model under scrutiny
is compared with the so-called φ4 model, where the non-linear
term in Hamiltonian (1), i.e., β(qn+1−qn)4, is replaced with βq4n.
For this model one also observes, in the same parameter region,
a crossover from a ballistic regime to an anomalous diffusive
regime, but for β > 1 one eventually obtains numerical estimates
yielding γ ∼ 0, i.e., the expected diffusive behavior is recovered.

All of these results have a logical interpretation only if we
take into account, once again, the role of finite size corrections
combined with non-linearity. Actually, for the φ4 model there is
no way to argue that a ballistic regime should be observed for any
finite, even if small, value of β . The ballistic behavior observed
in both models for β < 0.1 seems to suggest that for small

non-linearities one needs to explore considerably larger chains
and integrate the dynamics over much longer times than in
Xiong and Zhang [54], before phonon-like waves in both chains
may experience the scattering effects due to the local potential.
Moreover, the weaker quadratic pinning potential of the original
model seems to still be affected by finite size corrections, even
in the region β > 1. A problem that should be investigated
systematically is the dependence on β of the chain length and
of the integration time necessary to recover standard diffusive
transport, at least in the crossover region 0.1 < β < 1, where one
can expect to perform proper numerical analysis in reasonable
computational time.

2.2. Chimeras of Ballistic Regimes
In the light of the discussion in the previous subsection, one
should not be surprised to encounter further non-linear chain
models equipped with a pinning potential that exhibit a regime of
ballistic transport of energy, compatible with a linearly divergent
heat conductivity, κ(L) ∼ L. Again, one might conjecture
that this is due to the puzzling combination of non-linearity
and finite size effects, although, as we shall see, the scenario
that emerges is more intricate and interesting than the former
statement indicates.

As a preliminary remark we recall that ballistic transport is
the typical situation of an integrable Hamiltonian chain, the
prototypical example of which is the harmonic lattice, with
V(x) = 1

2x
2 in Hamiltonian (1). It is worth pointing out that

the addition of the harmonic pinning term (3) again keeps the
harmonic chain integrable.With this inmind, it seems reasonable
that for sufficiently small non-linearities both the FPUT-β and
the φ4 chains, as discussed in the previous subsection, would
exhibit a seemingly ballistic regime for β < 0.1 also in the
presence of the pinning potential. Recovering the expected
diffusive transport regime is a matter of simulating exceedingly
large chains over extremely long times.

The special role played by the quadratic pinning potential (3)
has been revealed also by a recent study of heat transport in the
Toda chain [55]. It is worth recalling that the unpinned Toda
chain is an integrable Hamiltonian model of the form (1) with
V(x) = e−x + x − 1; in this model heat transport is ballistic due
to the finite-speed propagation of solitons (rather than phonons,
as in the harmonic chain). Toda solitons are localized non-linear
excitations which are known to interact with each other by a non-
dissipative diffusion mechanism; a soliton experiences a random
sequence of spatial shifts as it moves through the lattice and
interacts with other excitations without exchanging momentum
[56]. In fact, the calculation of the transport coefficients by the
Green-Kubo formula indicates the presence of a finite Onsager
coefficient, which corresponds to a diffusive process on top of the
dominant ballistic one [57, 58].

When the pinning term (3) is included, the Toda chain
becomes chaotic, as one can easily see by measuring the spectrum
of Lyapunov exponents [55]. Despite this, not only the energy but
also the “center of mass”

hc =
1

2

( L
∑

n=1

qn

)2

+
1

2

( L
∑

n=1

pn

)2

Frontiers in Physics | www.frontiersin.org 4 September 2020 | Volume 8 | Article 292

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Benenti et al. Anomalous Heat Transport in Many-Body Systems

are conserved quantities. The special role of the quadratic
pinning potential (3) is evidenced by the fact that if one turns
it into a quartic one, i.e., U(qi) = 1

4

∑L
n=1 q

4
n, the quantity hc is

no longer conserved. Non-equilibrium simulations of the Toda
chain with the addition of (3), with heat reservoirs at different
temperatures T1 > T2 acting at its boundaries, yield a “flat”
temperature profile at T = (T1 + T2)/2 in the bulk of the chain.
This scenario would be expected for the pure Toda chain, but
it is inconsistent with the basic consideration that the presence
of (3) breaks translation invariance and total momentum is no
longer conserved. This notwithstanding, in order to observe a
temperature profile in the form of a linear interpolation between
T1 and T2 (i.e., Fourier’s law), one has to simulate the dynamics of
very large chains over very long times, typically L ∼ O(104) and
t ∼ O(106), when all the parameters of the model are set to unity.

