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In quantum gravity, we envision renormalization as the key tool for bridging the gap

between microscopic models and observable scales. For spin foam quantum gravity,

which is defined on a discretization akin to lattice gauge theories, the goal is to

derive an effective theory on a coarser discretization from the dynamics on the finer

one, coarse graining the system in the process and thus relating physics at different

scales. In this review I will discuss the motivation for studying renormalization in spin

foam quantum gravity, e.g., to restore diffeomorphism symmetry, and explain how to

define renormalization in a background independent setting by formulating it in terms of

boundary data. I will motivate the importance of the boundary data by studying coarse

graining of a concrete example and extending this to the spin foam setting. This will

naturally lead me to the methods currently used for renormalizing spin foam quantum

gravity, such as tensor network renormalization, and a discussion of recent results. I will

conclude with an overview of future prospects and research directions.
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1. A BRIEF INTRODUCTION TO SPIN FOAM QUANTUM GRAVITY

Spin foam quantum gravity [1, 2] is a promising approach to quantum gravity closely related to loop
quantum gravity [3]. The aim is to define the path integral for gravity in a non-perturbative and
background independent fashion, that is without any reference to a fixed background space-time
or structure.

The starting point of spin foam models is the Plebanski-Holst formulation of general relativity
[4], in which gravity is formulated as constrained topological BF theory [5]. To formulate this
theory as a path integral, one introduces a lattice as a regulator, more precisely a 2-complex, in
order to truncate the number of degrees of freedom. On this 2-complex, which is a collection of
vertices, edges and faces, the topological theory is first discretized and quantized. This is in close
analogy to 3D (topological) gravity, where this formulation gives rise to the Ponzano-Regge model
[6–8], a well-defined model of 3D quantum gravity defined on a triangulation.

However, gravity in 4D is not topological, which requires the implementation of so-called
simplicity constraints. In the continuum they serve the role to break the too many symmetries
of the theory and reduce the B-field in BF theory to a simple 2-form, reducing the action to
the familiar Holst action [9]. In spin foam quantum gravity, one derives such constraints for
the discretization of the classical B-field, so-called bivectors. In 4D, bivectors are assigned to 2D
faces, e.g., triangles, and encode their geometry. The constraints ensure that these bivectors are
simple, i.e., they can always be written as a wedge product of two vectors. Geometrically these
vectors span two edges of a triangle. Different versions of these discrete constraints agree for single,
classical building blocks, e.g., a 4-simplex, such that they correspond to different discretizations.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00295
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00295&domain=pdf&date_stamp=2020-08-06
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sebastian.steinhaus@uni-jena.de
https://doi.org/10.3389/fphy.2020.00295
https://www.frontiersin.org/articles/10.3389/fphy.2020.00295/full
http://loop.frontiersin.org/people/783400/overview


Steinhaus Coarse Graining in Spin Foams

FIGURE 1 | (Left) A 4-valent intertwiner, dual to a tetrahedron, expanded in an orthonormal basis. The shape of a tetrahedron is not determined by the areas of its

four triangles. (Right) The intermediate representation gives the area of a parallelogram in the center of the tetrahedron. Its corners are located on the center points of

the edges of the tetrahedron according to the split of the intertwiner.

However, their implementation in the quantum theory,
which leads to restrictions on the variables of the theory,
generically results in different models with starkly different
dynamics. Two examples are the Barrett-Crane (BC) model
[10, 11] and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov
(EPRL/FK) model [12–14]. The former strongly implements
a condition on bivectors, which significantly reduces the
degrees of freedom of the model. This was criticized [15, 16]
and motivated the development of the EPRL/FK model, in
which constraints are implemented weakly, i.e., at the level
of expectation values. Despite these insights, in remains an
open question whether these constraints are sufficient to
recover general relativity in a continuum limit. The hope is
that coarse graining/renormalization can shed a light on this
intriguing question.

Despite these differences, all spin foam models are written
in a similar form. The 2-complex, which is frequently dual
to a triangulation, is colored with group theoretic data:
each face f carries an irreducible representation ρf of the
underlying symmetry group [Spin(4) for Riemannian, SL(2,C)
for Lorentzian signature], while each edge e carries an intertwiner
ιe, an invariant tensor in the tensor product of representation
spaces associated to faces meeting at an edge. These data
encode the geometry of the spin foam: in 4D, each edge is
dual to a 3D polyhedron, which has as many faces as (dual)
faces that share this edge. Then, the areas of these faces are
given by the associated representations ρf . However, this does
not determine the shape of the polyhedron uniquely, see e.g.,
a tetrahedron. A flat tetrahedron is uniquely determined by
specifying its six edge lengths, whereas it only has four faces.
Thus, the areas of these faces alone do not fix the shape of the
tetrahedron. Part of the information on the shape is stored in
the intertwiner, which can be expanded into an orthonormal
basis using group representation theory. For a tetrahedron, its
dual 4-valent intertwiner can be split into two 3-valent ones,
where the new link carries again a group representation labeling
the basis element. Geometrically this representation gives the
area of a parallelogram spanned by the midpoints of the edges
of the tetrahedron [5, 17], see also Figure 1. However, due to

the uncertainty principle the shape cannot be fully specified
since area operators associated with intersecting faces do not
commute and thus cannot be diagonalized simultaneously. Note
that coherent intertwiners can be defined that are sharply peaked
on the geometry of a classical polyhedron1.

From these 3D polyhedra a 4D geometry is built at the vertices
of a 2-complex. At such a vertex, several edges and faces meet,
indicating how 3D polyhedra are glued together to form a 4D
geometry. If two edges meet at the same vertex and are part of the
same face, their dual 3D polyhedra are glued along the shared
face. Crucially, since the representation associated to the face
determines its area, it is ensured that the face has the same area
in both polyhedra. From the group theoretic data, this “gluing”
is performed by contracting the intertwiners according to the
combinatorics of the 2-complex, which essentially amounts to
a spin network evaluation2. The resulting number is known as
the vertex amplitude Av, i.e., the amplitude of the spin foam
model assigned to the discrete 4D geometry dual to the vertex v
with configuration {ρf , ιe}. Similarly, we assign local amplitudes
to the Ae and Af to the edges e and faces f , respectively. The
former ensures that intertwiners are normalized, while the latter
corresponds to the dimension of the representation ρf . See Perez
[1] for more details of the derivation. Eventually, the path integral
is defined as a sum over all these configurations:

Z =
∑

{ρf ,ιe}

∏

f

Af

∏

e

Ae

∏

v

Av . (1)

Crucially, these geometric building blocks and amplitudes are
derived from general relativity formulated as a constrained

1These coherent intertwiners, called Livine-Speziale intertwiners [18] (see also

section 5.2), are given by a tensor product of coherent SU(2) states, which are

sharply peaked on the outward pointing normals of the faces of the polyhedron.

If these normals times their respective areas sum up to zero, these data uniquely

define a convex polyhedron by Minkowski’s theorem [19, 20].
2This spin network can be obtained by drawing a 3-sphere around a vertex in the 2-

complex. Edges, corresponding to intertwiners, intersect the sphere at nodes. Faces,

intersect the sphere at links, connecting the nodes, determining how to contract

the intertwiners.
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Steinhaus Coarse Graining in Spin Foams

FIGURE 2 | A spin foam in 3D with boundary. The boundary of this spin foam

is made up of an initial and a final graph, which carry states ψi and ψf ,

respectively. The links of a graph carry representations ρf , whereas the nodes

carry intertwiners ιe. For ψi , these are ρi , i = 1, 2, 3, and ι1. The data for ψf is

omitted for clarity of the figure. The 2-complex interpolates between these two

graphs and evolves the states. Thus, in the 2-complex, representations are

associated with faces and intertwiners with edges. Several edges meet at a

vertex v, here shown in blue. The vertex shown here is dual to a 3D

tetrahedron: four edges, each dual to a triangle, are glued together to

form a tetrahedron.

topological field theory. In case the spin foam has a boundary (see
Figure 2), it serves as an amplitude functional mapping states
from its boundary Hilbert space into the complex numbers. This
concept will be crucial in this review.

At the level of a few simplices, these models are well-explored.
A well-understood result across models, which furthermore
underlines the relation to general relativity, is the asymptotic
expansion of the vertex amplitude dual to a 4-simplex [21–
25]. In these works the vertex amplitude is investigated for
coherent intertwiners, which are sharply peaked on the geometry
of classical polyhedra. Then the vertex amplitude can be
written as an integral over several copies of the symmetry
group. This integral is then evaluated via a stationary phase
approximation by uniformly scaling up all representations.
Hence it is commonly referred to as large-j limit, in which the
amplitude is generically proportional to the cosine of the Regge
action [26, 27], a discretization of classical gravity. Physically,
this amplitude should be valid for 4-simplices of mesoscopic and
even macroscopic size. In recent years, numerical calculations of
the vertex amplitude beyond the asymptotic expansion have seen
promising progress [28, 29].

Beyond a single building block, the dynamics is less explored,
in particular how the choice of the 2-complex impacts the
results of the theory. Indeed, a priori the theory itself does not

specify how the 2-complex should be chosen. In this review
we take a viewpoint that is akin to lattice gauge theory, and
regard the 2-complex as a regulator, a particular choice to
truncate the number of degrees of freedom of the theory. As
such, physics must not depend on this choice and it is must
be removed eventually, e.g., in a continuum limit, in order to
derive consistent results. One route toward such a limit lies in
coarse graining: By coarse graining, i.e., defining an effective
coarse amplitude from a collection of fine ones, we readily relate
two theories defined on two different regulators. Moreover, by
coarse graining we gain insight into the dynamics of a collection
of building blocks and learn which configurations are more
relevant on a coarser scale. In short, the aim is to derive a
family of amplitudes to assign to different regulators, which
reproduce the same physics (at least approximately). This defines
a renormalization group flow of amplitudes [30, 31]. It is the
purpose of this article to review the progress of this approach and
outline how it helps turning spin foam quantum gravity into a
computational formalism.

This review is structured as follows: in section 2 we start
by outlining the most pressing challenges faced by spin foam
quantum gravity and how these are addressed by coarse graining.
Section 3 discusses the issue of restoring diffeomorphism
invariance in the discrete as well as the typical appearance
of non-local interactions under coarse graining, which is one
motivation for the consistent boundary formulation outlined
in section 4. Section 5 reviews two numerical methods
to perform such coarse graining algorithms, namely tensor
network renormalization and restricted path integral models.
In section 6 we conclude with several interesting future
research directions.

2. KEY CHALLENGES IN SPIN FOAM
QUANTUM GRAVITY

Before explaining renormalization in spin foam models and its
progress over the last decade, it is crucial to first discuss the
key challenges spin foam quantum gravity is facing and how
renormalization plays a vital role in overcoming them.

2.1. Fate of Diffeomorphism Symmetry
Diffeomorphism symmetry, as the fundamental symmetry of
general relativity, is deeply intertwined with the dynamics
of gravity. It implies that physics must not depend on the
choice of coordinates and only diffeomorphism invariant (Dirac)
observables are physically meaningful [32, 33]. Moreover, this
symmetry forbids a choice of a preferred or fixed background
space-time. Conversely, the complexity of this symmetry is a root
of the difficulty for defining a theory of quantum gravity; spin
foam models are no exception.

While spin foam quantum gravity embraces the concept
of background independence, the introduced regulator,
frequently a 2-complex dual to a triangulation, generically
breaks (a discrete remnant of) diffeomorphism symmetry
[34–36], often called a vertex translation symmetry [37].
There exist instances, where this symmetry is preserved
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in the discrete, where the discretization perfectly reflects
the continuum dynamics, or the symmetry can be restored
iteratively via coarse graining. We explain this in detail in
section 3. For spin foams to be a viable theory of quantum
gravity, diffeomorphism symmetry must be restored, at least
approximately, in order to derive reliable physical predictions.
There exists strong evidence that the amplitudes of the system
can be systematically improved via coarse graining [38–40],
such that the symmetry is broken less. Naturally the question
arises whether this procedure converges to a fixed point, which
would automatically imply an independence of the chosen
regulator. Due to the non-local nature of diffeomorphism
symmetry and in order to find a theory with propagating
degrees of freedom, we conjecture such a fixed point to lie
on a phase transition of second order. There it would be
possible to take the continuum (or rather refinement limit) of
the theory.

2.2. Discretization (In)dependence
Closely related to diffeomorphism symmetry is the question of
discretization (in)dependence. Generically the results computed
in spin foam models will depend sensitively on the chosen
regulator, e.g., the number of simplices and subsequently the
number of degrees of freedom. Moreover, there is no input
from the theory itself which regulator to choose. However, in
order to have a viable theory, it is imperative to find the same
results no matter which discretization is chosen, at least to
an approximation.

