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This paper extends the existing Fisher’s equation by adding the source term and

generalizing the degree β of the non-linear part. A numerical solution of a modified

Fisher’s equation for different values of β using the cubic B-spline collocation scheme is

also investigated. The fractional derivative in a time dimension is discretized in Caputo’s

form based on the L1 formula, while cubic B-spline basis functions are used to interpolate

the spatial derivative. The non-linear part in the model is linearized by the modified

formula. The efficiency of the proposed scheme is examined by simulating four test

examples with different initial and boundary conditions. The effect of different parameters

is discussed and presented in tables and graphics form. Moreover, by using the Von

Neumann stability formula, the proposed scheme is shown to be unconditionally stable.

The results of error norms reflect that the present scheme is suitable for non-linear time

fractional differential equations.

Keywords: cubic B-spline (CBS) collocation scheme, time fractional modified Fisher equation, Caputo derivative,

stability analysis, error norms

1. INTRODUCTION

Fractional calculus-based models have been used in different fields of engineering and science. In
the last few years, fractional differential equations have been widely used. The main advantage of
using fractional order differential equation is its non-local property in mathematical modeling.
During the twentieth century, the authors [1–3] added a significant amount of research in the area
of fractional calculus. The applications can be seen in different branches of science and engineering,
such as finance [4], nano-technology [5], electrodynamics [6], and visco-elasticity. Fisher’s equation
is commonly used in epidemics and bacteria, branching Brownian motion, neolithic transitions
and chemical kinetics [7–9]. The spatial and temporal propagation of a virile gene in an infinite
medium has been explained by Fisher [10]. Several numerical methods for differential equations
with Riemann-Liouville and Caputo sense fractional order derivatives have been applied and
analyzed [11–13].

The time-fractional Fisher’s equation used in Baranwal et al. [14] has been modified in this
paper in two different ways: (1) by introducing the source term or (2) by generalizing the
non-linear power.
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The modified form of time fractional Fisher’s equation is:

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Zβ (r, t))

= f (r, t), a ≤ r ≤ b, 0 < α ≤ 1, t ≥ 0, (1.1)

with the initial condition

Z(r, 0) = ψ(r), a ≤ r ≤ b, (1.2)

and the boundary conditions

Z(a, t) = ψ1(t), Z(b, t) = ψ2(t), t ≥ 0, (1.3)

where ν is a parameter of viscosity.
The Caputo and Riemann-Liouville fractional derivatives have a
wide range of applications [15–17]. The Caputo derivative is used
in this work:

∂αZ(r, t)

∂tα
=

{

1
Ŵ(q−a)

∫ t
0
∂qZ(r,s)
∂tq (t − s)q−α−1ds, q− 1 < α < q,

∂qZ(r,t)
∂tq , q = α.

The Caputo derivative is discretized by the L1 formula [18]:

∂αh

∂tα

∣

∣

∣

∣

tn =
1

(1t)αŴ(2− α)

n−1
∑

k=0

λαk [h(tn−k)− h(tn−k−1)]+O(1t),

(1.4)
where λk = (k+ 1)1−α − k1−α .

In this paper, we generalized the linearization formula used
in [19]:

(Zβ )n+1
j = βZn+1

j (Zβ−1)nj − (β − 1)(Zβ )nj , (1.5)

where β is a positive integer.
The numerical and analytical solution of fractional order

PDEs play an important role in explaining the characteristics of
non-linear problems that arise in everyday life. In the literature,
researchers applied various techniques for the numerical
solutions of Fisher’s equation. Baranwal et al. [14] introduced
an analytic algorithm for solving non-linear time-fractional
reaction diffusion equations based on the variational iteration
method (VIM) and Adomian decomposition method (ADM).
Wazwaz and Gorguis [20] implemented ADM for the analytic
study of Fisher’s equation. Homotopy perturbation sumudu
transform method has been applied for solving fractional non-
linear dispersive equations by Abedle-Rady et al. [21]. Gupta and
Saha Ray [22] implemented two methods. Haar wavelet method
and the optimal homotopy asymptotic method (OHAM) for the
numerical solutions of arbitrary order PDE, such as Burger-
Fisher’s and generalized Fisher’s equations. Cherif et al. [23]
solved space-fractional Fisher’s equation using classical HPM.
Khader and Saad [24] proposed a numerical solution for solving
the space-fractional Fisher’s equation using Chebyshev spectral
collocation technique. Rawashdeh [25] introduced the fractional
natural decomposition method (FNDM) to find the analytical
and approximate solutions of the non-linear time-fractional

Harry Dym equation and the non-linear time-fractional Fisher’s
equation. Singh [26] introduced an efficient computational
method for the approximate solution of a non-linear Lane-
Emden-type equation. The numerical solution of fractional
vibration equation of large membrane has been investigated in
Singh [27] by Jacobi polynomial. The authors in [28] employed
the cubic B-spline method for the numerical simulations of
time fractional Burgers’ and Fisher’s equation. Singh et al. [29]
constructed a q-homotopy analysis transformmethod for solving
time and space-fractional coupled Burgers’ equation. Najeeb et al.
[30] used HPM for the analytical solution of time-fractional
reaction-diffusion equation. Majeed et al. [28] used B-spline at
non-uniform for the construction of craniofacial fractures.