Equilibrium measurements based on the Green-Kubo
relation, i.e., based on the behavior of the energy current
correlator (2), lead to further interesting findings in this scenario.
By comparing the Toda chain with quadratic and quartic pinning
potentials, one observes in the latter case clear indications of a
diffusive regime, i.e., a finite heat conductivity, and a practically
negligible influence of finite size corrections, whereas in the
former case the power spectrum [i.e., the Fourier transform of
(2)] is found to exhibit a peculiar scaling regime (with power
−5/3) before eventually reaching a plateau that indicates a
standard diffusion. In the same region of the spectrum, the
FPUT model (where the parameters α and β have been chosen
in such a way to correspond to a Taylor series expansion of the
Toda chain) with the addition of (3) is found to converge to a
plateau, in the absence of any precursor of a power-law scaling.

Further details about the unexpected transport regimes
encountered in the Toda chain equipped with the quadratic
pinning can be found in Dhar et al. [59]. We point
out that many of the observations still await a convincing
theoretical interpretation.

2.3. Anomalous Transport in the Presence
of a Magnetic Field
Recent contributions [60, 61] have dealt with the important
problem of heat transport in chains of charged oscillators in
the presence of a magnetic field B. The model is a one-
dimensional polymer that allows transverse motion of the
oscillators interacting via a harmonic potential. For B = 0
the exponent of the energy current correlator is δ = 1

2 ,
indicating the presence of anomalous transport and a divergent

heat conductivity κ(L) ∼ L
1
2 . Upon switching on B, the first

basic consequence is the breaking of translation invariance,
so that the total momentum is no longer conserved. This
notwithstanding, the total pseudo-momentum is conserved, but
the hydrodynamics of the model is definitely modified. In fact,
numerical and analytical estimates indicate that the exponent
δ may change to a value different from 1

2 . In particular, in
Tamaki et al. [60] two different cases were considered: one
where oscillators have the same charge and one where oscillators
have alternate charges of sign (−1)n, n being the integer

index numbering oscillators along the chain. It can easily be
shown that in the former case the sound velocity is null and
the energy correlator exhibits a thermal peak centered at the
origin and spreading in time. By contrast, in the latter case
the sound velocity has a finite, B-dependent value and the
thermal peak of the energy correlator is coupled to sound
modes propagating through the chain. In the case of finite
sound velocity (alternate charges), the exponent governing the
divergence of the heat conductivity with the system size is found
to remain the same as that for B = 0, i.e., γ = 1

2 . This
is not surprising, since for B = 0 the sound velocity in the
model is also finite. In the case of equally charged oscillators,
on the other hand, a new exponent γ = 3

8 appears, which
corresponds to a universality class different from all the others
encountered in anomalous transport in non-linear chains of
oscillators. An important remark about this new exponent is that
in the absence of a finite sound velocity, the identification of
the exponents δ and γ , introduced in section 2, is no longer
correct. In fact, in this case the value of the exponent δ is
found to be very close to 3

4 . Rigorous estimates of all of these
exponents, also for the d = 2 and d = 3 versions of
the charged polymer model, have been obtained through the
asymptotics of the corresponding Green-Kubo integrals, where
the deterministic dynamics has been replaced with a stochastic
version that conserves the same quantities [61]. For the different
one-dimensional cases, these rigorous estimates agree with the
previous findings, while in d = 2 and d = 3 dimensions the
expected logarithmic divergence and finite heat conductivity have
been singled out, respectively.

2.4. The Case of Long-Range Interactions
Long-range forces that slowly decay with the relative distance
between particles are well-studied in statistical mechanics.
They characterize a wide range of physical situations, such
as self-gravitating systems, plasmas, interacting vortices in
fluids, capillary effects of colloids at an interface, chemo-
attractant dynamics, cold atoms in optical lattices, and colloidal
active particles. Several unusual features are known: ensemble
inequivalence, long-lived metastable states and anomalous
energy diffusion [62, 63], inhomogeneous stationary states [64],
lack of thermalization on interaction with a single external
bath [65], etc. Moreover, perturbations can spread with infinite
velocities, leading to qualitative differences from their short-
range counterparts [66, 67].

Heat transport in chains with long-range interactions has been
studied only recently [68–72]. The main question is to what
extent the anomalous properties change as the spatial range of
interactions between oscillators increases. In two recent papers
[73, 74] this problem was investigated for Hamiltonian chains
with a long-range potential of the form

V =
1

2N0(α)

N
∑

i=1

N
∑

i6=j

v(qi − qj)

|i− j|α
, (4)
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where the generalized Kac factor

N0(α) =
1

N

N
∑

i=1

N
∑

j 6=i

1

|i− j|α
(5)

guarantees the extensivity of the Hamiltonian [62, 63]. In
particular, the long-range versions of both the rotor chain, with
v(x) = VXY (x), and the FPUT-β model, with v(x) = 1

2x
2 + 1

4x
4,

have been investigated. The reason for studying these two choices
is that the nearest-neighbor version (i.e., α → +∞) of the former
model exhibits standard diffusion of energy while that of the
latter is characterized by anomalous diffusion.