In the research community, there exist two complementary
paths addressing this question [41]. On the one hand, there is the
approach to solve discretization dependence by summing over
all possible regulators, e.g., triangulations. This summation over
triangulations (and topologies) is most holistically formulated
in terms of group field theories [42, 43], which are quantum
field theories formulated on several copies of a Lie group.
The fields represent atoms of space-time, e.g., tetrahedra,
whose interaction terms describe how 4D objects are formed,
e.g., five tetrahedra glued together to form a 4-simplex.
From this formalism, spin foam amplitudes arise as Feynman
diagrams in a perturbative expansion. As for all quantum field
theories, it must be shown that this theory is renormalizable,
e.g., via perturbative or non-perturbative methods, see [44]
for a review.

On the other hand, we discuss the refinement approach
[30, 31] in this review, where we interpret the triangulation
as a regulator to truncate the number of degrees of freedom,
similar to the lattice in lattice field theories. The idea to
overcome discretization dependence is by assigning different
amplitudes to different discretizations in such a way that the
results agree. One example is to derive coarse amplitudes
from fine ones via coarse graining. In this way, we are
relating theories across different discretizations. The goal is
to derive such relations for all possible discretizations, which
is equivalent to a complete renormalization group trajectory.
Again, this is similar to lattice field theory, where one also
assigns different theories to different lattices, parameterized by
coupling constants.

2.3. Computability
The choice of a discretization (and thus appropriate) amplitude
also enters, at least partially, in another key challenge for spin
foams, namely their computability. To be more precise, by
computability we refer to two interconnected issues. On the
one hand, there is the challenge to compute the fundamental
spin foam amplitudes for a single building block, e.g., a 4-
simplex. While this is well-studied and explored in the semi-
classical regime [21–25], in particular using coherent states and
stationary phase approximation, computing a vertex amplitude
in the quantum regime, e.g., for small spins, can only be done
numerically. However, in recent years there has been significant
progress in computing these amplitudes, e.g., for the EPRL/FK
in Euclidean and the more challenging Lorentzian signature
[28, 29, 45].

Renormalization and coarse graining become important at
the stages when we calculate amplitudes or observables for
multiple vertices/larger triangulations. Even if we have an
efficient way of calculating spin foam amplitudes (or can access
the relevant amplitudes from a database), summing over the
various degrees of freedom remains a difficult task for such a
high dimensional configuration space3. However, if we assume
that the full RG trajectory of the system is known, we can
use the discretization to our advantage and perform the same
calculation on a much coarser spin foam with appropriately
adapted amplitudes. Alternatively and more realistically, one can
envision coarse graining the system first, essentially evaluating it
in parts, deriving an effective theory on a coarser regulator from
a finer one. On this coarse theory, expectation values of coarse
observables can efficiently computed. This method is already
realized nowadays in tensor network renormalization techniques
[46–48], see e.g., [49]. Note that the existence of a continuum
limit is not assumed, rather we assume that coarse graining can
be performed without severe truncations.

2.4. Uniqueness, Phase Diagram, and
Continuum Limit
Discretizing a continuum theory is generically not a unique
process, take the 1D non-relativistic particle in a non-trivial
potential as an example. There exist many choices how to
discretize the potential, which all result in different dynamics.
However, the expectation is that, no matter the choice, we
reobtain the original continuum physics in a suitable continuum
limit (or approximate it well in a fine discretization). This is even
more severe in the case where the continuum theory possesses a
symmetry, like reparametrization or diffeomorphism invariance,
which is broken in general in the discrete [37, 38].

These topics, uniqueness of the theory, universality and the
continuum limit remain open questions in spin foam quantum
gravity. Modern spin foam models are frequently derived by
starting from topological BF theory and then imposing simplicity
constraints in the discrete [1]. The latter procedure is not unique,
where, e.g., the well-developed EPRL/FK model imposes the
linear simplicity constraints weakly [13, 14]. Some effects on

3Monte Carlo methods are only of limited use, since spin foam models are proper

quantum amplitudes, i.e., complex-valued and highly oscillatory.
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different choices of (implementations of) simplicity constraints
can be found in the literature [15], however a phase diagram
differentiating different universal dynamics is missing, and with
it potential hints for a continuum limit and UV-completion of
the theory.

These key challenges are deeply intertwined with one another
and can be addressed by a coarse graining/renormalization
scheme. In the following we review how our understanding of
these connections developed over time and what the role of
coarse graining is.

3. RESTORING DIFFEOMORPHISM
SYMMETRY IN THE DISCRETE

Regge calculus [26] is a discretization of general relativity. In
it the differentiable manifold is replaced by a D-dimensional
triangulation, whose edge lengths are the dynamical degrees of
freedom. Crucially, Regge calculus does not refer to coordinates
of vertices of the triangulation and is solely formulated in terms
of their distances. Hence it is manifestly coordinate free. Each of
the D-simplices is internally flat, i.e., its D + 1 vertices can be
embedded into R

D. Curvature is distributional and located on
(D− 2)-sublimplices, so-called hinges. To each of these hinges in
the bulk one associates a deficit angle ǫh, which is the difference
between the sum all dihedral angles of simplices meeting at this
hinge and 2π . This is nicely visualized in d = 2: Several triangles
meet at a single vertex. If their angles located at this vertex sum
up to 2π , it is flat and can be drawn on a piece of paper. However,
if the deficit angle differs from 0, e.g., if ǫh > 0, we can no
longer embed this collection of triangles into R

2 and observe
positive curvature around that vertex. Note that the edge lengths
are the only dynamical variables, as the dihedral angles are given
as functions of the edge lengths.

In addition to making no reference to coordinates, in some
instances Regge calculus possesses additional symmetries in the
discrete linked to diffeomorphism invariance [50]. One such
example is 3D Regge calculus for 3 = 0: its equations of
motion state that all deficit angles ǫe = 0 in the bulk, for
all boundary data, describing a theory that glues piecewise flat
tetrahedra in a flat way. Thus, it perfectly matches the continuum
solution. Moreover, the Regge action is invariant under vertex
translations, i.e., moving a vertex and accordingly changing the
edge lengths it is connected to. One such example is the 4-1
Pachner move: If we place an additional vertex in the center of a
tetrahedron, we can freely choose three edge lengths connecting it
to the vertices of the coarse tetrahedron. The fourth is then fixed
uniquely by the equations of motion. This symmetry is reflected
by nulleigenvalues of the matrix of second derivates of the action.

Moreover, the 3D Regge action itself is invariant under such
Pachner moves, i.e., local changes of the triangulation. See
Figure 3 for one such Pachner move in 3D. This renders it
triangulation independent, since any triangulation of a manifold
can be related to any other triangulation of the same manifold
by a consecutive application of Pachner moves [51, 52]. This
is not surprising, since 3D gravity is topological, i.e., has no
local degrees of freedom. Nevertheless, we are convinced that

triangulation independence and diffeomorphism symmetry in
the discrete, in the form of a vertex translation symmetry, are
closely related also beyond topological theories. Diffeomorphism
symmetry is deeply entangled with the dynamics of general
relativity. When perfectly realized in a discrete system, by fully
capturing the continuum dynamics, it is irrelevant whether we
consider a coarse or a fine discretization. Thus, the theory is
discretization independent. Invoking the invariance under vertex
displacements, we can imagine this by moving vertices on top
of each other, effectively removing them. Conversely, achieving
discretization independence by finding a fixed point of a coarse
graining flow, e.g., on a second order phase transition, does
not necessarily imply that diffeomorphism symmetry is restored,
yet this conjecture is supported by several examples that we
outline below.

A nice example how coarse graining can improve an action (or
amplitudes in the quantum case) is again 3D Regge calculus with
a non-vanishing cosmological constant. Due to the cosmological
constant, the equations of motion state that deficit angles do not
vanish. Moreover, the theory is not triangulation independent
and the vertex translation symmetry is broken. In [38], Bahr and
Dittrich device a coarse graining scheme for the triangulation: On
a refined triangulation, subdividing large edges into small ones,
they solve the equations of motion for the small edges and define
an effective action for the remaining large ones. This procedure
converges to a fixed point action, which describes Regge
calculus for constantly curved tetrahedra. On this fixed point,
deficit angles vanish, the theory is triangulation independent
(by definition) and the vertex displacement symmetry is
restored. Indeed, this improved discretization/action encodes
the continuum solution in the discrete, thus implementing a
discrete remnant of diffeomorphism symmetry. Moreover, since
it correctly captures the continuum dynamics, no information or
accuracy is lost when using coarse triangulations. An analogous
quantum version is the Turaev-Viro spin foam model [53],
defined as a quantum deformed Ponzano-Regge model [6].

There exist several instances where the continuum solution
is pulled back to the discrete setting, where the discrete
theory possesses a vertex translation symmetry. One example
is 4D Regge calculus [50], when the boundary data allow for
flat solutions in the bulk, or the 1D quantum parameterized
(an)harmonic oscillator [37]. In general we cannot guess these
solutions, but with coarse graining methods we can construct or
at least approximate them well. However, the examples that we
discuss here are either topological or one-dimensional, and hence
it is possible to retain a local description. For higher dimensional,
interacting theories, non-local interactions appear, which can be
a stumblestone for coarse graining methods.

3.1. Non-localities
Before explaining non-localities or non-local interactions, we first
need to state what a local theory is in this context. Inmost discrete
theories, we associate variables to parts of the discretization,
e.g., in spin foam models we assign irreducible representations
ρf to faces f of the dual complex and intertwiners ιe to edges
e. In Regge calculus, we assign edge lengths le to the edges
e of a triangulation. We define this theory to be local if the
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FIGURE 3 | The 4-1 Pachner move in 3D: the 3D Regge action is invariant under this move. Moreover, the configuration on the left hand side possesses a vertex

translation symmetry. Three of the edge lengths connecting the inner vertex to the remaining ones can be chosen freely; the fourth one is then uniquely determined.

partition functions is given by a product of amplitudes assigned
to (sub)simplices or if the action is given as a sum over actions
assigned to (sub)simplices. Moreover, the action and amplitude
for each (sub)simplex only depend on those variables attached to
(sub)simplices contained in the (sub)simplex. Spin foam models
are an example for such local theories, since the partition function
is given via a local assignment of vertex, edge and face amplitudes,
see Equation (1). Similarly, the Regge action can be written
as a sum over contributions associated to the D-simplices of
the triangulation.

When we apply coarse graining methods to such interacting,
i.e., non-topological, theories, it is highly unlikely that this local
form of the theory can be preserved. There exist several examples
in the literature where this has been shown in the past. In
[54], 4D Regge calculus was linearized around a flat background
solution and the perturbations of the edge length integrated over.
The question is whether it is possible to find a path integral
measure that is invariant under Pachner moves. However, when
integrating out these degrees of freedom, one picks up a non-local
factor that cannot be written as a local product. In [55] it is shown
that said factor is related to a condition whether the six vertices
involved in the Pachner move lie on a 3-sphere. Moreover, these
articles reveal that the 4D Regge action itself is not invariant
under Pachner moves. In a similar vain, [56] studies Pachner
moves in 4D holomorphic spin foammodels [57]. The advantage
of thesemodels is that Pachnermoves can be explicitly computed.
Again, the resulting amplitude is non-local, in the sense that
the resulting expression cannot be written as a assignment of
local amplitudes.

To illustrate this point further let us consider the concrete
example of the 2D Ising model.

3.1.1. Ising Model as an Example
There exist plenty of ways to coarse grain discrete systems. A
straightforward example is the 2D Ising model subject to a simple
decimation procedure, where one simply sums over “every other”
spin to derive an effective model on a larger scale.

We consider the Ising model defined on a regular 2D lattice
with vanishing external magnetic field. There are only nearest
neighbor interactions, i.e., an Ising spin σi ∈ {−1, 1} only
interacts with its direct neighbors. Then we can write the

partition function as product of weights associated to the edges
of the lattice:

ZIsing =
∑

{σi}

∏

e

exp(β σs(e) σt(e)) , (2)

where β is the inverse temperature, and s(e)/t(e) denote the
source and target of the edge e4. Note that the system has a global
Z2 symmetry, it remains invariant if all spins are flipped.

We implement a decimation procedure by summing over
every other spin, essentially evaluating the partition function in
parts. In order to derive the new effective amplitude of the system,
it is sufficient to consider four Ising spins σ1, . . . , σ4 that all
connect to another Ising spin σ̃ , see Figure 4. The four coarse
spins sit on the corner of a coarser square rotated by 45◦ with
spin σ̃ in the center of the square. We obtain:

∑

σ̃

exp(β σ̃ (σ1+σ2+σ3+σ4)) = 2 cosh(β (σ1+σ2+σ3+σ4).