In this paper, we have presented a cubic B-spline (CBS)
algorithm for numerical simulation of the time-fractional
generalized Fisher’s equation. Caputo’s time fractional derivative
based on the L1 scheme has been discretized by finite difference
formula, whereas spatial derivatives are discretized by CBS
functions. The present approach is novel for the numerical results
of fractional order PDEs and, to the best of our knowledge,
any spline solution of the time-fractional generalized Fisher’s
equation has never yet been studied. Moreover, this scheme
is equally effective for homogeneous and non-homogeneous
boundary conditions.

This article has been presented in the following manner.
Section 2 evolves a brief description of temporal discretization,
cubic B-spline functions and spatial discretization. In section 4,
the stability of the proposed algorithm has been discussed. The
discussion on numerical results of four test problems has been
reported in section 5. Concluding remarks of this work are given
in section 6.

2. DESCRIPTION OF THE METHOD

Let us consider the interval [a, b] is sub divided into N finite
elements of equal spacing h determined by the knots rj, j =
0, 1, 2, 3.......,N such that a = r0 < r1 < r2 . . . < rN−1 < rN = b.
The cubic B-spline basis function at the grid points is defined as

φj(r) =
1

6h3







































(r − rj)
3, if r ∈ [rj, rj+1),

h3 + 3h2(r − rj+1)

+3h(r − rj+1)
2 − 3(r − rj+1)

3, if r ∈ [rj+1, rj+2],

h3 + 3h2(rj+3 − r)

+3h(rj+3 − r)2 − 3(rj+3 − r)3, if r ∈ [rj+2, rj+3],

(rj+4 − r)3, if r ∈ [rj+3, rj+4).

(2.1)

From the above basis, the approximation solution ZN(r, t) can
be written in terms of linear combination of cubic B-spline base
function as follows

ZN(r, t) =
N+1
∑

j=−1

ϒj(t)φj(r), (2.2)

where ϒj(t)
′s are the unknowns to be determined. Four

consecutive cubic B-splines are used to construct each element
[rj, rj+1]. The values of cubic B-splines and its derivatives at the
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TABLE 1 | Coefficients of CBS and its derivative at the nodes rj .

ZN(r, t) ϒj−1 ϒj ϒj+1

Zj = Z(rj )
1
6

4
6

1
6

Z′
j = Z′(rj )

−1
2h 0 1

2h

Z′′
j = Z′′(rj )

1
h2

−2
h2

1
h2

nodal points are given in Table 1. The variation of ZN(r, t) over
the typical component [rj, rj+1] is given by

ZN(rj, tn) =
j+1
∑

m=j−1

ϒm(t)φm(rm). (2.3)

By plugging the approximation values given in Table 1 into
Equation (2.3) at (rj, tn), The Equation (1.1) yields the following
set of fractional order ordinary differential equations.

[(ϒ•
j−1(t)+ 4ϒ•

j (t)+ ϒ
•
j+1(t))/6]−

ν

h2
[ϒj−1 − 2ϒj + ϒj+1]

−[(ϒj−1 + 4ϒj + ϒj+1)/6][1− ((ϒj−1 + 4ϒj + ϒj+1)/6)
β ]

= f (rj, tn). (2.4)

Here, • represents αth order fractional derivative with respect
to time. After some simplification, a recurrence relation for
Equation (1.1) with β = 3 can be written as

ϒn+1
j−1

[

γ

6
−

1

2h2
−

1

12
+

2

1296
(Tm)

3

]

+ϒn+1
j

[

4γ

6
+

1

h2
−

1

3
+

8

1296
(Tm)

3

]

+ϒn+1
j+1

[

γ

6
−

1

2h2
−

1

12
+

2

1296
(Tm)

3

]

= ϒn
j−1

[

γ

6
+

1

2h2
+

1

12

]

+ ϒn
j

[

4γ

6
−

1

h2
+

1

3

]

+ϒn
j+1

[

γ

6
+

1

2h2
+

1

12

]

−
1

1296
(Tm)

4 + f (rj, tn)

−

(

γ

n−1
∑

k=0

λk[((ϒ
n−k−1
j−1 − ϒn−k

j−1 )+ 4(ϒn−k−1
j − ϒn−k

j )

+(ϒn−k−1
j+1 − ϒn−k

j+1 ))/6]+ ρ
n+1
1t

)

, (2.5)

where λk = [(k + 1)1−α − k1−α], Tm = ϒn
j−1 + 4ϒn

j + ϒn
j+1,

γ = (1t)−α

Ŵ(2−α) . Moreover, the truncation error ρn+1
1t is bounded as

|ρn+1
1t | ≤ ̟ (1t)2−α , (2.6)

where̟ is a real constant.