For the rotor chain, non-equilibrium measurements with
thermal reservoirs at different temperatures, T1 > T2, acting at
the chain ends show that when α > 1, the resulting temperature
profile interpolates linearly between T1 and T2. Despite the long-
range nature of the interaction, this is a strong indication that a
standard diffusive process still governs energy transport through
the rotor chain, as in the limit α → +∞. In contrast, when α < 1
the temperature profile progressively flattens until it reaches a
constant bulk temperature T = (T1 + T2)/2 in the “mean-
field” limit α → 0+. It is important to note that, in contrast
to the situation of chimeras of integrable models discussed in
section 2.2, such flat temperature profiles have nothing to do
with integrability, but rather are driven by the dominance of a
“parallel” energy transport mechanism, which connects the heat
baths at the chain boundaries with each other directly through
the individual rotors in the bulk of the chain. Energy transport
along the chain is practically immaterial, and the overall process
is mediated by the rotors, which have to compromise between the
two different temperatures imposed by the reservoirs. A sketch of
this mechanism is presented in Figure 2. For small α, each lattice
site in the bulk is directly coupled to both thermal baths, and its
temperature tends to the average (T1+T2)/2 independently of the
system size. Moreover, the average heat current exchanged with
any other site is negligibly small.

At least for α < 1, a similar scenario seems to characterize
the FPUT model: flat temperature profiles are observed also in
this case, and one can verify that the same parallel transport
mechanism as described for rotors is at work. On the other
hand, the behavior is definitely more complicated for α > 1.
Careful numerical studies exploring finite size effects give an

overall picture in which an anomalous diffusion mechanism sets
in, characterized by an exponent γ that is expected to increase
up to that of the quartic FPUT model in the limit α → +∞.
But one is faced with a first surprise at α = 2, where a flat
temperature profile is restored, although, as the numerics clearly
indicates, the mechanism of transport along the chain certainly
dominates the parallel transport process. In the light of what
was discussed in section 2.2, this would appear to be a possible
manifestation of a chimera ballistic regime, although there is no
simple argument allowing us to invoke a relation of this special
case with an integrable approximation, if any. That the α = 2
case is characterized by a somewhat “weaker non-integrability”
has been confirmed also for a related model [70, 72]. This can
be traced back to the fact that in this case the lattice supports
a special type of free-tail localized excitations (traveling discrete
breathers) that enhance energy transfer [72].

A complementary approach is the analysis of space-time
scaling of equilibrium correlations, which in the short-range case
yields useful information via the dynamical exponent z [20]. A
numerical study of the structure factors of the FPUT model [74]
shows that for α > 1 the dynamical exponent z certainly depends
on α in a different way from that expected from the theory of Lévy
processes. Moreover, upon adding the cubic term 1

3 (qi − qj)3 to
the potential, one recovers the same dependence of z on α, up to
α = 5. This is again a surprise, because in the limit α → +∞ the
cubic and quartic versions of the FPUT model should converge
to different values of z. At present, no theoretical explanation
exists for this challenging scenario; in particular, to the best of
our knowledge, no hydrodynamic description is available.

2.5. Anomalous Transport via the
Multi-Particle Collision Method
So far we have discussed the case of lattice models. To test
the universality of the results, it is important to consider more
general low-dimensional many-body systems, such as interacting
fluids or even plasmas. Although molecular dynamics would be
the natural choice, it is computationally convenient to consider
effective stochastic processes capable of mimicking particle
interactions through random collisions. A prominent example
is the multi-particle collision (MPC) simulation scheme [75],
proposed to simulate the mesoscopic dynamics of polymers
in solution, as well as colloidal and complex fluids. Another

FIGURE 2 | Pictorial representations of heat transfer processes for long-range interacting chains, in the limiting cases of α = ∞ (left) and α = 0 (right). Oscillators in

contact with thermal reservoirs are enclosed in rectangular boxes while ones in the bulk are enclosed in the ellipse. The relevant transport channels are represented by

black lines. Adapted with permission from Di Cintio et al. [74]. Copyright © 2019 American Physical Society.
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application is the modeling of parallel heat transport in edge
tokamak plasma [76]. Indeed, in the regimes of interest for
magnetic fusion devices, large temperature gradients will build
up along the field line joining the hot plasma region (hot source)
and the colder one close to the wall (which acts as a sink). Besides
this motivation, wemention some results that are pertinent to the
problem of anomalous transport.

In brief, the MPC method consists in partitioning the set
of Np point particles into Nc disjoint cells. Within each cell,
the coordinates of the local center of mass and the velocity
are computed, and a rotation of the particle velocities about
a random axis in the cell’s center-of-mass frame is performed.
The rotation angles are fixed by requiring that the conserved
quantities (energy, momentum) be locally preserved. All particles
are then propagated freely. Physical details of the interaction
can easily be included phenomenologically, for instance by
introducing energy-dependent collision rates [18]. Interaction
with external reservoirs can be also included by imposing
Maxwellian distributions of velocity and chemical potentials on
the thermostatted cells [77].

For a one-dimensional MPC fluid, since the conservation
laws are the same as in, say, the FPUT model, we expect it
to belong to the same KPZ universality class of anomalous
transport. Indeed, numerical measurements of dynamical scaling
fully confirm this prediction [78], and the result is quite robust.
The same type of anomalies have been shown to occur also for
quasi-one-dimensional MPC dynamics, namely in the case of a
fluid confined in a box with a sufficiently large aspect ratio [18].