(3)
Clearly this expression is not of the same form as the original
action, in particular is not written in terms of Z2 group
multiplications. Nevertheless, the remaining spins still satisfy
the global Z2 symmetry. Thanks to this global symmetry, this
expression can only take three different values depending on the
configurations of the four spins {σi}; either all spins are aligned,
one is not aligned with the others or we have two pairs of aligned
spins. To express this again in terms of spin interactions, wemake
the most general ansatz of four spin interactions compatible with
the global Z2 symmetry:

A(σ1, σ2, σ3, σ4) : = exp(a (σ1σ2 + σ2σ3 + σ3σ4 + σ1σ4)

+b (σ1σ3 + σ2σ4)+ c σ1σ2σ3σ4 + d) . (4)

a is the parameter for nearest neighbor interactions, b for next-
to-nearest neighbor interactions, c for a four spin interaction and
d is a constant. We can compare these equations directly for each

4The choice of orientation is fiducial, but allows for a short-hand notation.
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FIGURE 4 | (Left) Decimating an Ising spin in the 2D model results in non-local interactions among all four spins the decimated spin is connected to. (Right) In the

next step, decimating one spin, here in yellow, would result in an amplitude non-locally depending on eight spins.

configuration:

exp(4a+ 2b+ c+ d) = 2 cosh(4β) all σi = ±1

exp(−c+ d) = 2 cosh(2β) σi = σj = σk = −σl

exp(−2b+ c+ d) = 2 σi = σj = −σk = −σl

exp(−4a+ 2b+ c+ d) = 2 σi = −σj = σk = −σl ,
(5)

where we denote a cyclic order i, j, k, l around the square. Here
we have four equations for four unknown parameters, which we
can straightforwardly solve. We leave deriving the solution to the
interested reader.

The coarse grained amplitude is notably different than the
initial one. While we find again nearest neighbor interactions,
new non-local interactions appear as well. From this new form
it is not obvious how to return to the original expression.
Moreover, it is not clear how to iterate the procedure without
approximations: decimating one spin alone results in non-local
interactions among eight spins, some of which ought to be
decimated as well, see again Figure 4. Nevertheless, already this
simple example hints toward a resolution: the non-localities
arise since we attempt to express the coarse grained dynamics
in terms of the old degrees of freedom and building blocks.
Yet we can still write the partition function as a local product
of amplitudes associated to rotated squares, where the non-
local interactions are completely contained within these locally
assigned amplitudes. In the next section we introduce this
change of perspective more concretely and discuss the concept
of generalized boundary data5.

4. CHANGE OF CONCEPT: GENERALIZED
BOUNDARIES AND AMPLITUDE MAPS

The vital insight to arrive at a practical coarse graining scheme
for spin foams is the following: instead of pertaining the original
degrees of freedom and building blocks, e.g., simplices, and

5Note that the discussion of the Ising model is primarily to give an intuitive

example on how non-local interactions arise under coarse graining. Since the

2D Ising model is solved analytically [58], it is ideal to test the capabilities and

feasibility of new coarse graining approaches. See e.g., [59] for an overview of

real-space renormalization techniques in statistical physics.

allowing more and more complicated, non-local interactions
among them, we work with locally interacting amplitudes, which
allow for more general and complex boundary data. The non-
locality is still present, yet contained within the amplitudes
and expressed as interactions of these boundary data. Thus,
the complexity of the boundary data controls the non-locality
preserved under coarse graining and the complexity of the
amplitude. Truncating the boundary data allows us to introduce
controllable approximations, while the partition function is still
written as a local assignment of amplitudes. This we can iterate
a coarse graining procedure that only needs to consider few
building blocks at a time.

As a path integral approach, spin foam quantum gravity is
already phrased in this language, as amplitude functionals for
certain boundary states. Take a spin foam on a 2-complexŴb with
boundary b. Since the 2-complex is discrete, namely a collection
of faces, edges and vertices, its boundary b is also discrete, namely
a graph, with nodes and links. The complexity of this boundary
depends on the number of nodes and links. To each of these
boundaries b one associates a boundary Hilbert spaceHb, whose
complexity again depends on the complexity of the boundary. A
spin foam model for said two complex then acts as an amplitude
functionalAb mapping states ψb ∈ Hb → C.

The vital difference is that we allow for more general building
blocks, in particular with more complex boundary data and
thus boundary Hilbert spaces. When using Pachner moves,
one integrates out bulk degrees of freedom while keeping the
boundary unchanged. In 4D, when performing a 4− 2 move, one
integrates out bulk variables and derives one effective amplitude
for two glued 4-simplices, prescribed by the same boundary
data. However, splitting this effective amplitude into two, one
assigned to each building block, is not straightforward due to
the previously mentioned non-local interactions. Instead, we
allow for more general building blocks with more complicated
boundary data. That way, we still have local assignments of
amplitudes to building blocks, which in turn interact locally with
neighboring ones. In turn, non-localities still arise, yet they are
contained in each building block and captured by more complex
boundary data.

While this picture recasts the problem of arising non-
localities, three immediate challenges arise. Firstly, iterating this
procedure leads to more and more complicated building blocks,
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whose amplitudes are still given by the fine boundary degrees of
freedom. From this perspective we have not achieved a derivation
of coarse scale physics, since the dynamics are still expressed
in terms of fine scale degrees of freedom. Secondly, in order
to define a renormalization group flow it is crucial to compare
amplitudes after each coarse graining step. And thirdly, deriving
amplitudes with more and more complex boundary data quickly
becomes unfeasible, independent whether one is using analytical
or numerical techniques, as one can already see for the 2D
Ising model.

Hence, the next vital ingredient for a coarse graining scheme
is the introduction of variable transformations, that map a
collection of fine boundary degrees of freedom to a collection
of coarse effective degrees of freedom. More precisely, we want
to map states on a fine boundary Hilbert space Hb′ on b′ to
a coarse boundary Hilbert space Hb on b. In the next section,
we will explain the idea behind this concept and its physical
interpretation. To do so, we work in the opposite direction and
explain how to add degrees of freedom using embedding maps.

4.1. Embedding Maps and the Notion of
Vacuum
As outlined above, a key idea of any renormalization procedure is
to compare and relate theories defined on different scales. Given
two spin foam amplitudes Ab and Ab′ , which are functionals for
the Hilbert spacesHb andHb′ , respectively, these amplitudes can
only be compared for the same physical processes. That is, given
a state ψb in the coarse Hilbert space Hb one must represent
ψb in the Hilbert space Hb′ . Then, each states can be evaluated
with their respective amplitude and the results compared. For this
purpose one defines so-called embedding maps:

ιb′b :Hb −֒→Hb′ . (6)

For this to work, the boundary b must be embeddable into the
boundary b′, denoted as b ≺ b′. Thus, the boundaries b form
a partially ordered set. In case that two boundaries b and b′

cannot be directly related, i.e., b cannot be embedded into b′, one
embeds both into a common refinement b′′, written as b ≺ b′′

and b′ ≺ b′′.
Hence, the goal is the following: given a state ψb in a coarse

Hilbert spaceHb, we want to define an equivalence class of states
in all finer, more complex Hilbert spaces Hb′ in order to readily
compare the associated amplitude functionals. This equivalence
class of states is defined as follows: given two states ψb ∈ Hb and
φb′ ∈ Hb′ ,

ψb ∼ φb′ ⇐⇒ ιb′′b(ψb) = ιb′′b′ (φb′ ) ∀ b′′s.t. b ≺ b′′and b′ ≺ b′′ .
(7)

For this condition to be well-defined, the embedding maps
need to satisfy a consistency condition, referred to as
cylindrical consistency:

ιb′′b′ ◦ ιb′b = ιb′′b with b ≺ b′ ≺ b′′ . (8)

Essentially, it should not matter whether a state is directly
embedded into a fine boundary b′′ or via an (or any other)

intermediate boundary b′. Given these conditions and relations,
one can (at least formally) define a continuum Hilbert space via
an inductive limit:H : = ∪bHb/ ∼.

Beyond this formal definition, the action of embedding maps
is best understood in the following way. As illustrated before,
they serve the purpose of representing a coarse state in a finer
Hilbert space, which can encode more complex configurations.
Hence, embedding maps specify how and in which state degrees
of freedom are added. Moreover, they thus define an inner
product allowing us to compare states across Hilbert spaces.
Since the information of the coarse state ought to be unchanged,
these new degrees of freedom are added in a vacuum state
prescribed by the embedding map. These concepts are familiar
in the kinematical Hilbert space of loop quantum gravity [3]
expressed in terms of spin network functions, where new degrees
of freedom are added in the Ashtekar-Lewandowski vacuum
[60, 61], which describes no space. In contrast, a dual BF
representation [62–64] constructed in the last few years adds
degrees of freedom that are peaked on flat connections. However,
this notion of vacuum does not imply that this is a physical
vacuum. Both examples given above are kinematical vacua
in 4D gravity, i.e., they do not satisfy diffeomorphism and
Hamiltonian constraints.

4.2. Renormalization Group Flow of
Amplitudes
Once given such a choice of embedding maps, these can be
readily used to compare spin foam amplitudes. Again, given two
amplitudes Ab and Ab′ , a state ψb ∈ Hb and an embedding map
ιb′b, we compare both amplitudes:

Ab(ψb)
?
= Ab′ (ιb′b(ψb)) = :A

′
b(ψb) . (9)

Due to the embedding map, we define an effective amplitude
A

′
b
for the coarse Hilbert space Hb from the fine one Ab′

for Hb′ . If performed for all possible states in Hb′ , we obtain
the coarse grained amplitude. Thus, embedding maps, which
specify how to add degrees of freedom under refinement of
states, serve as coarse graining maps for amplitudes. There,
they specify how to define effective degrees of freedom.
Consequently, since b′ can capture more information that
b, embedding maps also encode how to truncate degrees
of freedom.

To summarize, a class of embedding maps defines a coarse
graining/renormalization group flow of amplitudes, formulated
with respect to their boundary. This flow is given by the
following equation:

A
′
b = Ab′ ◦ ιb′b . (10)

To showcase the implications for the system as a whole, it is
instructive to consider the partition function of the system. For
simplicity, we assume that we can write it as a collection of
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FIGURE 5 | The basic steps of coarse graining: blocking of amplitudes, summing over fine degrees of freedom and introduction of embedding maps to define an

effective amplitude for the original Hilbert space Hb.

amplitudesAb
6:

Z =
∑

jb

∏

b

Ab(jb) =
∑

jb′

∏

b′





∑

jb∈bulk of b′

∏

b⊃b′

Ab(jb′ , jb)





= :

∑

jb′

∏

b′

Ab′ (jb′ ) (11)

The original partition function is given as a product of amplitudes
Ab assigned to building blocks with boundary Hilbert space Hb.
This Hilbert space is spanned by an orthonormal basis with labels
jb. In the second equality, we perform a blocking of amplitudes,
e.g., of 16 vertex amplitudes for hypercubic combinatorics. The
degrees of freedom jb are split into two groups: one group
makes up the boundary degrees of freedom jb′ of the blocked
amplitudes, while the other are block “bulk” degrees of freedom
jb and are summed over. The latter part is then summarized as
the fine amplitudeAb′ . See Figure 5.

As the final step, we implement the embedding maps (or
rather coarse graining maps) to derive the effective amplitudeA′

b
for the original Hilbert space.

Z =
∑

jb′

∏

b′

Ab′ (jb′ ) ≈
∑

jb

∏

b





∑

jb′

ιb′b(jb′ , jb)Ab′ (jb′ )





= :

∑

jb

∏

b

A
′
b(jb) (12)

In this context, the embedding maps serve as variable
transformations and truncations, see again Figures 5, 6 for more
details. Indeed, this inclusion of embedding maps necessarily
alters the partition function of the system, and we must ensure
that we can still draw reliable conclusions about the original
system. Thus, the combined embedding maps from neighboring

6 E.g., this is the case for spin foam models defined on 2-complexes with regular,

i.e., hypercubic, combinatorics. Due to the regularity, the system can be written

purely as a collection of vertex amplitudes.

amplitudes should be close to the identity on the respective
Hilbert space, in the sense that we only truncate irrelevant
degrees of freedom. For example this is realized in tensor network
renormalization, where these embedding maps are unitary as we
explain in section 5.1.

Essentially, with this coarse graining procedure, we achieve
two goals. On the one hand, we evaluate the partition function in
parts, purely from local considerations of a subset of amplitudes.
This is computationally efficient and makes calculations more
accessible. On the other hand, we derive an effective theory on a
coarser lattice, with less degrees of freedom, from a theory defined
on a finer lattice. That way, we relate two theories on two different
regulators by assigning different amplitudes to different lattices.
Thus, the renormalization group flow of spin foam quantum
gravity is defined as a family of amplitudes assigned to a family
of 2-complexes/discretizations:

A → A
′ → A

′′ → . . . . (13)

Before we discuss the consequences of this renormalization
group flow in detail, it is important to discuss the role of the
embedding/coarse graining and how they ought to be chosen.

4.3. Dynamical Embedding Maps and the
Physical Vacuum
The embedding maps play a pivotal role in the renormalization
group flow. Generically, different embedding maps result in
different flows, since they determine how the effective coarse
degrees of freedom depend on the fine ones. Thus, if one fixes the
embedding maps a priori, this choice must be carefully checked.
Instead, it is vital that these maps are directly determined from
the dynamics encoded in the amplitudes themselves [30, 31, 40].