Lemma 2.1. The coefficients λk in (2.5) possess the following
characteristics [31]:

• λk > 0 and λ0 = 1, k = 1 : 1 : n,
• λ0 > λ1 > λ2 > ... > λk, λk → 0 as k → ∞,

•
∑n

k=0(λk − λk+1)+ λn+1 = (1− λ1)+
∑n−1

k=1(λk − λk+1)
+ λn = 1.

Equation (2.5) is modified as

ϒn+1
j−1 α0 + ϒn+1

j α1 + ϒn+1
j+1 α0 = ϒn

j−1(n1)+ ϒ
n
j (n2)

+ ϒn
j+1(n1)−

1

1296
(Tm)

4 + f (rj, tn)

−

(

γ

n−1
∑

k=1

λk[((ϒ
n−k−1
j−1 − ϒn−k

j−1 )+ 4(ϒn−k−1
j − ϒn−k

j )

+ (ϒn−k−1
j+1 −ϒn−k

j+1 ))/6]+ ρ
n+1
1t

)

, (2.7)

where α0 = γ
6 − 1

2h2
− 1

12 + 2
1296 (Tm)

3, α1 = 4γ
6 + 1

h2
− 1

3 +
8

1296 (Tm)
3, n1 = γ

6 + 1
2h2

+ 1
12 and

n2 = 4γ
6 − 1

h2
+ 1

3
From (2.7), the system of N + 1 linear equation with N + 3
unknown parameters (ϒ−1,ϒ0,ϒ1, . . . ,ϒN+1)

T can be obtained.
To acquire unique solution of the system, two extra equations are
needed. For this purpose, given boundary conditions are used.
Thus, the system of linear equations for expression (2.7) becomes

PYn+1 = QYn. (2.8)

Yn = (ϒn
−1,ϒ

n
0 ,ϒ

n
1 , . . . ,ϒ

n
N+1)

T .

where

P =















1
6

4
6

1
6 0 · · · 0 0 0

α0 α1 α0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · α0 α1 α0
0 0 0 0 · · · 1

6
4
6

1
6















. (2.9)

3. INITIAL VECTOR

For the initial vector, the initial and boundary conditions of the
problem under consideration will help to compute the initial
vector Y0 = (ϒ0

−1,ϒ
0
0 ,ϒ

0
1 , . . . ,ϒ

0
N+1)

T . The approximation
(2.2) therefore becomes

ZN(r, 0) =
N+1
∑

j=−1

ϒj(0)φj(r).

To determine ϒ0, the approximation for the derivatives of the
initial and boundary conditions is as follows [32]:

• (Zr)
k
j = g′(rj) for j = 0, N

• (Z)0j = g(rj) for j = 0, 1, 2, ...,N

This gives the following (N + 3)× (N + 3) matrix system:















−1
2h

0 1
2h

0 · · · 0 0 0
1
6

4
6

1
6 0 · · · 0 0 0

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · 1
6

4
6

1
6

0 0 0 0 · · · −1
2h

0 1
2h

























ϒ0
−1

ϒ0
0
...

ϒ0
N+1











=















g′(r0)
g(r0)
...

g(rN)
g′(rN)
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4. STABILITY ANALYSIS

The von Neumann analysis is frequently used to determine the
requirements of stability, as it is usually simple to apply in a
simple way. The solution in single Fourier mode is defined as

ϒn
j = ϒkeiηjh, (4.1)

where i =
√
−1. The approximation solution of generalized

Fisher’s equation (2.7) can be written as

ϒn+1
j−1 (α0) + ϒn+1

j (α1)+ ϒn+1
j+1 (α0) = ϒn

j−1(n1)+ ϒ
n
j (n2)

+ ϒn
j+1(n3)−

1

1296
(Tm)

4

+ f (rj, tn)− γ
n−1
∑

k=1

λαk [((ϒ
n−k+1
j−1 − ϒn−k

j−1 )

+ 4(ϒn−k+1
j − ϒn−k

j )+ (ϒn−k+1
j+1 − ϒn−k

j+1 ))/6].

(4.2)

where n1 =
γ

6
+

1

2h2
+

1

12
, n2 =

4γ

6
−

1

h2
+

1

3
, n3 =

γ

6

+
1

2h2
+

1

12
, Tm = ϒn

i−1 + 4ϒn
i + ϒn

i+1.