2.6. Anomalous Heat Transport in Material
Science
The discovery of anomalous heat transport in anharmonic chains
has triggered a search for this important physical effect in
real low-dimensional materials. There is now a vast literature
in which this kind of phenomenon has been predicted and
experimentally observed; an overview of part of this growing
research field is given in Lepri [9]. Here we just illustrate two
recent contributions which will help the reader to appreciate the
relevance of this phenomenon for nanowires and polymers. We
point out that a review of the recent literature in both fields is
contained in the bibliographies of these two contributions.

In Upadhyaya and Aksamija [79] the problem of lattice
thermal conductivity in Si-Ge nanowires was tackled by solving
the Boltzmann transport equation. More precisely, the authors
used a Monte Carlo algorithm to sample the phonon mean
free path, and combined this with phenomenological results
concerning a suitable representation of realistic boundary
conditions. It is quite remarkable that they found evidence of
a heat transport mechanism ruled by a Lévy walk dynamics
of phonon flights through the lattice structure. In particular,
the phonon mean free paths are found to be characterized
by a heavy-tailed distribution, which is associated with an
anomalous diffusive behavior characterized by a size-divergent
heat conductivity κ(L) ∼ L0.33. This behavior has been checked
for system sizes in the range of 10 nm < L < 10µm. Notice that
the phonon mean free path is orders of magnitude smaller than

this size range. It is important to note that this scenario is robust
across different alloy compositions, where the Ge component
varies in the range [6, 86%]. All of these results fully agree with
the theoretical expectation that anharmonic chains with leading
cubic non-linearity should exhibit a divergent heat conductivity
with an exponent γ = 1

3 .
In Crnjar et al. [80] atomistic simulations were performed

for poly(3,4-ethylenedioxythiophene), abbreviated PEDOT, a
conjugated polymer that is of interest in view of its tunable
and large electrical conductivity, transparency, and air stability
[81]. The authors simulated this polymer model in d = 1
and d = 3, in both equilibrium and non-equilibrium settings.
More precisely, equilibrium measurements were performed by
estimating the dependence of the heat conductivity κ on the
system size L via the Green-Kubo formula, where one has
to estimate the asymptotic decay in time of the correlator
of the total energy current (2). The outcome of this analysis
was compared with the numerics obtained in non-equilibrium
conditions. The setup used in this case is based on a transient
measurement of the effective heat diffusivity κ̄ . The two halves
of the system were initially prepared in two thermalized states
at different temperatures T1 and T2. By running a molecular
dynamics simulation, one can measure κ̄ as a function of L
during the transient evolution to the thermal equilibrium state
at temperature (T1 + T2)/2. More precisely, the estimate of κ̄

relies on the fit of the time-dependent temperature difference in
the two regions (for details see Equation 9 in [80]). Finally, the
thermal conductivity is obtained from the formula κ = κ̄ ρ cV ,
where ρ is the polymer mass density and cV its specific heat.
The authors obtained consistent results showing that for the
polymer chain anomalous diffusion, κ(L) ∼ Lγ with γ ≃ 1

2 , is
observed, whereas for the polymer crystal standard diffusion, i.e.,
a size-independent finite thermal conductivity κ , is recovered.
These results are quite remarkable because they provide very
clear confirmation of the role played by the space dimension in
determining anomalous transport effects. On the other hand, the
authors point out that the exponent γ ≃ 1

2 does not agree with

the expected theoretical value 1
3 , since the phenomenological

AMBER non-linear potential adopted for the PEDOT model
is certainly asymmetric, dominated by a leading cubic non-
linearity. Simulations of the polymer chain have been performed
for quite large system sizes, namely 0.376µm < L < 7.526µm.
This notwithstanding, we cannot exclude the possibility that,
as discussed in the previous section, the combination of finite
size effects and non-linearity might also be at work in this
case, yielding a power-law divergence of κ(L) that should be
compatible with a symmetric phenomenological potential.

These findings should be compared with those obtained
for simpler models. For instance, in the case mentioned in
section 2.3, the exponent γ = 1

2 was found in a chain
model with a quadratic interaction potential between the beads
[60] (notice that the possibility of displacements in both the
horizontal and the vertical directions make this model non-
integrable, in contrast to the harmonic chain). On the other
hand, a three-dimensional anharmonic chain with cubic and
quartic interactions has been shown to belong instead to the
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KPZ class with γ = 1/3 [82]. One could speculate that in
any polymer model the basic scaling associated with anomalous
transport is determined only by the quadratic term, and this
is a conjecture that certainly merits further theoretical and
numerical investigation.