This reasoning is intuitive to follow, e.g., consider the Ising
model. The effective degrees of freedom most suitably describing
the coarse dynamics are sensitive to the temperature and
significantly differ between low and high temperature. Hence,
one size does not fit all: fixing embedding maps a priori can
seriously distort the RG flow and give wrong results. Thus, we

Frontiers in Physics | www.frontiersin.org 9 August 2020 | Volume 8 | Article 295

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Steinhaus Coarse Graining in Spin Foams

FIGURE 6 | Definition of the effective amplitude A′
b defined as the concatenation Ab

′ ◦ ιb′ b.

are convinced that dynamical embedding maps are vital for a
successful coarse graining scheme.We explain how to implement
this in practice in section 5.1 on tensor network renormalization.
For now, we discuss its implications and physical interpretation.

As discussed above, embedding maps are prescriptions how
and in which state degrees of freedom are added under
refinement. In particular they allow to relate and identify
states across Hilbert spaces, defining an inner product and
notion of vacuum. When these embedding maps are chosen
dynamically, i.e., with respect to the dynamics encoded in the
amplitude, the new degrees of freedom are added in a dynamical
vacuum state.

General relativity is a totally constrained theory, i.e., in
a canonical formulation its evolution is not governed by a
Hamiltonian but rather by a sum of constraints, namely the
diffeomorphism and Hamiltonian constraints. These constraints
are generators of gauge transformations, which implies that
evolution in gravity amounts to gauge transformations. This is
known as the infamous problem of time [65]. For a quantum
theory, the goal is to find the physical Hilbert space, i.e., the space
of all states that are annihilated by all the constraints. Therefore,
given an initial physical state, evolution by the constraint
operators leave the physical state unchanged. Following this
insight, dynamical embedding maps in a quantum gravity
theory should be physical embedding maps that add degrees
of freedom in the physical vacuum under refinement. Thus,
such embedding maps do not add new information to the
state and represent the same physical state on a finer boundary
Hilbert space.

In the context of path integral formalisms of gravity,
this insight is particularly intriguing: since evolution in the
canonical formulation is governed by constraint operators,
the path integral merely imposes the constraints, projecting
out kinematical degrees of freedom and leaving physical
states unchanged [30]. In short, the path integral serves as a
projector onto the physical Hilbert space. Indeed, this insight
is one of the original motivation behind constructing spin
foam models in the attempt to define a riggin map/physical
inner product for kinematical states of loop quantum
gravity [3].

Following this line of thought, spin foams themselves are
dynamical embedding maps. Consider a spin foam evolving an

initial state to a final state, where these states are defined on
different boundaries7. When interpreting the spin foam as a map
from one Hilbert space to another, instead of as an amplitude
functional, it is by definition an embedding map. Moreover, if
the spin foam acts as a projector onto the physical Hilbert space,
concatenated spin foams still act as a projector, implying path
independence of evolution. Conversely, this is interpreted as first
evolving to an intermediate state, thus cylindrical consistency
conditions of embedding maps are satisfied. Additionally, the
projector property implies that this evolution is independent of
the choice 2-complex/discretization, and it would mark a fixed
point of the renormalization group flow:

Ab = Ab′ ◦ ιb′b . (14)

This implies that assigning the same amplitude to all
discretizations gives the same results.

All of the conditions mentioned above are highly non-trivial
and rely on a perfect implementation of diffeomorphism
symmetry in the discrete. Indeed, this assumption is hidden
in the projector property of the path integral/spin foam,
which implies an implementation of diffeomorphism and
Hamiltonian constraints. Path/discretization independence
follow immediately and underline the strong connection of
diffeomorphism symmetry and discretization independence. In
fact, this construction would be a realization of the perfect action
program [38] for quantum gravity and would imply that the
dynamics of quantum gravity are solved non-perturbatively and
pulled back onto the discrete.

Unsurprisingly, these conditions are not met by spin foam
models: spin foam amplitudes do not act like projectors [42,
69] and explicitly break diffeomorphism symmetry [34, 36].
Furthermore, it is unlikely that these conditions can be perfectly
realized without approximations in full generality. Thus, the goal
of the coarse graining scheme is to iteratively improve spin foam
amplitudes in order to well approximate the ideal solution. We
discuss this in the next section.

7 For an in-depth derivation of a canonical formalism for phase spaces and

Hilbert spaces of varying dimension/complexity and the appearance of pre-/post-

constraints, see [66–68].
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4.4. Lessons From the RG Flow
The idea behind the coarse graining method outlined above is
that it allows us to iteratively improve the amplitudes, such that
the conditionsmentioned above are approximately implemented.
Furthermore, we can tackle discretization dependence of the
theory. The expectation is that on a second order phase transition
the regulator can be removed and diffeomorphism symmetry is
restored. Let us explain this step by step.

Firstly, it is straightforward to recognize that the
renormalization group flow addresses the question of
discretization dependence and choice of 2-complex. By deriving
an effective amplitude Ab from coarse graining Ab′ , we directly
relate theories on 2-complexes defined from building blocks with
boundaries b and b′, respectively. This information is vital for
any discrete theory: it states that we perform (approximately) the
same calculation on b when usingAb as on b′ when usingAb′ . In
particular, following this prescription, it does not matter whether
we calculate a coarse observable on the coarse or the fine lattice.
Thus, we account for the discretization dependence of the theory
and ensure at the same time that the results are reliable. Indeed,
understanding this behavior is indispensable when trying to
make contact with experiments.

Understanding the lattice dependence of the theory is an
important step toward determining when and how the regulator
can be removed entirely. To this end, one has to study the
whole coarse graining flow, that is choose an initial amplitude
(e.g., given by a choice of parameters) and follow the flow
until it reaches a fixed point. Within a certain approximation,
e.g., restricting to finite dimensional boundary Hilbert spaces,
this generically happens. These attractive fixed points frequently
describe topological theories8, where a continuum limit can be
trivially taken. However, these theories do not describe gravity in
four dimensions, since they lack propagating degrees of freedom.
Furthermore, these attractive fixed points denote the phases of
the theory.

All initial amplitudes, e.g., all amplitudes from a certain
region in parameter space, that flow under coarse graining to
the same attractive fixed point lie in the same phase. These
theories have the same dynamics on sufficiently coarse grained
discretizations and thus lie in an universality class and share
qualitative features, e.g., in expectation values of observables. An
example would be the strong coupling phase in lattice gauge
theory, in which one expects the Wilson loop operator to satisfy
an area law. Frequently models possess multiple phases with
phase transitions separating them. We are particularly interested
in phase transitions of second order.

In standard lore, second order phase transitions are
characterized by a diverging correlation length. This implies that
degrees of freedom infinitely far away are correlated and, thus,
infinitely many degrees of freedom are relevant for the dynamics.
Moreover, right on the phase transition, the system is scale-
invariant, i.e., physics do not change with scale. Therefore, on
a second order phase transition one can take the continuum

8This is expected for discretization independent theories with finitely many

degrees of freedom. Examples are the Ponzano-Regge model in 3D [6], or more

generically BF theory in any dimension [5].

limit to arrive at a continuum theory with propagating degrees
of freedom.

We expect the same to hold for second order phase transitions
in spin foam models, with a slightly different interpretation:
Background independent theories lack an absolute length scale.
Still, the regulator allows us to define a combinatorial distance.
Essentially, the idea is to define a distance between vertices of
the 2-complex, by counting the number of vertices one has
to pass in order to reach the other one. If they are directly
connected by an edge, this distance would be one9. Then, on
a second order phase transition, degrees of freedom that are
infinitely “far” away with regard to the lattice are correlated and
the combinatorial correlation “length” diverges. Furthermore,
the notion of scale invariance is consequently replaced by a
discretization independence/invariance, fixed point equations for
the amplitudes are satisfied and a continuum/refinement limit
can be taken. The implications of constructing the theory on
this fixed point must be stressed: Due to the discretization
independence, calculations can be performed in the continuum
or on any discretization, giving the same results. This exactly
corresponds to the idea of perfect action, and thus solving
the coarse graining flow corresponds to solving the theory on
all lattices.

Nevertheless, two caveats must be observed: firstly, finding
such a second order phase transition (if it exists) does not
guarantee that the corresponding theory is a correct theory of
quantum gravity. Secondly, if infinitely many degrees of freedom
become relevant, truncated coarse graining schemes can only
approximate the desired theory to a certain order, as it is the case
in other renormalization schemes.

In the next section we discuss the notion of scale in
more detail.

4.5. Background Independence and the
Interpretation of Scale
Before we continue with reviewing how to coarse grain in
practice, it is crucial to discuss the notion of “scale”—or the
lack thereof. As a background independent approach, one cannot
assign a scale to a spin foam since one sums/superimposes all
possible geometries (allowed by a certain 2-complex). Thus,
we use the 2-complex itself, here formulated via the boundary
of the amplitudes, to order degrees of freedom according to
a relative scale. Consequently, we replace the familiar notions
of ultraviolet (UV) and infrared (IR) by “fine” and “coarse,”
respectively. Following this perspective, we are not integrating
out short scale degrees of freedom under coarse graining. Instead,
we sum over finer discrete degrees of freedom and define effective
coarse degrees of freedom, which encode (superpositions of)
geometries of different scales.

Alternatively, one can introduce a specific scale in this coarse
graining procedure via boundary states. That is, we do not

9This idea is inspired by a similar concept in Causal Dynamical Triangulations

[70], where the distance between two vertices of the triangulation is given by the

minimal number of links between them, albeit with the notable difference that each

length has a specified length assigned to it. This concept is used, e.g., to measure

the geodesic distance between two vertices [71].
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FIGURE 7 | The basic idea of tensor network renormalization: write the partition function as a contraction of a tensor network of tensors T and then locally manipulate

the tensors, such that the same partition is approximated by a coarser network of effective tensors T ′. This defines a flow in “tensor space”.

consider the entire Hilbert space, but only a specific state because
we are interested in studying a transition of geometries. Then,
this fixed boundary states introduces a physical scale via the
encoded 3D geometry, e.g., implemented in the restricted path
integral formalism, see section 5.2.

A further comment on the coarse graining scheme is in
order: here we purely formulate it in terms of the boundary
discretization and its associated boundary Hilbert space, not in
terms of the bulk. From a practical perspective these questions
are less important, e.g., if one assumes regular combinatorics
such that the coarse graining procedure can be straightforwardly
iterated; then both the boundary and bulk form totally ordered
sets. Nevertheless, there is a proposal by Bahr [72] for
formulating the coarse graining scheme in the bulk, essentially
by defining embedding maps for 2-complexes.

5. COARSE GRAINING METHODS

For the rest of this article, let us focus on numerical methods that
allow us to realize this coarse graining method in practice and
review the results.

5.1. Tensor Network Renormalization
Methods
Tensor network methods originate in the fields of quantum
information and condensedmatter and aim at efficiently studying
quantum many body systems. In this review we focus on
tensor network renormalization methods10 [46–48], a numerical
algorithm for coarse graining discrete systems. To this end the
partition function of the system is represented as a contraction
of a tensor network. In the context of this article, a tensor Tabc...

is best understood as the amplitude assigned to a region. The
boundary data of these amplitudes are represented as indices

10 There also exist tensor network methods that aim at constructing specific states

of many body quantum systems, e.g., matrix product states (MPS), projected

entangled pair states (PEPS) [73] or multi-scale entanglement renormalization

ansatz (MERA) [74]. Their goal is to efficiently represent a small subspace of an

exponentially large Hilbert space, containing the ground state.

of the tensor, which is graphically represented as a vertex with
as many legs as it has indices. The partition function is then
rewritten as a contraction of tensors:

Z =
∑

a1b1c1...

Ta1b1c1d1Tc1b2c2d2 · · · = Tr(T T . . .T) . (15)

Graphically, each identified and contracted index is represented
by connecting the respective tensor indices. Thus, the partition
function is represented by a collection of tensors connected to
one another in a local fashion, a tensor network, see Figure 7.

So far, this is merely a rewriting of the original system. The
goal is to locally manipulate the tensors in order to rewrite the
partition function as a coarser tensor network, see again Figure 7.
This may require truncations/approximations for which the error
can be estimated. There exist several tensor network schemes, yet
they all have a series of steps in common that we illustrate for a
concrete example.

For simplicity, take a 2D quadratic tensor network. One step
present in all tensor networks is an explicit summing of degrees
of freedom, referred to contraction of indices. In our network we
group together four tensors T and sum over their shared indices
and obtain a new tensor T̃, which has twice as many indices, yet
the network remains local, see Figure 8.

T̃a1a2b1b2...d1d2 : =
∑

ijkl

Tb1ila1Tlkd1a2Tb2c1jiTjc2d2k . (16)

We observe an immediate issue: if the original tensor had
an index range of χ , called the bond dimension, the new
tensor has a range of χ2. Thus, while we evaluate the partition
function in steps, we cannot continue indefinitely without
truncations/approximations. To implement those, dynamical
variable transformations are derived from the T̃ via a singular
value decomposition. That way, we define effective coarse degrees
of freedom as functions of the fine ones. Crucially the effective
degrees of freedom are derived from the dynamics encoded in
the tensors. This works as follows:
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FIGURE 8 | The embedding maps are computed from the contracted tensor with multiple indices. It is split apart into two tensors, connected by a new effective edge

labeled by the singular values indicating the relevance of the degree of freedom. The green, three-valent tensor then serves as an embedding/coarse graining map for

the fine degrees of freedom.