Substituting (4.1) into (4.2), we get

ϒk+1eiη(j−1)h(α0)+ ϒk+1eiη(j)h(α1)+ ϒk+1eiη(j+1)h(α0)

= ϒkeiη(j−1)h(n1)

+ϒkeiη(j)h(n2)+ ϒkeiη(j+1)h(n3)−
1

1296
(Tm)

4 + f (r, t)

−
n−1
∑

k=1

λαk [((ϒ
n−k+1eiη(j−1)h

−ϒn−keiη(j−1)h)+ 4(ϒn−k+1eiη(j)h − ϒn−keiη(j)h)

+(ϒn−k+1eiη(j+1)h − ϒn−keiη(j+1)h))/6].

ϒk+1[eiη(j−1)h(α0)+ eiη(j)h(α1)+ eiη(j+1)h(α0)]

= ϒk[eiη(j−1)h(n1)+ eiη(j)h(n2)

+eiη(j+1)h(n3)]−
1

1296
(Tm)

4 + f (r, t)

−
n−1
∑

k=1

λαk [(ϒ
n−k+1eiη(j−1)h − ϒn−keiη(j−1)h

+4ϒn−k+1eiη(j)h − 4ϒn−keiη(j)h + ϒn−k+1eiη(j+1)h

−ϒn−keiη(j+1)h)/6].

ϒk+1 =
ϒkeiη(j)h[e−iηh(n1)+ n2 + eiηh(n3)]− 1

1296 (Tm)
4e−iηjh + f (r, t)e−iηjh

eiη(j)h[e−iηh(α0)+ α1 + eiηh(α0)]

−
∑n−1

k=1 λ
α
k
[ϒn−k+1eiηjh(e−iηh + 4+ eiηh)− ϒn−ke−iηjh(e−iηh + 4+ eiηh)]

eiη(j)h[e−iηh(α0)+ α1 + eiηh(α0)]
.

By inserting values of α0, α1 and n1, n2, n3 in above expression,
we have

ϒk+1 =
ϒk[ γ3 (cos ηh+ 3)+ 1

6h2
(cos ηh− 6)+ 1

6 (cos ηh+ 2)]− 1
1296 (Tm)

4e−iηjh

γ
3 (cos ηh+ 3)− 1

6h2
(cos ηh− 6)− 1

6 (cos ηh+ 2)+ 3
216 (Tm)2(cos ηh+ 3)

+
f (r, t)e−iηjh −

∑n−1
k=1 λ

α
k
[2 cos ηh+ 4(ϒn−k+1 − ϒn−k)]

γ
3 (cos ηh+ 3)− 1

6h2
(cos ηh− 6)− 1

6 (cos ηh+ 2)+ 3
216 (Tm)2(cos ηh+ 3)

.

The applied scheme is stable if augment factor |ϒk+1| ≤ 1,
and, from the above expression, we can observe that value of
numerator is lesser than denominator for the values of γ , η, h.
The scheme become unstable as the approximations grows
in magnitude.

ϒk+1 ≤ ϒk,

ϒk+1 ≤ 1.

The above result thus reflects that scheme is
unconditionally stable.

5. APPLICATIONS AND DISCUSSION

This section presents some examples with different initial
and boundary conditions. The numerical results are presented
graphically and numerically in figures and tables. The error
norms L2 and L∞ are computed to analyze the precision of the
suggested technique as

L2 =‖ Zexact − Zapprox ‖2≃

√

√

√

√h

n
∑

j=0

| (Zj)exact − (Zj)approx |2,

L∞ =‖ Zexact − Zapprox ‖∞≃ maxj | (Zj)exact − (Zj)approx | .

In this manuscript we used, MATLAB 2015b on IntelRCORETMi5
CPU with 8GB RAM and 64-bit operating system (window 7) for
numerical simulations.

Example 5.1. Consider the fractional order Fisher’s equation
(1.1) for β = 3 subject to

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z3(r, t)) = f (r, t). (5.1)

IC : Z(r, 0) = 0, 0 ≤ r ≤ 1.

BCs : Z(0, t) = t2α , Z(1, t) = 0, t ≥ 0.

and the source term

f (r, t) = exp(2r)(1− r2)tα
Ŵ(2α + 1)

Ŵ(1+ α)
− 2νt2α(1− 4r − 2r2) exp(2r)

−[t2α(1− r2) exp(2r)][1− (t2α(1− r2) exp(2r))3].
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FIGURE 1 | Approximate results of Example 5.1 at different time levels for α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01. (A) For t = 0.25. (B) For t = 0.5, 0.75, and 1.