To conclude this section, we briefly mention some
experimental studies. Thermal properties of nanosized objects
are of intrinsic technological interest for nanoscale thermal
management. In this general context, nanowires and single-
walled nanotubes have been analyzed to look for deviation from
the standard Fourier’s law [5]. Some experimental evidence
of anomalous transport in very long carbon nanotubes has
been reported [83], although the results are controversial [84].
Experiments demonstrating a non-trivial length dependence
of thermal conductance for molecular chains have also
been reported [85]. Admittedly, such experimental evidence
of anomalous transport is rather limited and not exempt
from criticism. Heat transfer measurements on nanosized
objects are notoriously difficult but may be undertaken
in the future, possibly guided by the theoretical insights
summarized here.

3. COUPLED TRANSPORT

In this section we discuss the relevance of anomalous
diffusion in coupled transport. In particular, we focus on
steady-state transport and for concreteness use the language
of thermoelectricity [2, 86], in which the coupled flows
are charge and heat flow (other examples where the flow
coupled to heat is particle or magnetization flow could be
treated similarly). Moreover, we shall limit our discussion
to power production, even though many of the results and
open problems highlighted below can be readily extended
to refrigeration. Thermoelectricity is a steady-state heat
engine. Relevant quantities for characterizing the performance
of a generic heat engine, which operates between a hot
reservoir at temperature Th and a cold one at Tc, are
the following:

• The efficiency η = W/Qh, where W is the output work and
Qh the heat extracted from the hot reservoir. For cyclic as well
as for steady-state heat engines, the Carnot efficiency ηC =
1− Tc/Th is an upper bound for the efficiency η.

• The output power P. It is a common belief that an engine
attaining the Carnot efficiency would require a quasi-static
transformation, i.e., an infinite cycle-time, implying vanishing
power. For steady-state engines this argument is replaced by
one saying that finite currents would imply dissipation, thus
precluding Carnot efficiency for non-zero power. Hence, it is
important to consider the power-efficiency trade-off. This is a
key problem in the field of finite-time thermodynamics [87],
in relation to the fundamental thermodynamic bounds on the
performance of heat engines, as well as the practical purpose of
designing engines that, for a given output power, work at the
maximum possible efficiency. For classical cyclic heat engines,
whose interactions with a heat bath can be described by a
Markov process, it was proved [88] that the mean power P has

an upper bound

P ≤
A

Tc
η(ηc − η), (6)

where A is a system-specific pre-factor (see also [89] for
an analogous linear response result within the framework
of stochastic thermodynamics [90]). While at first sight this
bound implies that P → 0 as η → ηc (and of course when
η → 0), so that an engine of this kind with finite power never
attains the Carnot efficiency, one cannot exclude the possibility
that the amplitude A diverges as the efficiency approaches the
Carnot value [91].

• The fluctuations in the power output about its mean value
P. Indeed, large fluctuations render heat engines unreliable.
Especially for heat engines at the nanoscale, one expects power
fluctuations due to, e.g., thermal noise, which are not negligible
in comparison with the mean output power. In general, one
would like to obtain high efficiency (as close as possible to
the Carnot efficiency), large power, and small fluctuations.
However, a trade-off between these three quantities has been
proved [92] for a broad class of steady-state heat engines
(including machines described by suitable rate equations or
modeled by overdamped Langevin dynamics):

P
η

ηC − η

kBTc

1P
≤

1

2
, (7)

where the (steady-state) power fluctuations are given by

1P ≡ lim
t→∞

[P(t)− P]2 t, (8)

with P(t) being the mean power delivered up to time t. For
t → ∞, since P(t) converges to P as 1/

√
t, an additional factor

of t in (8) is needed to obtain a finite limit for 1P. Equation
(7) tells us that efficiency close to the Carnot value and high
power entail large fluctuations. We note that the bound (8) has
recently been generalized to periodically driven systems [93].

3.1. Linear Response
In the linear response setting, the relationship between currents
and generalized forces is linear [94, 95]. In particular, for
thermoelectric transport we have







je = LeeFe + LeuFh,

ju = LueFe + LuuFh,
(9)

where je is the electric current density, ju is the energy current
density, and the conjugated generalized forces are Fe =
−∇(µ/eT) and Fh = ∇(1/T), with µ being the electrochemical
potential and e the electron charge. The coefficients Lab (a, b =
e, u) are known as kinetic or Onsager coefficients; we will denote
by L the Onsager matrix with matrix elements Lab. Note that
the (total) energy current ju = jh + (µ/e)je is the sum of
the heat current jh and the electrochemical potential energy
current (µ/e)je.

The Onsager coefficients must satisfy two fundamental
constraints. First, the second law of thermodynamics, i.e., the
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positivity of the entropy production rate, ṡ = Feje + Fuju ≥ 0,
implies

Lee, Luu ≥ 0, LeeLuu −
1

4
(Leu + Lue)

2 ≥ 0. (10)

Second, for systems with time-reversal symmetry, Onsager
derived fundamental relations, Leu = Lue, known as Onsager
reciprocal relations.