Given the new tensor T̃, we intend to map two indices into an
effective one. To do so, we split T̃ in two, separating the strands
a1, a2 from all other variables. This is generically not possible
unless the tensor factorizes. To split the tensor, we first rewrite
it in terms of a matrix MAB, where index A = {a1, a2} and
B contains all remaining indices. On this matrix we perform a
singular value decomposition:

T̃(a1,a2),(b1,b2 ,...,d1 ,d2) = :MAB =

χ2
∑

i=1

UA,i λi (V)
†
i,B . (17)

The matrices U and V are unitary and contain the left and right
singular vectors of M. λ is a diagonal matrix of singular values,
where λ1 ≥ λ2 ≥ · · · ≥ λχ2 ≥ 0. See right side of Figure 8.

If we translate thematrix indicesA and B back into the original
tensor indices, we see that the singular value decomposition
allows to write the tensor T̃ as the contraction of a three-
valent and a seven-valent tensor, where the summed index i
labels the singular values. The three-valent tensor U encodes
the desired variable transformation, translating the degrees of
freedom a1, a2 into an effective coarse degree of freedom/index
i. This transformation is exact, since i (generically) has a range
of χ2. Since U is a unitary matrix, we can introduce resolutions
of identity UU† in the partition function (see left of Figure 9)
without changing it and sum over the indices a1, a2 as well as the
indices c1, c2 on the opposite site. Then we repeat this procedure
for the remaining indices to obtain a new effective tensor T′, see
right side of Figure 9.

Hence, we define a new effective tensor, yet its index range
is still χ2, and we cannot continue to iterate this procedure
without truncations. The singular value decomposition allows us
to implement this truncation in an optimal way. Since all singular
values are positive semi-definite and ordered in size, λi

λ1
indicates

how significant i is with respect to the most significant one, i = 1.
Indeed, we can approximate the rank χ2 matrix M by a rank d
matrix by ignoring all λi with i > d. Crucially, in terms of the
least squared error, this matrix is the best rank d approximation
of the matrixMAB. Whether this is a good approximation can be
readily inferred from the size of the singular values. Truncating
the degrees of freedom i directly translates into truncations on the

variable transformations U and the new tensor T′, respectively.
The accuracy of the simulations are then determined by the
bond dimension, i.e., the number of degrees of freedom kept in
each iteration.

The algorithm briefly sketched above is deliberately chosen
to showcase that tensor network renormalization provides a
concrete realization of the spin foam coarse graining scheme.
Firstly, it blocks together tensors and exactly sums over their
internal degrees of freedom. Secondly, the singular value
decomposition provides dynamical variable transformations that
fulfill the role of dynamical embedding maps, and, moreover,
allow for efficient and controllable truncations. One way
to check whether these approximations are justified is to
gradually increase the bond dimension, i.e., the number of
kept singular values, to see whether the properties of the
system depend on this choice, e.g., the position of a phase
transition in parameter space. In case the results converge, the
approximation is sufficiently good and one can extrapolate to
infinite bond dimension. However, there exist situations in which
no truncation should be implemented, in particular on second
order phase transitions [48]. There, one observes that more and
more singular values are relevant the closer one tunes toward the
phase transition, such that one would require an infinite bond
dimension or equivalently infinitely fine boundary data. This is
expected, since one models a highly non-local system by locally
gluing amplitudes.

We would like to highlight some general advantages
and disadvantages of tensor network methods, as well as
modifications to the method that so far are not applied to models
of quantum gravity. Compared to other numerical methods, like
Monte Carlo methods, tensor network algorithms do not suffer
from the sign problem; the algorithms are perfectly applicable
to quantum (oscillating) amplitudes, like in spin foams. The
reason is that tensor networks do not rely on (random) sampling
methods for a large system, but usually focus on all possible
configurations of an amplitude for one building block (tensor).
However, this leads to one of their disadvantages: in order to save
all configurations of a tensor, it must have a finite dimensional
boundary Hilbert space. Moreover, the numerical costs, both
in terms of computational time and memory usage, scale with
the dimension of the boundary Hilbert space. In particular for
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FIGURE 9 | (Left) In case the singular values for i > N are negligible, the truncated maps U†U approximate the resolution of identity well, such that inserting them

in-between the pair of indices barely changes the partition function. (Right) Starting from the tensors in the middle of Figure 8, we insert the truncated resolution of

identity for each pair of edge. Then we obtain the new effective tensor by contracting the previous tensor with its respective embedding maps.

lattice gauge theories and spin foams in higher dimensions,
this requires extensive optimization to make the numerical
simulations feasible.

Before reviewing results in quantum gravity (related) models,
we would like to highlight a fewmethods from the tensor network
community. One key modification is called entanglement
filtering [47, 48, 75]. It removes entanglement between short-
scale degrees of freedom, which would otherwise get promoted
to larger scales and lead to unphysical fixed points in
the renormalization group flow. Other modifications aim at
including Monte Carlo methods into tensor network algorithms,
e.g., for contracting tensor indices [76] or to sample over the
probability distribution of coarse degrees given by the singular
values [77].

In the following, we first review works on tensor network
renormalization applied to 2D analog models. There we
focus on the introduction of symmetry preserving methods
that use the symmetry of the system to label the effective
degrees of freedom with the original variables. In the second
part, we discuss how to apply these methods to 3D lattice
gauge theories and spin foam models, which require an
efficient description of the model given by so-called decorated
tensor networks.

5.1.1. Analog Spin Foam Models in 2D
By 2D analog spin foam models, sometimes also called spin
net models, we mean spin systems with a global symmetry.
The typical example is the Ising model (with vanishing external
magnetic field) that has a global Z2 symmetry. Typically these
models are written in terms of group variables colorred gv ∈ G
assigned to the vertices of the lattice, which only interact with
their nearest neighbors expressed in “edge weights” ωe(gs(e)g

−1
t(e)

).

In order to work with finite dimensional Hilbert spaces we
restrict G to be a finite group (or quantum group later on) [78].

The partition function of the system is given by:

Z =
∑

gv

∏

e

ωe(gs(e)g
−1
t(e)

) . (18)

To be invariant under the global symmetry, i.e., an element h ∈ G
acting on all vertices at once, these edge weights must satisfy

ωe(h g h
−1) = ωe(g) ∀ h ∈ G . (19)

Thus ωe are class functions and Since the function ωe are
invariant under conjugation, each one can be expanded via Peter
Weyl’s theorem [79] into a sum over irreducible representations
ρ of the character χρ of G:

ωe(g) =
∑

ρ

ω̃ρ χρ(g) . (20)

ω̃ρ stands for the group Fourier transform of the edge weight ωe.
Performing this for all edges and expanding the characters as a
trace of representation matrices, the expression factorizes over all
group elements gv, such that the group integrations/summations
can be performed analytically:

Pv({ρe}e⊃v) : =
∑

gv

⊗

e

ρe(gv)
me
ne

. (21)

Pv denotes the Haar projector of the group G, i.e., the
projector onto the invariant subspace. We suppress its many
indices for clarity of the notation. After performing all group
integrations/summations, the partition functions reads:

Z =
∑

ρe

∏

e

ω̃ρe

∏

v

Pv({ρe}e⊃v) (22)
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FIGURE 10 | By explicitly preserving the symmetry of the tensor, we assign an irreducible representation to the new effective edge, thus preserving also the original

theory space. Here shown for the Z2/Ising model case.

Note that the indices of the Haar projectors Pv are contracted
with projectors on neighboring vertices. For more details on
these models and their relation to spin foam models (with finite
groups), see [78].

The expansion sketched here is completely analogous to the
derivation of the spin foam representation familiar from spin
foam literature. Thus, while the dimensionality is lower and
the dynamics simpler, the dynamical ingredients—irreducible
representations ρ and projectors onto the invariant subspace
P/intertwiners ι—are the same as for spin foam models.
Moreover, it is expected that these 2D spin systems share
statistical properties with the 4D gauge theories of the same group
[80]. As a final point, these models can be related to peculiar spin
foams that only possess two vertices and many edges [81].

Hence these models represent ideal test cases for applying
tensor network renormalization to spin foam models and derive
first hints for the RG flow of the full theory. Fortunately, the
translation of the partition function into tensor network language
is straightforward: the projectors P are essentially tensors, whose
variables are the irreducible representations ρe on the edges.
Just the weights ω̃ρe need be split per edge via a squareroot.
While tensor network algorithms can be readily applied, it is
vital to consider the symmetries encoded in P: the irreducible
representations ρe meeting at the vertex v must satisfy the
coupling rules, i.e., they must couple to the trivial representation
to satisfy gauge invariance. These restrictions can be used to
optimize tensor network renormalization methods in two ways:
firstly, by only storing and summing over configurations allowed
by the coupling rules, the memory cost and numerical cost for
the singular value decomposition and index contractions can be
drastically reduced. For Abelian models this is straightforward,
since all representations are one-dimensional and the projector
P = δ(G)(

∑

e⊃v ke) (modulo orientation of the edges).

Thus, under splitting of a tensor, e.g., to define the variable
transformations/embedding map, one defines an intermediate
representation for the new effective edge satisfying the coupling

rules for both tensors. This new representation will be the
label of the effective degrees of freedom and thus allows us
to explicitly preserve the symmetry, see Figure 10. Moreover,
ordering the entries of the matrix according to the intermediate
representation turns the matrix into a block diagonal form. Thus,
the algorithm can be further optimized by performing a singular
value decomposition individually for each block11.

For non-Abelian models, a further comment is necessary. As
sketched in equation (21), the tensor possesses “magnetic” indices
m, n per edge in addition to the irreducible representation ρ.
More precisely, for fixed ρ, each edge carries the vector space
Vρ ⊗ Vρ∗ , where ρ

∗ denotes the dual representation to ρ.
Since Vρ∗ can be identified with the dual vector space (Vρ)

∗,
we label each edge with a single representation. For tensor
networks these magnetic indices pose a significant challenge:
if we were to include them, the size of the tensor would
render the simulations unfeasible. Fortunately, the dependence
on these indices is entirely encoded in representation theory
of the group G and does not change under coarse graining.
Essentially these indices get “pre-contracted” [81, 82], which is
accounted for by G recoupling symbols in the coarse graining
equations. From these equations one can read off another feature
of non-Abelian models: the renormalization group equations
for the representations ρ and ρ∗ are decoupled. Thus, it is
possible that under coarse graining the effective edges will carry
representations (ρ, ρ′) with ρ′ 6= ρ∗.

Mentioning the channels (ρ, ρ′) is a good keyword to explain
the flow as well as the approximation scheme. Due to the explicit
symmetry preservation, the renormalized tensors are expressed
in terms of the same variables as the original theory (with a
slightly more general theory space). Thus, instead of directly
comparing all entries of the tensors, we study the coarse graining
flow by considering the singular values per channel (ρ, ρ′). This

11A SVD of a p × q matrix with q > p scales with p2q in terms of computational

time. Thus, it is beneficial to performmultiple decompositions of smaller matrices.
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is completely sufficient to characterize the flow and read off
different fixed points. Then, in order to determine which degrees
of freedom are more relevant, one needs to compare the singular
values from all channels and truncate accordingly. This can
then result in a higher multiplicity of the same representation
labels and thus more general boundary data, which improves
the accuracy of the simulation. However, in most cases [81–
83] a simple scheme is used, where only the largest singular
value per block is kept. While this is a strong simplification, it
is sufficient to identify interesting phases, labeled by attractive
fixed points of the flow, while keeping the simulations feasible,
in particular for studies on quantum groups SU(2)k [81] and
SU(2)k × SU(2)k [83].

The articles [84, 85] investigate spin netmodels for the Abelian
finite groups Zq, for so-called cut-off models. The starting
point are the edge weights in the zero-temperature limit with
ω̃k = 1 ∀k ∈ {0, . . . , q}. These weights are then truncated
at different levels k, which breaks the topological symmetry
and it is investigated whether this symmetry is restored under
coarse graining. While for low-k and high-k cut-off the high and
low temperature fixed points are found, respectively, there exist
intermediate phases showing oscillating behavior. In [82] tensor
network methods are generalized to non-Abelian groups applied
to spin nets for S3, the permutation group of three elements. To
keep these models feasible, the coupling rules are heavily used
to optimize the algorithm. The models investigated build upon
a holonomy representation of spin foam models [86] and their
implementation of simplicity constraints. In general they find a
non-trivial phase diagram of three phases, a low temperature S3
ordered phase, a high temperature S3 disordered phase as well as
a Z2 ordered phase.