The approximate solution (2.3) can be written in piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ ϒj−2φ3,j−2(r)

+ ϒj−1φ3,j−1(r)+ ϒjφ3,j(r), r ∈ [rj, rj+1). (5.2)

ZN (r, 1) =



















































































































r3 − 0.64r2 − 0.805r + 0.99997, r ∈ [0, 0.1),

0.56667r3 − 0.51r2 − 0.818r + 1.0004, r ∈ [0.1, 0.2),

16.75r3 − 10.22r2 + 1.124r + 0.87093, r ∈ [0.2, 0.3),

0.11667r3 − 0.195r2 − 0.8945r + 1.0068, r ∈ [0.3, 0.4),

−0.033333r3 − 0.015r2 − 0.9665r + 1.0165, r ∈ [0.4, 0.5),

−0.066667r3 + 0.035r2 − 0.9915r + 1.0206, r ∈ [0.5, 0.6),

−0.05r3 + 0.005r2 − 0.9735r + 1.017, r ∈ [0.6, 0.7),

−0.033333r3 − 0.03r2 − 0.949r + 1.0113, r ∈ [0.7, 0.8),

−3546.6r3 + 8511.7r2 − 6810.3r + 1816.8, r ∈ [0.8, 0.9),

10640.0r3 − 29793.0r2 + 27664.0r − 8525.4, r ∈ [0.9, 1).

(5.3)

The exact solution of (5.1) is Z(r, t) = t2α(1− r2) exp(2r).
Figures 1, 2 explores the comparison of CBS solution

with exact solution for Example 5.1 for different parameters.
Figure 1A shows the 2-dimensional preview of approximate and
exact results for t = 0.25 with α = 0.95, h = 0.01, 1t = 0.0003
and ν = 1. The graph illustrates that exact and approximate
outcomes are indiscriminately similar to each other. Figure 1B
cites the action of solution obtained for Equation (5.1) with α =
0.95, h = 0.01, ν = 1 and for various time steps t = 0.5, 0.75,
and 1 with 1t = 0.0003. It is clear from the graph that both
solutions are overlapping. Three dimensional preview has been
given in Figure 2. While the influence of α has been discussed
for distinct Brownian motion, i.e, α = 0.25, 0.5, and 0.98 in
Figure 3. It can be observed that as the value of α increases, the

FIGURE 2 | 3D image of numerical solution of Example 5.1 for t ǫ [0, 1],

α = 0.25, ν = 1, 1t = 0.0003, and h = 0.01.

solution profile decreases and as α → 1, the numerical solution
tends to overlap the exact solution. The comparison of numerical
and exact outcomes is expressed in Table 2, which shows that
both results are consistent with each other and are accurate up
to 5 decimal places. The numerical results for α variation is
presented in Table 3. It is clear from tabular data that both results
strongly agree with each other, and the accuracy of the scheme is
examined by the error norms as shown in Table 4.

Example 5.2. The fractional order Fisher’s equation (1.1) for β =
3 can be written as:

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z3(r, t)) = f (r, t). (5.4)
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FIGURE 3 | Numerical solution of Example 5.1 for various values of

α = 0.25, 0.5, and 0.98, ν = 1, 1t = 0.0003, and h = 0.01.

TABLE 2 | The comparison of results for Example 5.1 at different time level.

t = 0.5 t = 0.75 t = 1

Exact Approximate Exact Approximate Exact Approximate

0.5 0.5 0.750 0.750 1 1

0.5937599 0.5937573 0.89063992 0.8906763 1.1875199 1.1875187

0.7047480 0.7047441 1.05712208 1.0571243 1.409496 1.4094943

0.8179162 0.8179136 1.22687444 1.2268714 1.635832 1.6358312

0.9248351 0.9248321 1.38725275 1.3872564 1.849670 1.8496765

1.0123601 1.0123537 1.51854022 1.5185531 2.024720 2.0247276

1.0607632 1.0607532 1.59114490 1.5911456 2.121526 2.1215213

1.0412254 1.0412256 1.56183822 1.5618331 2.082450 2.0824589

0.9124889 0.9124764 1.36873341 1.3687335 1.824977 1.8249795

0.6164085 0.6164432 0.92461286 0.92461257 1.2328171 1.2328141

0 0 0 0 0 0

with

IC : Z(r, 0) = r2 exp(2r), 0 ≤ r ≤ 1.

BCs : Z(0, t) = 0, Z(1, t) = exp(2)(1+ t2), t ≥ 0.

source term is

f (r, t) =
2r2t2−α exp(2r)

Ŵ(3− α)
− 2ν(1+ t2)(1+ 4r + 2r2) exp(2r)

−[(1+ t2)r2 exp(2r)][1− ((1+ t2)r2 exp(2r))3].