The kinetic coefficients Lab are related to the familiar
thermoelectric transport coefficients, namely the electrical
conductivity σ , the thermal conductivity κ , the thermopower (or
Seebeck coefficient) S, and the Peltier coefficient 5:

σ = −e

(

je

∇µ

)

∇T=0
=

Lee

T
, (11)

κ = −
(

jh

∇T

)

je=0
=

1

T2

det L

Lee
, (12)

S = −
1

e

(

∇µ

∇T

)

je=0
=

1

T

(

Leu

Lee
−

µ

e

)

, (13)

5 =
(

jh

je

)

∇T=0
=

Lue

Lee
−

µ

e
. (14)

For systems with time-reversal symmetry, the Onsager reciprocal
relations give 5 = TS.

The thermoelectric performance is governed by the
thermoelectric figure of merit

ZT =
σS2

κ
. (15)

Thermodynamics imposes a lower bound on the figure of merit:
ZT ≥ 0. Moreover, the thermoelectric conversion efficiency
is a monotonically increasing function of ZT, with η = 0 at
ZT = 0 and η → ηC in the limit ZT → ∞. Nowadays,
most efficient thermoelectric devices operate at around ZT ≈
1. On the other hand, it is generally accepted that ZT > 3–
5 is the target value for efficient, commercially competitive
thermoelectric technology. It is a great challenge to increase the
thermoelectric efficiency, since the transport coefficients S, σ ,
and κ are generally interdependent. For instance, in metals σ

and κ are proportional according to the Wiedemann-Franz law,
and the thermopower is small; these properties make metals
poor thermoelectric materials. It is therefore of great importance
to understand the physical mechanisms that might allow us to
independently control the above transport coefficients.

3.2. Anomalous Transport and Efficiency
The theoretical discussion of the role of anomalous (thermal)
diffusion in thermoelectric transport is based on the Green-
Kubo formula. expresses the Onsager coefficients in terms of
dynamic correlation functions of the corresponding currents,
computed at thermodynamic equilibrium. If the current-current

correlations 〈ja(0)jb(t)〉 (where 〈 · 〉 denotes the canonical average
at a given temperature T) do not decay after time-averaging, then
by definition the corresponding Drude weight

Dab = lim
t→∞

lim
3→∞

1

2�(3)t

∫ t

0
dt 〈ja(0)jb(t)〉 (16)

is different from zero. Here � is the system’s volume and 3

is the system’s size along the direction of the currents. It has
been shown [96–99] that a non-zero Drude weight Dab is a
signature of ballistic transport, i.e., in the thermodynamic limit
the corresponding kinetic coefficient Lab diverges linearly with
the system size. Non-zero Drude weights can be related to the
existence of relevant conserved quantities, which determine a
lower bound on Dab [100, 101]. By definition, a constant of
motion Q is relevant if it is not orthogonal to the currents under
consideration; in thermoelectricity this means 〈jeQ〉 6= 0 and
〈juQ〉 6= 0.

With regard to thermoelectric efficiency, a theoretical
argument [102] predicts that for systems with a single relevant
conserved quantity, as is the case for non-integrable systems with
elastic collisions (momentum-conserving systems), the figure of
merit ZT diverges at the thermodynamic limit, so that the Carnot
efficiency is attained in that limit. Indeed, for systems in which
the total momentum along the direction of the currents is the
only relevant constant of motion, as a consequence of ballistic
transport the Onsager coefficients Lab are proportional to 3.
Therefore, the electrical current is ballistic, σ ∼ Lee ∼ 3,
while the thermopower is asymptotically size-independent, S ∼
Leu/Lee ∼ 30. On the other hand, for such systems the ballistic
contribution to det L is expected to vanish [102]. Hence the
thermal conductivity κ ∼ det L/Lee grows sub-ballistically, κ ∼
3γ with γ < 1. Since σ ∼ 3 and S ∼ 30, we can conclude that
ZT ∼ 31−γ ; that is, ZT diverges in the thermodynamic limit
3 → ∞.

This result has been demonstrated in several models: in
a diatomic chain of hard-point colliding particles [102] (see
Figure 3), in a two-dimensional system [77] with dynamics
simulated by the MPC method discussed in section 2.5 [75], and
in a one-dimensional gas of particles with screened (nearest-
neighbor) Coulomb interactions [104]. In all these (classical)
models, the collisions are elastic and the only relevant constant of
motion is the component of momentum in the direction of the
charge and heat flows. In the numerical simulations, openings
connect the system with two electrochemical reservoirs. The
left (L) and right (R) reservoirs are modeled as ideal gases, at
temperature Tγ and electrochemical potential µγ (γ = L,R). A
stochastic model of the reservoirs [105, 106] is used: whenever
a particle of the system crosses the opening that separates the
system from the left or right reservoir, it is removed. Particles
are injected into the system through the openings, with rates
and energy distribution determined by the temperature and
electrochemical potential (see e.g., [2]).