As a next step [81], finite non-Abelian groups are replaced
by the quantum group SU(2)k with the deformation parameter
q = exp( 2π i

k+2
) a root of unity12 [87, 88]. The advantage is that the

integer level k defines a gauge-invariant cut-off jmax = k
2 . That

way it is possible to study systems with more degrees of freedom
by increasing the level k, while the representation theory remains
similar. Moreover, one eventually approaches full SU(2) as k →
∞. Moreover, quantum groups are physically motivated from
3D spin foam models, where they describe gravity with a non-
vanishing cosmological constant [53]. The models studied in [81]
are constructed from so-called intertwiner model fixed points
[89], which represent topological field theories. In a nutshell,
intertwiner models are “half ” of a spin net model, with an edge
Hilbert space of Vρ instead of Vρ ⊗ Vρ∗ . These models are
interesting since one can directly investigate whether the two
copies remain coupled or decouple under coarse graining. Indeed
one finds a rich phase structure with potential second order phase
transitions.

Eventually, the work [83] investigates spin net models for
SU(2)k × SU(2)k that mimic the construction of 4D Riemannian
spin foam models, namely the Barrett-Crane [10] and EPRL/FK
model [13, 14]. For the BC model several attractive fixed points

12 Quantum groups do not allow for a holonomy representation. However, its

representation theory is close to the one of SU(2), such that one defines these

models directly from the high temperature expansion of spin net models.

are found, none of which correspond to topological BF theory.
While this indicates that simplicity constraints are strongly
implemented, no indications for a 2nd order phase transition are
observed. This hints toward the fact that the constraints might be
a too strongly implemented [15]. In contrast, the EPRL/FKmodel
shows a highly intricate flow and partially oscillating behavior,
most likely due to exciting only a few representations initially.
This is a particularity of the implementation of the simplicity
constraints in the Riemannian EPRL/FK model, which relate
Spin(4) representations (j+, j−) to an SU(2) representation k via
j± = 1

2 k |1 ± γ |. Note that j± as well as k must be half integer,
such that γ must be rational.

These results impressively show the potential of tensor
network techniques for studying the renormalization group
of spin foam quantum gravity. Moreover, they lead to the
development of key optimizations and insights that are crucial for
going to higher dimensional gauge systems. This is the subject of
the next section.

5.1.2. Decorated Tensor Networks for Lattice Gauge

Theories and Spin Foams
Dimensions larger than d = 2 and lattice gauge theories
pose challenges for tensor network renormalization methods.
Since higher dimensional tensors carry more boundary data, the
algorithm generically is more costly than its lower dimensional
counterpart. For lattice gauge theories, where due to the local
gauge symmetry many degrees of freedom are redundant, it
is thus imperative to develop an optimal representation if one
intends to cast them into a tensor network form. Moreover,
these networks are generically more complex than spin systems,
since several data are shared among more than two building
blocks. One example are spin foams in four dimensions, where a
face and the representation it carries are shared among multiple
4-simplices. A possible tensor network representation is to
assign a tensor dual to each 4-simplex, yet one must introduce
auxiliary tensors [90] to ensure the correct identification of
shared variables. See Dittrich et al. [91] for a more extensive
discussion of possible representations.

To improve on these representations, decorated tensor
network algorithms are developed and introduced in Dittrich
et al. [91]. The idea is to shift the perspective away from
a pure tensor network representation of the system toward
amplitudes with more intricate boundary data. Yet the key ideas
are retained to explicitly contract bulk degrees of freedom and to
dynamically define effective degrees of freedom using a singular
value decomposition. Instead of tensors, represented by vertices
and legs, one works with a spin foam inspired representation
where amplitudes are assigned to regions, which carry boundary
data, e.g., spin network data. While the assignment of amplitudes
remains local, the non-local nature of gauge theories requires
more complex boundary data and intricate gluing rules that
cannot be cast in a simple tensor network form without
introducing additional structures. The rest of the algorithm
remains essentially the same: amplitudes are glued together by
suitably identifying variables among them. Depending on the
considered situation, some of the identified variables are not
summed over and remain part of the boundary Hilbert space. On
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FIGURE 11 | Illustration of decorated tensor networks. Splitting an amplitude, here for four Ising spins, via a singular value decomposition generically gives rise to

additional indices. These indices are understood as more general boundary data and are encoded in a tensor network dual to the lattice. This network is thus

“decorated” by the remaining data.

this fine amplitude one performs a singular value decomposition
to derive an embedding map leading to coarse effective degrees
of freedom.

The original algorithm in Dittrich et al. [91] works slightly
differently by “splitting” the amplitudes explicitly. Let us briefly
demonstrate the idea for the usual 2D Ising model, for which
a decorated tensor network algorithm exists as well. Consider
an amplitude assigned to a square given by four Ising spins
σi, i ∈ {1, . . . , 4}, A(σ1, . . . , σ4), see Figure 11. The idea of
the algorithm is alternatingly split the squares into regular
triangles, such that four of these form a coarse, rotated square
with a single Ising spin to sum over in their center. To do
so we split the amplitude in two, separating the dependency
on the spins opposite to the cut. For the singular value
decomposition, we need to distinguish two sets of variables:
the variables that we want to separate are encoded in the two
indices of the matrix to decompose, while the shared variables
will remain fixed similar to the symmetry preserving algorithm
before. Hence, we perform a singular value decomposition for
each configuration of shared variables, which is more efficient
than a decomposing a big matrix. In a sense, this leads to
a doubling of the shared variables, which is necessary for
gluing them again in consecutive iterations. In our example,
we get:

M(σ2,σ4)
σ1 ,σ3

: =

2
∑

i=1

U
(σ2 ,σ4)
σ1 ,i

λi (V
†)

(σ2,σ4)
i,σ3

. (23)

By assigning a square root of the singular values λi to
U and V , we derive the desired amplitudes assigned to
the triangles. Note that each amplitude is not just given
by the configuration of three Ising spins, but also by
an additional index i, assigned to the coarse edge. When
combing four triangular amplitudes, the resulting amplitude
for the square is given by more general boundary data,
four Ising spins and four new indices A(σ1, . . . , σ4, i1, . . . , i4),
again see Figure 11. Since these indices are shared with
neighboring amplitudes, we represent them by a tensor
network on the lattice dual to the squares. Thus, we have a

tensor network encoding higher order corrections/more general
boundary data “decorated” by the original boundary data of
the system.

An algorithm is developed for 3D lattice gauge theories and
first applied to Abelian Z2 lattice gauge theory in Dittrich et al.
[91]. Instead of working with the original lattice, one works
with the dual lattice in the strong coupling expansion. Thus, the
variables are irreducible representations ke of Z2 one edge of
the dual lattice and Gauss constraints (Z2 δ-functions) on each
face. The Gauss constraints can be explicitly solved to reduce
the amount of data saved, and there is a freedom to choose
which variables ke to gauge fix. This choice is adapted to the
intended splitting.

Let us briefly sketch the coarse graining algorithm: the idea
is to cut cubes in half by cutting along the diagonal of one of
its faces. Four of these amplitudes are glued together to form

a new (distorted) cube. This coarse graining is continued in

the other directions by “rotating” the amplitude and iterating
the procedure. Compared to the 2D algorithms, the splitting is

slightly more complicated. In order to cut the cube along the
face, it is necessary to introduce another representation along the
intended “cut.” This variable serves as the variable assigned to the
coarse edge, and is introduced by splitting the Gauss constraint
on the square face into two assigned to the two triangles. Then,
the variables are gauge fixed such that equally distributed the
remaining degrees of freedom are equally distributed among the
split amplitudes, and some shared by both. As explained above,
the shared variables will be kept fixed during the singular value
decomposition and label the new amplitudes. Also, again more
general boundary data arise in the form of a decorated tensor
network due to this splitting, which will be assigned to edges and
faces, see [91] for more details.

In its lowest order approximation, i.e., when truncating all
tensor indices, the algorithm reproduces the phase diagram of
Z2 lattice gauge theory with a strong and weak coupling phase,
whereas the critical coupling is found within an error of a
few percent compared to Monte Carlo simulations [92]. These
results are improved by keeping more degrees of freedom after
the singular value decomposition, yet the computational costs
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FIGURE 12 | Gauss constraint violations under coarse graining [for SU(2)]: we can define an effective vertex by summing over the SU(2) representations associated to

the inner edges. The configuration on the left is allowed by the coupling rules, thus the effective vertex on the right is allowed. However, this configuration is forbidden

by SU(2) coupling rules.

grow quickly13. As one of the first tensor network algorithms
applied to 3D lattice gauge theories it already shows promising
qualitative results.

In Delcamp and Dittrich [94] this algorithm is generalized to
non-Abelian symmetry groups and applied to S3 lattice gauge
theory. While the basic idea and principle of the algorithm
remains similar, it is significantly more complicated due to
the non-Abelian group. The basic steps, splitting, gluing and
choice of variables, are still in place, however in order to define
them transformations between the holonomy and spin network
representation are necessary. For the details, we refer the reader
to the extensive and thorough explanation of the technical details
in Delcamp and Dittrich [94]. Let us focus instead on the results.

As for the similar work on S3 spin nets [82], analogous
simplicity constraints for S3 are implemented in the holonomy
representation [86]. The coarse graining flow is studied and three
different phases found, as in Dittrich et al. [82], that correspond
to a strong coupling S3 phase, a weak coupling S3 phase as well as
a weak coupling S3/Z3 ≃ Z2 phase. The successful generalization
to non-Abelian groups as well as the derivation of the phase
diagram of the theory demonstrate the potential of decorated
tensor network techniques. However, this work also revealed a
short-coming of using the spin network basis for labeling the
boundary Hilbert space.

As we discuss in great detail in this review, at some step
of the coarse graining process one sums over fine degrees of
freedom. In the spin network basis, where one assigns irreducible
representations to the links and intertwiners to the nodes, this
implies defining an effective vertex/intertwiner by summing over
representations, see Figure 12. However, usually the coupling
rules at the effective vertex are violated such that the vector
associated to the vertex is not an intertwiner any more and gauge
invariance is broken. This is a well-known shortcoming of the
spin network basis under coarse graining [95, 96] and it is also
expected for lattice gauge theories14. This can be overcome by

13Dittrich et al. [91] also proposed an algorithm based on smaller building blocks

that generically are more efficient, see also the “triangular” algorithm in 2D

[83, 93].
14In order to define coarse grained fluxes in the discrete, the fine fluxes must

be parallel transported to the same point. If the connection has curvature, the

fluxes do not necessarily close any more, which is often referred to as curvature

induced torsion.

a different representation of the boundary Hilbert space that
can accommodate Gauss constraint violations (electric charges)
as well as curvature excitations (magnetic fluxes). In 3D this is
accomplished by the so-called fusion basis.

Here we will only briefly sketch the main features of the fusion
basis, which arises in anyon systems [97, 98], (2+1)D lattice gauge
theories [99] and 3D quantum gravity [100, 101]. The algebraic
structures are called Drinfeld Doubles, see [99, 100, 102–105]
for more details. Its main feature is that it diagonalizes a set of
commuting operators, so-called Ribbon operators. These Ribbon
operators, which contain both aWilson loop operator as well as a
t’Hooft operator, measure both the magnetic (curvature) as well
as electric (torsion) excitations. Such excitations are localized on
punctures carrying the magnetic and electric excitation. In lattice
gauge theory, one can imagine one puncture per plaquette of the
lattice. Ribbon operators surrounding a single or a collection of
plaquettes then measure excitations associated with the puncture
or collection of punctures.

These Ribbon operators commute among each other as long
as they do not intersect. Hence, two Ribbon operators that
surround a single puncture each commute with each other
trivially, and they also commute with the operator surrounding
both punctures. A choice of such a set of commuting Ribbon
operators is encoded into the fusion basis by the choice of a
fusion tree. The plaquettes are the leaves of the tree, and the
connectivity of the tree determines which operators/observables
are diagonalized by this choice of basis, see Figure 13. Moreover,
the basis states can be transformed into one another, such that
one can translate states to diagonalize the observables one intends
to measure. This is a crucial concept that has a notion of coarse
graining built into it. Imagine two cubes glued together: in order
to derive an effective building block with effective degrees of
freedom, one would like fuse the punctures of subdivided faces
into one. To do so, the fusion basis must be chosen such that it
diagonalizes the Ribbon operator around punctures. This ensures
that the expectation values agree in both original and coarse
grained case. Therefore, the fusion tree can be used to encode
a choice of coarse grained observables, which is crucial for the
decorated tensor network algorithm based on the fusion basis.

Such an algorithm is defined for quantum deformed 3D
lattice gauge theories on a cubic lattice for the quantum group
SU(2)k in Cunningham et al. [49]. More details about the fusion
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FIGURE 13 | An example of a fusion tree for a 3D cube with six punctures.