The Exact solution of Example 5.2 is Z(r, t) = (1+ t2)r2 exp(2r).
Figures 4, 5 plot the 2D and 3D preview of exact and approximate
solutions of Example 5.2. The graph shown in Figure 4A

demonstrates that the approximate solution at t = 0.25, α =

TABLE 3 | The comparison of results for Example 5.1 at different values of α and

t = 0.5.

α = 0.25 α = 0.5 α = 0.98

Exact Approximate Exact Approximate Exact Approximate

0.7071067 0.7071043 0.5 0.5 0.25 0.25

0.8397033 0.8397012 0.5937599 0.5937568 0.2968799 0.2968754

0.9966642 0.9966601 0.7047480 0.7047454 0.3523740 0.3523721

1.1567083 1.1567231 0.8179163 0.8179164 0.4089581 0.4089512

1.3079144 1.3079221 0.9248351 0.9248123 0.4624175 0.4624121

1.4316934 1.4316932 1.0123601 1.0123342 0.5061800 0.5061321

1.5001458 1.5001456 1.0607632 1.0607612 0.5303816 0.5303802

1.4725151 1.4725148 1.0412254 1.0412245 0.5206127 0.52061012

1.2904542 1.2904532 0.9124889 0.9124893 0.4562444 0.4562432

0.8717333 0.8717312 0.6164085 0.6164123 0.3082042 0.3082011

0 0 0 0 0 0

TABLE 4 | Computation of error norms for Example 5.1.

t L2 norm L∞ norm CPU time

0.5 3.923× 10−6 3.470× 10−5 0.0821

0.75 2.900× 10−3 3.638× 10−5 0.1201

1 1.489× 10−6 8.900× 10−6 0.1601

0.95, h = 0.01, 1t = 0.0003, and ν = 1 is compatible with
exact solution. Figure 4B shows the effect of various time steps
t = 0.5, 0.75, and 1 on the solution profile. It is clear from
the graphics that exact and numerical solutions have identical
behavior for fixed value of α = 0.95. The comparison of exact
and approximate results is presented in Table 5, which clearly
shows that both solutions are very close to each other and
have negligible errors. Figure 5 give 3D preview of approximate
solution. To examine the accuracy of the present technique, error
norms are computed and shown in Table 6.

The approximate solution (2.3) can be written in
piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ϒj−2φ3,j−2(r)+ ϒj−1φ3,j−1(r)

+ϒjφ3,j(r), r ∈ [rj, rj+1). (5.5)

ZN (r, 1) =



















































































































−5.4667r3 + 0.9700r2 + 14.08r + 0.000033333, r ∈ [0, 0.1),

−4.2667r3 + 0.61r2 + 14.116r − 0.0011667, r ∈ [0.1, 0.2),

−221.05r3 + 130.68r2 − 11.898r + 1.7331, r ∈ [0.2, 0.3),

−1.4667r3 − 1.395r2 + 14.614r − 0.04415, r ∈ [0.3, 0.4),

5.35r3 − 9.575r2 + 17.887r − 0.48042, r ∈ [0.4, 0.5),

−1.6333r3 + 0.9r2 + 12.649r + 0.3925, r ∈ [0.5, 0.6),

56.233r3 − 103.26r2 + 75.145r − 12.107, r ∈ [0.6, 0.7),

−104.25r3 + 233.76r2 − 160.77r + 42.939, r ∈ [0.7, 0.8),

587.43r3 − 1426.3r2 + 1167.3r − 311.2, r ∈ [0.8, 0.9),

−1846.6r3 + 5145.5r2 − 4747.4r + 1463.2, r ∈ [0.9, 1).

(5.6)
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FIGURE 4 | Approximate results of Example 5.2 at different time levels for α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01. (A) For t = 0.25. (B) For t = 0.5, 0.75, and 1.

FIGURE 5 | 3D preview of numerical solution of Example 5.2 for t ǫ [0, 1],

α = 0.95, ν = 1, 1t = 0.0003, and h = 0.01.

Example 5.3. For β = 2, the time fractional Fisher’s
equation becomes

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z2(r, t)) = f (r, t). (5.7)

IC : Z(r, 0) = 0, 0 < r < 1,

BCs : Z(0, t) = 0, Z(1, t) = 0, t ≥ 0.