We now show that systems with anomalous (thermal)
diffusion allow a much better power-efficiency trade-off than is
achievable by non-interacting systems or, more generally, by any
system that can be described by the scattering theory.
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FIGURE 3 | (A) Electrical conductivity σ , (B) Seebeck coefficient S,

(C) thermal conductivity κ, and (D) thermoelectric figure of merit ZT plotted as

functions of the mean number N of particles in the system, for a

one-dimensional diatomic hard-point gas. Parameter values are m = 1 and

M = 3 for the masses, T = 1, µ = 0, and kB = e = 1, with the system length

3 set equal to the number of particles. Adapted with permission from Luo

et al. [103]. Copyright © 2018 American Physical Society.

We first briefly discuss non-interacting systems. In this case,
we can express the charge current according to the Landauer-
Büttiker scattering theory [107], adapted to classical physics:

je =
e

h

∫ ∞

0
dǫ [fL(ǫ)− fR(ǫ)]T (ǫ), (17)

where fγ (ǫ) = e−βγ (ǫ−µγ ) is theMaxwell-Boltzmann distribution
function for reservoir γ and T (ǫ) is the transmission probability
of a particle with energy ǫ going from one reservoir to the other,
so that 0 ≤ T (ǫ) ≤ 1. Similarly, we obtain the heat current from
reservoir γ as

Jh,γ =
1

h

∫ ∞

0
dǫ (ǫ − µγ )[fL(ǫ)− fR(ǫ)]T (ǫ). (18)

For a given output power P = (1µ/e)Je (where 1µ = µR −
µL > 0 and we set µL = 0 for simplicity), the transmission
function that maximizes the efficiency of the heat engine, η(P) =
P/Jh,L (with P, Jh,L > 0 and TL > TR) was determined in Luo
et al. [103] by closely following the method developed for the
quantum case in Whitney [108, 109]. The optimal transmission
function is a boxcar function, T (ǫ) = 1 for ǫ0 < ǫ < ǫ1 and
T (ǫ) = 0 otherwise. Here ǫ0 = 1µ/ηC is obtained from the
condition fL(ǫ0) = fR(ǫ0) and corresponds to the special value
of energy for which the flow of particles from left to right is
the same as the flow from right to left. Thus, if particles only
flow at energy ǫ0, the flow can be considered “reversible” in a
thermodynamic sense. The energy ǫ1 and 1µ are determined
numerically in the optimization procedure [103, 108, 109]. The

maximum achievable power is obtained when ǫ1 → ∞:

P(st)max = A
π2

h
k2B (1T)2, (19)

where 1T = TL − TR, A ≈ 0.0373, and the superscript “(st)”
reminds us that the results are obtained within the scattering

theory framework. At small output power, P/P
(st)
max ≪ 1, we have

η(P) ≤ η(st)max(P) = ηC

(

1− B

√

TR

TL

P

P
(st)
max

)

, (20)

where B ≈ 0.493. Note that in the limit P → 0 the upper
bound on efficiency achieves the Carnot value and the energy
window for transmission, δ = ǫ1 − ǫ0, tends to 0. That is,
we recover the celebrated delta-energy filtering mechanism for
Carnot efficiency [110–112]. Hence, the Carnot limit corresponds
to the aforementioned reversible, zero-power flow of particles.

It is clear that selecting transmission over a small energy
window reduces power production. We would thus expect a
different mechanism for reaching Carnot efficiency to be more
favorable for power production. Such an expectation is supported
by numerical data for the interacting momentum-conserving
systems described above. For these systems, the Carnot efficiency
can be reached without delta-energy filtering [113], and the
power-efficiency trade-off can be improved. Figure 4 shows, for
a given 1T and different system sizes, η/ηC as a function of
P/Pmax. The curves have two branches. Indeed, they are obtained
by increasing 1µ from zero, where trivially P = 0, up to
the stopping value, where again P = 0. In the latter case, the
power vanishes because the electrochemical potential difference
becomes too great to be overcome by the temperature difference.
The power first increases with 1µ, up to its maximum value
P = Pmax, and then decreases, leading to a two-branch curve.
Note that, despite the relatively high value of 1T/T = 0.2, the
numerical results are in rather good agreement with the universal
linear curves, which depend only on the figure of merit ZT
[103]. Not surprisingly, the agreement improves with increasing
system size, since |∇T| = 1T/N decreases as N increases.
In Figure 4 we also plot the limiting curve corresponding to
ZT = ∞, obtained in momentum-conserving models in the
thermodynamic limit N → ∞. The upper branch of this curve
is the universal linear response upper bound on efficiency for a
given power P. For P/Pmax ≪ 1, this bound reads

ηlr(P) = ηC

(

1−
1

4

P

Pmax

)

, (21)

which is much less restrictive than the bound (20) obtained
from scattering theory. Note that, by using the linear response
result Pmax ∝ (1T)2, from (21) we obtain P ∝ 1T (ηC − η).
Accordingly, when η ≈ ηC ∝ 1T, we find the same dependence
as in bound (6), which was obtained in a rather different context.