The tree is drawn on the boundary of the 3D cube, here “unfolded.” The order

of the fusion of punctures determines which set Ribbon operators

is diagonalized.

basis for SU(2)k can be found in Dittrich and Geiller [100].
As in previous decorated tensor network algorithms, the basic
ingredient is the amplitude associated to a cube. Its boundary
Hilbert space is spanned by six-puncture states, for which a fusion
tree needs to be specified. Then two cubes are glued together,
which results in a cuboid with four course faces, each carrying
two punctures. The goal is to compute an embedding map that
fuses the two punctures on a subdivided face into one effective
puncture. Generically, after gluing the fusion basis of the cuboid
is not suited to do so, since it does not diagonalize the Ribbon
operator surrounding both punctures. Thus, the basis must be
transformed by a series of tree transformations involving SU(2)k
recoupling theory, see [49] for details and consider Figure 14 for
an illustration.

Once one has arrived at a fusion basis that directly fuses
the punctures as desired, one performs a singular value
decomposition that splits the data of two punctures from all
other variables (similar to section 5.1). In order to label the
new puncture with the usual data, one keeps fixed the data of
fusion tree directly after fusing the punctures. These data label the
effective puncture, while the singular value decomposition gives
the weight of these data in the effective amplitude. Also from
the perspective of (coarse) observables this choice is viable, since
the eigenvalue of a Ribbon operator surrounding two punctures
is solely determined by these data. This allows us to use tensor
network renormalization to approximately compute expectation
values of Ribbon operators that we explain below.

After computing the embedding maps, they are used to coarse
grain the punctures in such a way that the partition function is
altered as little as possible (see again section 5.1). Again, only one
non-vanishing singular value is kept per puncture label, such that
the same boundary Hilbert space is pertained. Once all pairs of
punctures are coarse grained, one obtains again an amplitude of
six punctures that is associated with a cuboid. To complete one
coarse graining iteration, the same procedure is performed in the
other spatial directions. The cube is “rotated” by reordering the

punctures and the same procedure repeated in all directions to
arrive at a coarse cube with six punctures.

In Cunningham et al. [49] this algorithm is applied to 3D
lattice gauge theories defined for the quantum group SU(2)k.
As for quantum group analog spin foam models [81, 83], the
quantum group introduces a gauge-invariant cut-off on the

irreducible representations jmax = k
2 . Thus, the boundary

Hilbert spaces are finite dimensional and it is possible to study
larger “groups” by increasing the level k [and approach SU(2)
in the limit k → ∞]. The lattice gauge theory is modeled
via a Heat kernel action for SU(2)k parameterized by a gauge
coupling parameter g. Lastly, in the initial state each puncture
only carries magnetic excitations as it usually is the case in lattice
gauge theory.

Let us summarize a few of themain results: at each level k there
are two phases separated by a phase transition given by a critical
coupling gc. For g < gc, the system flows to the weak coupling
fixed point g = 0 and is thus characterized as the deconfined
phase. Conversely for g > gc it flows to strong coupling g → ∞,
which describes the confined phase. The position of the critical
coupling gc depends on the level k and decreases apparently
linearly for small k. This tentatively suggests that for SU(2),
i.e., the limit k → ∞, gc → 0 such that only the confining
phase exists. Additionally, the fusion basis permits to track the
appearance of electric excitations that get excited under coarse
graining, even though the initial state had no electric charges.
While they do not appear to be vital for the dynamics, e.g.,
the position of the phase transition is barely affected if electric
charges are completely truncated, including electric charges is
important for the behavior of the coarse graining flow as they
serve as (non-dynamical) disentangling maps. See Cunningham
et al. [49] for more details.

The final result we would like to mention is the expectation
value of observables, here of Ribbon/Wilson loop operators.
Since the fusion basis diagonalizes Ribbon operators, it is
straightforward to approximately compute the expectation value
of coarse Ribbon operators, i.e., Ribbon operators surrounding
a larger number of plaquettes. In lattice simulations one usually
has to simulate the entire system in order to measure coarse
observables. Here, we first coarse grain the amplitude to arrive at
an effective amplitude for the coarse cube, for which we measure
the coarse Ribbon operator around the coarse plaquette. Thus,
we first coarse grain/integrate out the fine degrees of freedom
and account for them (with some truncations) in the effective
amplitude, for which we then calculate the expectation values
of the operators. Using this method, we derive different scaling
behaviors of the expectation value with the enclosed area of the
plaquette, in particular we recover the area law of theWilson loop
in the confined phase.

5.2. Restricted, Semi-Classical Path
Integrals
Despite the tremendous progress in developing tensor
network methods for spin foam models and lattice gauge
theories, applying them directly to spin foam models of
4D quantum gravity (either Riemannian or Lorentzian) is
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FIGURE 14 | Example for why tree transformations are necessary: after gluing the tree is not suited for coarse graining pairs of punctures i, i′. It must be transformed

such i, i′ are directly fused together. See the glued cubes on the right as reference.

still out of reach, in particular for a continuous symmetry
group. An attempt to make the 4D Riemannian spin foam
models accessible is to study simpler models that represent
a subset of the full gravitational path integral. These
simplifications include restricting the degrees of freedom
to specific intertwiners and representations as well as using
asymptotic expansions of spin foam amplitudes valid only
for large representations. Let us explain these assumptions in
more detail.

Intertwiners, which determine the shape of dual 3D
building blocks, can be expressed in terms of Perelomov
coherent states/Livine-Speziale intertwiners [18, 106]: to each
face of the intertwiner one assigns an SU(2) coherent state
|j, En〉, where j labels the irreducible representation and En is
a vector on S2. This vector is a maximum weight state
diagonalizing the angular momentum operator JEn = En · EJ
in En direction. Given these states, the coherent interwiner is
given by:

|ι〉 : =

∫

SU(2)
dg g ⊲

N
⊗

i=1

|ji, Eni〉 . (24)

Each coherent state ∼ |ji, Eni〉 represents a face with area
√

ji(ji + 1) peaked on a normal vector pointing in direction
Eni. The tensor product of these coherent states represents
a 3D quantum building block sharply peaked on a classical
geometry (if it exists) with areas and outward pointing
normal encoded in the labels ji and Eni. The group integration
(with Haar measure dg) defines an intertwiner. Note
that the spin foam partition function itself can also be
expressed in terms of coherent states and an integral over
the labels of coherent states, e.g., see the review [1] for
more details.

These coherent states play an important role in deriving
semi-classical expressions for spin foam (vertex) amplitudes.
When computing the vertex amplitude as a contraction of
coherent intertwiners, these can be rewritten as several group
integrations of contracted SU(2) coherent states. The latter part

is then exponentiated and the group integration performed via a
stationary phase approximation:

Av =

∫

SU(2)E

∏

e

dge
∏

f⊃e

〈jab,−Enba|g
−1
b

ga|jab, Enab〉

= :

∫

SU(2)E

∏

e

dgee
∑

f⊃e 2jab ln〈−Enba|g
−1
b

ga|Enab〉 . (25)

Since the stationary phase approximation is only valid when
the argument in the exponential is highly oscillating, all
representation jf must be large. Hence this expansion is often
called the large-j limit. For single vertex amplitudes it is shown
that the “action” in the exponential evaluated on stationary and
critical points is given by the Regge action of the building block
dual to the vertex [22, 23].

Given these familiar results from spin foam literature, the idea
is to restrict the spin foam partition function of the EPRL/FK
model to specific coherent intertwiners (and representations)
and use only the amplitudes derived in the large-j limit. That
way the system depends on significantly fewer variables and the
spin foam amplitudes, in particular the vertex amplitude, can
be expressed in terms of closed formulas of the representations.
Additionally, in the large-j limit the sum over representations
can be approximated by an integral. The motivation is to employ
numerical integration techniques, e.g., the Cuba package [107].
From now on, we only consider and discuss models defined on a
2-complex with hypercubic combinatorics which makes iterating
the coarse graining steps straightforward.

So far, two models of restricted spin foams are defined that
are also studied under coarse graining. The first one are so-
called quantum cuboids [36], where the intertwiners are sharply
peaked on a classical cuboid geometry. Opposite faces of the
intertwiner carry the same representation and their normals
are anti-parallel. Moreover, the outward pointing normal of a
face is orthogonal to all normals of the adjacent faces, see the
left part of Figure 15. Indeed these are severe restrictions, in
particular the requirement that opposite faces in each intertwiner
carry the same representation translate through the entire lattice.
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FIGURE 15 | (Left) cuboid intertwiners are peaked on the classical discrete geometry of a 3D cuboid. (Right) the construction of the frusta vertex amplitude from the

contraction of intertwiners.

The asymptotic expansion of the vertex amplitudes depends
again on the Regge action, which generically vanishes for cuboid
configurations. For larger complexes this implies that the flat
cuboid building blocks are glued in a flat way. Thus, this model
describes a superposition of flat discrete space-times of different
distribution of sizes across its building blocks. While this is by
no means a realistic model of quantum gravity, it captures an
Abelian subgroup of diffeomorphisms corresponding to shifts
of entire hypersurfaces in the lattice15. Notably, this spin foam
model is not invariant under these transformations [36]. Due
to its simplicity it does not have any free parameters, thus an
additional parameter α is introduced in the face amplitude of the
model, (2jf )

α , which can be understood as a modification of the
path integral measure. This exponent simply emphasizes small or
large representations/face areas in the partition function, and is
motivated by a discussion in the community on the right choice
of face amplitude [108].

A physically more interesting model is based on so-called
frusta [109]. A frustum is a higher-dimensional analog of a
trapezoid. In 4D, it consists of two cubes at its top and bottom,
potentially of different size, which are connected by six 3D
frusta, see the right of Figure 15. That way, a hyperfrustum can
describe the evolution from one spatial cube to a larger/smaller
spatial cube. Thus, the idea is to restrict the intertwiners to be
cube/frusta shaped in order to study the expanding/contracting
cubulated 3D spatial slices. The frustum intertwiner is then given
by three representations, ji and jf correspond to the initial and
final area of the initial and final cubes, respectively and k gives
the side-face area, which also determines the “opening angle”
φ of the frustum16. Crucially, in contrast to the cuboid model,
the Regge action associated to a hyperfrustum in the asymptotic
expansion no longer vanishes and one obtains the familiar cosine

15 Given a flat space-time decomposed into flat hypercuboid lattices, it should not

matter how the 4-volume is split among the building blocks.
16The representation ji, jf and k must satisfy a relation that is spelled out in Bahr

et al. [109].

formula [109]:

Av ∼ cos(
SR

G
+ ϕ)+ cos(

γ SR

G
+
3

G
V) , (26)

where SR denotes the Regge action of the hyperfrustum, V its
volume, G Newtons’ constant, 3 the cosmological constant and
γ the Barbero-Immirzi parameter.

Thus, this model captures several important generalizations
compared to the cuboid model. As signified by the non-vanishing
Regge action, frusta configurations allow for curvature to appear.
Moreover, more parameters play a role in the dynamics: Newton’s
constant G enters here as providing an explicit scale to the
representations/areas on the boundary that serve as initial and
final states. The cosmological constant 3 is added in Bahr and
Rabuffo [110] (analogous to Han [111]) by deforming the vertex
amplitude. The parameter α remains as in the cuboid model17.

After this basic introduction of these models, let us discuss the
simplified coarse graining scheme and results.

5.2.1. Coarse Graining Setup and Results
While in spirit the coarse graining setup is similar to the general
method outlined in section 4, there are several noteworthy
difference and assumptions being made. Firstly, the embedding
maps are chosen on geometric grounds instead of determining
from the dynamics/the amplitudes. The intuitive idea is, e.g., in
case of the hypercuboids, that a coarse hypercuboid arises as a
superposition of fine hypercuboids consistent with the coarse
hypercuboid geometry. Secondly, the coarse graining flow is
computed for one fixed coarse boundary state, not the whole
coarse boundary Hilbert space. Thus, in the path integral context,
this coarse graining flow is performed for a fixed transition. The
third and final assumption includes a projection back onto the

17The Immirzi parameter γ is explicitly kept fixed. Due to the particularities

of the Riemannian EPRL/FK model, γ is necessarily a rational number, which

significantly impacts the amount of allowed representations. Hence, the models

for slightly different γ are substantially different.
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original form of the amplitude, such that the flow is formulated
as a flow in parameter space of the theory. This projection is
defined by comparing expectation values of observables in the
coarse and fine calculation. In a sense, the logic of the consistent
boundary formulation is inverted: the RG flow assigns a family
of amplitudes to different lattices such that expectation values
of observables agree on all lattices. Instead, we derive the RG
flow by identifying theories/parameters across lattices for which
the expectation values of some (sensitive) observables agree. In
case of the cuboids, which are just given by the parameter α, this
would read:

〈O〉α
′

b′ ≈ 〈O〉αb , (27)

which defines the flow α′ → α from fine b′ to coarse b. Note that
all these three assumptions are strong simplifications that need to
be lifted to verify their validity.

Let us first discuss the setup for coarse graining in the
quantum cuboid model reported in Bah and Steinhaus [112].
Consider two hypercuboids glued together along a common 3D
cuboid. The total geometry of both hypercuboids is fixed in the
coarse boundary state, i.e., the total area of each coarse face is
fixed, yet the distribution of 4-volume among the two cuboids
fluctuates. Obviously, the expectation value of the volume of a
single hypercuboid is always exactly half of the total volume,
yet its variance depends sensitively on the parameter α. Thus,
for fixed coarse boundary state, one studies the variance of a
single coarse in the coarse and in the fine case, where each of the
hypercuboids is subdivided into 16. The geometric embedding
map is prescribed such that the fine areas sum up to the coarse
area. This setup and observable is particularly interesting since it
is closely connected to the Abelian subgroup of diffeomorphisms
that can be represented in the quantum cuboid model.