TABLE 5 | Numerical results for Example 5.2.

t = 0.5 t = 0.75 t = 1

Exact Approximate Exact Approximate Exact Approximate

0 0 0 0 0 0

0.0121218 0.0121321 0.0151522 0.0151433 0.0193949 0.0193932

0.0659855 0.0659843 0.0824819 0.0824654 0.1055769 0.1055759

0.1877572 0.1877576 0.2346966 0.2346753 0.3004116 0.3004116

0.4147524 0.4147527 0.5184405 0.5184425 0.6636038 0.6636021

0.7996699 0.7996642 0.9995874 0.9995841 1.2794718 1.2794717

1.4160595 1.4160543 1.7700744 1.7700722 2.2656953 2.2656943

2.3655633 2.3655421 2.9569541 2.9569543 3.7849013 3.7849021

3.7874724 3.7874722 4.7343405 4.7343421 6.0599558 6.0599533

5.8712990 5.8712976 7.3391238 7.3391242 9.3940785 9.3940752

9.2363201 9.2363212 11.545400 11.545410 14.778112 14.7781113

TABLE 6 | Error norms for Example 5.2.

t L2 norm L∞ norm CPU time

0.5 2.49× 10−6 2.12× 10−5 0.0842

0.75 3.05× 10−6 2.13× 10−5 0.1252

1 5.105× 10−7 3.3× 10−6 0.1665

The source term

f (r, t) =
24t4−α

Ŵ(5− α)
sin(2πr)

+4π2t4 sin(2πr)− (t4 sin(2πr))(1− t4 sin(2πr)).

Exact solution for above conditions is

Z(r, t) = t4 sin(2πr).
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FIGURE 6 | Numerical solution of Example 5.3 for variation in time at α = 0.96, ν = 1, h = 0.01, 1t = 0.0001, and β = 1. (A) For t = 0.25. (B) For t = 0, 0.5, 0.75,

and 1.

TABLE 7 | Comparison of exact and numerical findings of Example 5.3 at various

time stages.

t = 0.6 t = 0.8 t = 1

Exact Approximate Exact Approximate Exact Approximate

0 0 0 0 0 0

0.06925 0.06925 0.21951 0.21952 0.5358 0.5358

0.12044 0.12043 0.38072 0.387087 0.92972 0.92974

0.12556 0.12543 0.39661 0.39665 0.9687 0.96854

0.08257 0.08258 0.26105 0.26126 0.63743 0.63782

0.008124 0.008321 0.02577 0.02573 0.06254 0.06258

-0.069443 -0.069432 -0.21942 -0.21946 -0.53582 -0.53543

-0.120415 -0.120325 -0.38083 -0.38072 -0.92982 -0.92984

-0.125432 -0.125412 -0.39662 -0.39663 -0.96841 -0.96872

-0.082581 -.082573 -0.26149 -0.26144 -0.63723 -0.63712

0 0 0 0 0 0

TABLE 8 | Comparison of error norms of Example 5.3.

t L2 norm L∞ norm CPU time

0.6 2.541× 10−5 1.97× 10−4 0.0930

0.8 6.371× 10−4 6.366× 10−3 0.1203

1 5.383× 10−5 3.9× 10−4 0.1561

Thus, the approximate solution (2.3) can be written in
piecewise form:

Z(r, tn) = ϒj−3φ3,j−3(r)+ ϒj−2φ3,j−2(r)

+ϒj−1φ3,j−1(r)+ ϒjφ3,j(r), r ∈ [rj, rj+1). (5.8)

FIGURE 7 | 3D image of approximate results of Example 5.3 for t ǫ [0, 1],

α = 0.96, step size h = 0.01, 1t = 0.0001, and ν = 1.

ZN (r, 1) =



















































































































−17815.0r3 + 3562.9r2 + 0.008r − 23.753, r ∈ [0, 0.1),

5938.2r3 − 3562.9r2 + 712.59r − 47.506, r ∈ [0.1, 0.2),

0.033333r3 − 0.045r2 + 0.0195r − 0.00085, r ∈ [0.2, 0.3),

−0.025r2 + 0.0155r − 0.00058333, r ∈ [0.3, 0.4),

1490.3r3 − 1788.4r2 + 715.36r − 95.38, r ∈ [0.4, 0.5),

−4470.7r3 + 7153.2r2 − 3755.4r + 649.75, r ∈ [0.5, 0.6),

4470.8r3 − 8941.7r2 + 5901.5r − 1281.6, r ∈ [0.6, 0.7),

−1490.1r3 + 3576.4r2 − 2861.1r + 762.98, r ∈ [0.7, 0.8),

0.016667r3 + 0.005r2 − 0.0425r + 0.020917, r ∈ [0.8, 0.9),

−0.033333r3 + 0.14r2 − 0.164r + 0.057367, r ∈ [0.9, 1).

(5.9)
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Figure 6A, displays the numerical and exact solution of
Example 5.3 for t = 0.4, α = 0.96, h = 0.01 and
1t = 0.0001. The graphics illustrate that numerical and
exact solutions are obviously shown to be indiscriminately
comparable to one another. The effect of time concentrations
t = 0.6, 0.8, and 1 is studied and presented in Figure 6B

keeping other parameters constant. It can be seen from
graphics that both solutions have symmetrical conduct
and their corresponding numerical data are presented
in Table 7, which demonstrates that both results are
accurate and have negligible error. Figure 7 plots
three-dimensional solution and results of error norms is
given in Table 8.