3.3. Open Problems
Several open questions about the role of anomalous transport in
coupled transport remain, notably the following:
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FIGURE 4 | Relative efficiency η/ηC vs. normalized power P/Pmax at different

system sizes. The dotted, dashed, and dot-dashed curves represent the linear

response predictions at the ZT (N) value corresponding to the given system

size 3 = N. The solid line is the linear response curve for ZT = ∞ (i.e.,

N = ∞). The model parameter values are as in Figure 3, with 1T = 0.2

(TL = 1.1 and TR = 0.9). Adapted with permission from Luo et al. [103].

Copyright © 2019 American Physical Society.

• As discussed in section 2.4, heat transport in the presence
of long-range interactions has been investigated recently.
However, the effect of the range of interactions on coupled
transport, and in particular on the power-efficiency trade-off,
is unknown.

• While momentum-conserving systems greatly improve the
power-efficiency trade-off relative to the non-interacting case,
it is not known how they would behave with respect to
the bound (7), which simultaneously involves the efficiency,
power, and fluctuations. That bound was obtained within
the framework of stochastic thermodynamics [90], with the
transition rates between the system’s states obeying the local
detailed balance principle, and without precisemodeling of the
underlying particle-particle interactions. On the other hand,
in the models described in the present paper, stochasticity is
confined to the baths and the internal system dynamics plays
a crucial role. This has allowed us to assess the impact of
constants of motion and anomalous transport on the efficiency
of heat-to-work conversion and could also be relevant to the
bound (7).

• Although the results reviewed in this section have been
corroborated by numerical simulations of several classical one-
and two-dimensional systems, their extension to the quantum
case remains a challenging problem for future investigation.

• The discussion in this section has neglected phonons.
Nevertheless, besides being of fundamental interest, the
results presented here could be of practical relevance to
very clean systems where the elastic mean free path of the
conducting particles is much longer than the length scale
associated with elastic particle-particle collisions, for instance
in high-mobility two-dimensional electron gases at very
low temperatures. Phonon-free thermoelectricity (or, more
precisely, thermodiffusion) has been experimentally realized
in the context of cold atoms, first for weakly interacting

particles [114] and more recently in a regime with strong
interactions [115]. In the latter case, a strong violation of
the Wiedemann-Franz law has been observed. Such violations
cannot be explained by the Landauer-Büttiker scattering
theory. It would be interesting to investigate whether in
such systems where a high thermoelectric efficiency has been
observed, the non-interacting bound on efficiency for a given
power could be outperformed.

4. OVERVIEW

In spite of the significant progress made over the past few
decades, the study of anomalous heat transport in non-linear
systems remains a challenging research field. While this
review has focused on some promising directions in regard to
classical systems, a main avenue for future investigations should
undoubtedly be sought in the quantum domain. At the quantum
level, anomalous heat transport is considerably less well-
understood than in the classical case, due to both conceptual
and practical difficulties. The definitions of thermodynamic
observables, such as temperature, heat, and work, and of the
concept of local equilibrium, become problematic in nanoscale
systems. For instance, in solid-state nanodevices we can have
structures smaller than the length scale over which electrons
relax to a local equilibrium due to electron-electron or electron-
phonon interactions. Consequently, quantum interference
effects, quantum correlations, and quantum fluctuation effects
should be taken into account [2]. In particular, many-body
localization provides a mechanism by which thermalization can
fail in strongly disordered systems, with anomalous transport in
the vicinity of the transition between many-body localized and
ergodic phases [116, 117].

From a practical viewpoint, one faces challenges arising
from the computational complexity of simulating many-
body open quantum systems, with the size of the Hilbert
space growing exponentially with the number of particles.
Notwithstanding these difficulties, a time-dependent density
matrix renormalization group method allows the computation of
transport properties of integrable and non-integrable quantum
spin chains driven by local (Lindblad) operators acting close
to their boundaries [118]. Sizes up to n ∼ 100 spins can be
simulated, much larger than the n ∼ 20 spins achievable with
other methods, such as Monte Carlo wavefunction approaches
[119]. The results obtained confirm the relevance of constants
of motion to transport properties, with integrable systems that
exhibit ballistic heat transport, whereas for quantum chaotic
systems heat transport is normal (according to Fourier’s law; see
[120, 121]). In passing, we note that for magnetization transport
in some integrable models like XXZ, one can obtain diffusive
behavior (Fick’s law; see [118]).

From a thermodynamic perspective, the use of local Lindblad
operators is problematic. Except in quantum chaotic systems,
such operators do not drive the system to a grand-canonical state
[122]. Furthermore, the use of local Lindblad baths may result
in apparent violations of the second law of thermodynamics
[123]. Global Lindblad dissipators are free from such problems
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and can be used to simulate heat transport (see e.g., [124]),
but are not practical in that they are limited to very small
system sizes. Furthermore, for the description of quantum heat
engines in the extreme case where the working medium may
even consist of a single two-level quantum system, it is crucial
to take into account medium-reservoir quantum correlations as
well as non-Markovian effects, which are not included in the
standard, weak-coupling Lindblad description of quantum open
systems. For first steps in this challenging direction, see Carrega
et al. [125], Tamascelli et al. [126], and Wiedmann et al. [127].
The investigation of anomalous heat transport in such regimes is
terra incognita.
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