With this setup, the variance of the 4-volume is computed
in both the coarse and fine case for various α/α′, respectively.
In both cases the observable is monotonously decreasing and
both curves intersect once in the value α∗. This particular value
of α defines a fixed point of the renormalization group flow
α′ → α, which is repulsive, i.e., α > α′ for α′ > α∗ and
α < α′ for α′ < α′. Thus, the fixed point also separates
two phases, which are dominated by different configurations.
For α < α∗, small representations j are preferred, such that
subdivided faces contain one large area and several small ones.
In contrast for α > α∗, the configuration dominates in which
a face is equally subdivided since then all spins are as large
as possible. Remarkably, the value α∗ is close to the one at
which diffeomorphism symmetry is almost restored [36]. This
result together with the repulsive behavior at the phase transition
indicate that this transition might be of second order, and that on
it the subgroup of diffeomorphisms might be restored.

The same calculation is repeated for different coarse boundary
states in Bahr and Steinhaus [113] and results in the same
qualitative behavior, yet the position of the fixed point changes.
Thus, we do not include the exact value. This result sheds a
light on the possible interpretation of these results. Since the
coarse boundary state is kept fixed, this coarse graining derives
a family of amplitudes on a family of lattices for this specific

transition. Therefore, it contains the information whether and for
which parameters the regulator/the lattice can be removed and
the results are consistent (within the given approximations and
truncations). Note however that this is a weaker condition than
the coarse graining flow defined in section 4, which refers to all
transitions/boundary states. In a sense, the fixed state becomes
part of the observable for which the coarse graining flow is
defined. That way it provides first insights of coarse graining flow
in a truncated theory space.

A similar analysis of the coarse graining flow is performed for
frusta spin foams in Bahr et al. [114] with a slightly different
setup. Here the boundary is made up of two parts, an initial
and a final 3D spatial cubulations each prescribed by a single
representation ji and jf , which are chosen to be equal. Again,
the goal is to compute expectation values of observables in a fine
and a coarse setting and define a renormalization group flow in
parameter space (α,G,3) such that these observables agree. In
Bahr et al. [114] a few different setups are examined, here we
just discuss the main result of the RG flow in three dimensional
parameter space.

Due to the high symmetry of frusta configurations, the
lattice is prescribed by spatial and temporal subdivisions. The
former fixes the fineness of the spatial cubulation while the
latter determines the number of time steps. The coarse lattice
then has two spatial subdivisions, i.e., 43 spatial cubes, and one
intermediate time step. The fine lattice has one more spatial and
temporal subdivision, i.e., 83 cubes and two intermediate time
steps. The boundary states in both settings are straightforwardly
related by requiring that the total 3D spatial volume encoded
in initial/final state agrees in both settings. Moreover, the total
“height”/“time” is fixed in both settings as well as each time step
is chosen to be equal. That way, only the intermediate spatial
volume is integrated over, while the side panels are fixed, which
greatly reduces the numerical cost.

In order to derive a renormalization group flow in a parameter
space with three parameters, one must consider at least three
observables. In Bahr et al. [114], the 3D spatial volume of the
intermediate slice, its variance as well as the total 4D volume
are considered. The expectation values for all these observables
are computed in a range of all parameters G, 3, and α and
compared for both settings. Then a coarse graining flow is
derived by matching theories with the smallest relative error of
observables18. Under this premise, indications for a fixed point
around α∗ ≈ 0.677, G∗ ≈ 0.037, and 3∗ ≈ 0.08 are found.
While the exact numerical values are less relevant and most likely
subject to change for different boundary states, qualitatively the
numerics indicate that this fixed point has one repulsive and
two attractive directions. As for the cuboid case, the repulsive
direction appears to be (mostly) related to the parameter α, while
G and 3 seem to be the attractive directions. In standard lore,
this would imply that both G and 3 are irrelevant couplings and
fixed by the RG trajectory.

18Moreover, one is only comparing theories that are “close” in parameter space.

This is justified since one is mainly interested in fixed points of the coarse graining

flow, given the truncations introduced in the model.
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At first sight, this result appears to be at odds with results
in asymptotic safety [115], where both G and 3 correspond
to free parameters/relevant directions. However, note that this
setting here is significantly different: due to considering only a
specific transition, a scale is introduced into the system, which
is not changed by the coarse graining flow. Thus, in contrast
to asymptotic safety where one derives theories at different
scales, this coarse graining flow teaches us whether and for
which parameters the regulator/lattice might be removed. In this
sense, the fixed point gives the correct discretization independent
amplitude (given the introduced approximations) for this specific
transition. So G∗ and 3∗ mark the correct parameters for one
specific transition and are thus irrelevant in this flow, yet they
might correspond to relevant directions when different scales
are related.

5.2.2. Numerical Methods
A short comment on the numerical methods is in order. In the
semi-classical, restricted spin foam models, Monte-Carlo and
numerical integration techniques are used [107]. This works
particularly well for the quantum cuboid model, where the action
vanishes and the amplitudes do not show an oscillating behavior.
Nevertheless, also for the frusta models, which feature oscillating
amplitudes, can be explored with these methods with slower
convergence. In general, convergence slows down for higher
dimensional integrals and larger discretizations, such that this
method appears to be feasible for systems with a few building
blocks and symmetries that reduce the amount of degrees
of freedom.

5.3. Semi-Classical Continuum Limit
Before concluding this review, we would like to briefly discuss the
semi-classical continuum limit approach [116, 117], since it aims
at defining a flow across a family of triangulations and might at
first sight be similar to the restricted path integral method.

This approach discussed in the papers [116, 117] aims at
defining a semi-classical continuum limit for spin foammodels in
the following sense. As mentioned before, it is a well-established
result that one obtains (area) Regge calculus in the asymptotic
expansion of spin foam vertex amplitudes [21–25]. Often this is
called a semi-classical limit, by scaling all representations j →
λj by a parameter λ. In Han et al. [117] a Gaussian weight is
introduced into this semi-classical limit that suppresses non-
length-Regge like geometries, i.e., geometries prescribed by areas
that do not correspond to triangulation given by edge lengths.
The parameter for this Gaussian weight is δ, where δ → 0
removes this weight. These systems are studied in the regime
λ ≫ δ−1 ≫ 1, such that the semi-classical formula is valid and
higher curvature corrections (in the deficit angle) are suppressed.

Essentially the idea is to define a continuum limit as in
Regge calculus: for a sequence of triangulations KN of the same
manifold continuum general relativity is restored if all lengths
and deficit angles converge to zero asN → ∞. In Han et al. [117]
it is argued that this is achieved for particular scaling relations for
λ, δ, and µ, where µ rescales the Planck length. Thus, one defines
a flow across triangulations in this parameter space, where in the
limit N → ∞, both areas and deficit angles converge to zero.

Invoking the continuum limit of Regge calculus, it is argued that
general relativity is obtained in this limit.

The existence of such a regime, where one obtains general
relativity as the continuum limit of Regge calculus, would be
intriguing and it is suggestive to think it should exist, given the
close relation of spin foam models and Regge calculus. However,
there are several points that must be considered before this can
be confirmed: firstly, the assumptions and modifications made
that must be carefully cross-checked. Most strikingly, a term
that suppresses non-Regge like geometries is not present in spin
foam models and one might argue that such a role ought to
be already implemented in the simplicity constraints. Secondly,
the conditions under which the formulas are valid are highly
specific and it must be validated whether these are satisfied in
generic situations. Finally, the defined flow of parameters is not
dynamical, in the sense that it is not derived by relating dynamics
across different triangulations. Thus, it is not clear whether this
continuum limit gives well-defined continuum dynamics.

6. OUTLOOK: TOWARD
RENORMALIZATION IN 4D

In this article we provide a detailed review of coarse graining in
spin foams at the conceptual and practical level. Attentive readers
notice that these methods have not been applied yet to the full
4D theory, e.g., the EPRL/FK in the Riemannian or Lorentzian
setting, and it is currently out of reach. In this outlook, we
would like to discuss the open issues and questions that need to
be addressed.

A first point, which is relevant for all calculations performed
in spin foam quantum gravity, is the computability of spin
foam amplitudes, more precisely the vertex amplitude. As
the amplitude associated to a 4D building block, it is the
centerpiece of the theory and the most intricate to compute.
Analytical formulas are known for the asymptotic expansion of
the amplitude [21–25], where the boundary data is given by
coherent states peaked on classical discrete geometries. However,
these results are not valid for small representations, the quantum
regime of the theory. To compute the amplitude in this regime
requires numerical techniques, e.g., by explicitly contracting
intertwiners to obtain the vertex amplitude. Significant progress
was made in recent years for the Lorentzian EPRL model in
Donà et al. [28, 29, 45] using the results form [118]. Nevertheless,
these calculations require significant numerical resources, which
makes it difficult to explore systems with multiple vertex
amplitudes. Two ideas might be helpful in exploring larger 2-
complexes: Firstly, storing computed vertex amplitudes, e.g.,
for an orthonormal basis of intertwiners, in an open-data
database, such as the “Encyclopedia of Quantum Geometries”19

would make them accessible to interested researchers and avoid
computing the same amplitudes multiple times. The second idea
relies on the fact that the asymptotic formula well approximates
the vertex amplitude for fairly small representations, j ∼ 10 for a
4-simplex in the Riemannian EPRL model [119]. Exploiting this

19https://zenodo.org/communities/enqugeo/?page=1&size=20.
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fact could lead to an efficient hybrid algorithm, similar to the idea
used in loop quantum cosmology [120], that only uses the costly
to compute quantum amplitude in case the asymptotic formula is
not accurate.

An alternative route toward studying spin foams withmultiple
simplices lies in defining simplified models. In section 5.2 we
review one example for such models, namely restricted spin foam
models. Instead of exploring the full spin foam path integral,
only a subset of configurations is explored using the asymptotic
formula. Thus, the number of degrees of freedom is drastically
reduced and the issue of exactly computing the vertex amplitude
is circumvented, which makes it possible to renormalize these
models. Clearly, as next steps these restrictions need to be lifted in
order to explore more of the dynamics of the theory. This could
either be by allowing more configurations in the path integral,
see e.g., [121], or by going beyond the asymptotic formula and
including the full vertex amplitude. Recently, another simplified
model has been constructed in a similar direction [122]. Again,
the asymptotic formula of the vertex amplitude is invoked to
define a simplified vertex amplitude. Special emphasis is given
to an implementation of simplicity constraints akin to spin
foam models as weak conditions on 3D dihedral angles, which
might give new insights into spin foam dynamics for large 2-
complexes. Note that this model does not restrict the allowed
configurations in contrast to the restricted models discussed in
this review.

The most holistic approach to coarse graining spin foam
models, tensor network renormalization discussed in detail in
section 5.1, faces two main challenges when going to 4D. One
is the increased complexity of the amplitude which results both
in larger memory cost as well as computational time. Related
to this is the second issue, how to define a tensor network
algorithm for systems with infinitely many configurations or
continuous variables like the 4D spin foammodels defined for Lie
groups. A solution to the former challenge might lie in defining a
representation of the model suited for renormalization, similar
to the fusion basis in 3D [49, 100]. Alternative formulations
of 4D models are investigated, e.g., in [123, 124]. Using
observables might again serve as a guiding principle to find
such representations. The second issue might be tackled in a
similar direction, where a rewriting of the model might lead to an
efficient tensor network description. One such example is [125],
where the renormalization group flow of φ4 scalar field theory

is accessible for tensor network methods by performing a simple
transformation.

Another important research direction, on which
renormalization and coarse graining can shed a new light,
is matter coupling in spin foam quantum gravity. Since spin
foams are a purely gravitational theory, matter degrees of
freedom must be added in order to adequately describe the
universe. Different ways to couple matter to spin foams exist
in the literature [126–131], yet the intriguing dynamics of the
coupled matter gravity system are hardly explored. Applying
a coarse graining scheme to the combined system allows us
to renormalize matter and gravitational degrees of freedom at
the same time, uncovering the phase diagram of the system.
This idea is realized for a simplified toy model in Steinhaus
[93]. Without a question, a system consisting of both spin foam
and matter degrees of freedom is more difficult to study than
the former alone. Nevertheless, adding matter to simplified
models might be accessible and lead toward intriguing new
features and insights, e.g., it would be interesting to see how the
matter sector influences the quantum gravitational theory as in
Donà et al. [132].

Beyond the methods discussed in the review, ideas from other
fields and approaches to quantum gravity might help us advance
coarse graining in spin foammodels to 4D. These might be novel
numerical techniques, like deep learning, or well-established ones
like Monte Carlo methods, which might be efficiently applicable
in certain settings.
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