FIGURE 8 | Approximate results of Example 5.3 for α = 0.5, 0.75 and 0.95,

h = 0.01, 1t = 0.0001, and ν = 1.

The influence of Brownian motion, i.e, α = 0.25, 0.75,
on solution curve is displayed in Figure 8. The identical
behavior of solution curves demonstrates that for smaller
values of α, the solution profile is away from the exact result
and as α → 1, the approximate and exact solution tends
to overlap.

Example 5.4. Fisher’s equation with fractional order for β = 1
with f (r, t) = 0, is

∂αZ(r, t)

∂tα
− ν

∂2Z(r, t)

∂r2
− Z(r, t)(1− Z(r, t)) = f (r, t). (5.10)

with IC : Z(r, 0) = σ ∗, 0 ≤ r ≤ 1.

The exact solution of the model for α = 1 is,

Z(r, t) =
exp(t)σ ∗

1− σ ∗ + σ ∗ exp(t)
.

The graphical illustration of exact and numerical solutions
for Example 5.4 are shown in Figure 9. Figure 9A shows
compatibility of exact and numerical results for h =
0.01, 1t = 0.02, α = 1, and σ ∗ = 0.25. The
multiple curves for exact and numerical solutions for various
values of σ ∗ = 0.5, 0.7, and 0.9 are shown in Figure 9B.
The comparison of exact and approximate solutions acquired
by the proposed scheme is expressed in Table 9. The tabular
data demonstrate that both solutions are compatible with each
other for various values of σ ∗. Table 10 demonstrates the
error norms.

6. CONCLUDING REMARKS

In this study, cubic B-spline (CBS) scheme has been
successfully implemented to acquire numerical solution of

FIGURE 9 | Numerical results of Example 5.4 for various values of σ ∗ and α = 1, 1t = 0.02, and h = 0.01. (A) For σ ∗ = 0.25. (B) For σ ∗ = 0.5, 0.7, and 0.9.
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TABLE 9 | Exact and numerical results of Example 5.4 at different values of σ ∗.

σ
∗

= 0.5 σ
∗

= 0.7 σ
∗

= 0.9

Exact Approximate Exact Approximate Exact Approximate

0.5 0.5 0.7 0.7 0.9 0.9

0.5224848 0.5224743 0.7185535 0.7185432 0.9078134 0.9078432

0.5473576 0.5473321 0.7383282 0.7383321 0.9158479 0.9158980

0.5719961 0.5719883 0.7571831 0.7571743 0.9232413 0.9232421

0.5962826 0.5961235 0.7750933 0.7750653 0.9300348 0.9300343

0.6201064 0.6201432 0.7920452 0.7920876 0.9362685 0.9362651

0.6433651 0.6433321 0.8080358 0.8080213 0.9419815 0.9419821

0.6659669 0.6659442 0.8230715 0.8230342 0.9472112 0.9472131

0.6878313 0.6878321 0.8371669 0.8371321 0.9519936 0.9519527

0.7088901 0.7088870 0.8503435 0.8503876 0.9563626 0.9563984

0.7310585 0.7310572 0.8638095 0.8638451 0.9607296 0.9607481

TABLE 10 | Comparison of error norms.

σ
∗ L2 norm L∞ norm CPU time

0.5 1.706× 10−5 1.591× 10−4 0.0811

0.75 9.38× 10−6 4.4× 10−5 0.1209

1 8.192× 10−6 5.01× 10−5 0.1606

a time-fractional modified Fisher’s equation for β = 2 and
3. The temporal derivative is discretized in the Caputo’s
sense by means of L1 formula, whereas CBS functions
have been used for spatial derivative. The results acquired

by the proposed scheme are presented in the form of
tables and graphics. Following are the main outcomes of
this study.

1. The existing Fisher’s model has been modified by
adding source term and by increasing integer power of
non-linear term.

2. The influence of α parameter has been studied for different
values and observed that, as the value of α increases gradually,
the solution profile Z(r, t) tends toward exact solution. The
numerical solution overlaps the exact solution as α approaches
1 as shown in figures.

3. The numerical behavior of the proposed model with different
initial and boundary conditions has been observed at different
time levels.

4. The comparison of exact and numerical results displayed in
graphics reveals that both results show symmetrical behavior
and their corresponding numerical data presented in tables
clearly elaborate consistency of the results.

5. The results of the study regarding stability of the presented
scheme show that proposed scheme is unconditionally stable.

Moreover, the accuracy and efficiency of the proposed scheme is
quantified by computing error norms and the numerical results
reflect that the proposed scheme is applicable for non-linear time
fractional generalized Fisher’s equation.
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