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One proposal to utilize near-term quantum computers for machine learning are

Parameterized Quantum Circuits (PQCs). There, input is encoded in a quantum state,

parameter-dependent unitary evolution is applied, and ultimately an observable is

measured. In a hybrid-variational fashion, the parameters are trained so that the function

assigning inputs to expectation values matches a target function. The no-cloning

principle of quantum mechanics suggests that there is an advantage in redundantly

encoding the input several times. In this paper, we prove lower bounds on the number

of redundant copies that are necessary for the expectation value function of a PQC to

match a given target function. We draw conclusions for the architecture design of PQCs.

Keywords: parameterized quantum circuits, quantum neural networks, near-term quantum computing, lower

bounds, input encoding

1. INTRODUCTION

Quantum Information Processing proposes to exploit quantum physical phenomena for the
purpose of data processing. Conceived in the early 80’s [1, 2], recent breakthroughs in building
controllable quantum mechanical systems have led to an explosion of activity in the field.

Building quantum computers is a formidable challenge—but so is designing algorithms which,
when implemented on them, are able to exploit the advantage that quantum computing is widely
believed by experts to have over classical computing on some computational tasks. A particularly
compelling endeavor is to make use of near-term quantum computers, which suffer from limited
size and the presence of debilitating levels of quantum noise. The field of algorithm design for Noisy
Intermediate-Scale Quantum (NISQ) computers has scrambled over the last few years to identify
fields of computing, paradigms of employing quantum information processing, and commercial
use-cases in order to profit from recent progress in building programmable quantum mechanical
devices—limited as they may be at present [3].

One use-case area where quantum advantage might materialize in the near term is that of
Artificial Intelligence [3, 4]. The hope is best reasoned for generative tasks: several families of
probability distributions have been theoretically proven to admit quantum algorithms for efficiently
sampling from them, while no classical algorithm is able or is known to be able to perform that
sampling task. Boson sampling is probably the most widely known of these sampling tasks, even
though the advantage does not seem to persist in the presence of noise (cf. [5]); examples of some
other sampling procedures can be found in references [6, 7].

Promising developments have also been made available in the case of quantum circuits that
can be iteratively altered by manipulation of one or several parameters: Du et al. [8] consider so-
called Parameterized Quantum Circuits (PQCs) and find that they, too, yield a theoretical advantage
for generative tasks. PQCs are occasionally referred to as Quantum Neural Networks (QNNs) (e.g.,
in [9]) when aspects of non-linearity are emphasized, or as Variational Quantum Circuits [10]. We
stick to the term PQC in this paper, without having in mind excluding QNNs or VQCs.
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The PQC architectures which have been considered share
some common characteristics, but an important design question
is how the input data is presented. Input data refers either to a
feature vector, or to output of another layer of a larger, potentially
hybrid quantum-classical neural network. The fundamental
choice is whether to encode digitally or in the amplitudes of
a quantum state. Digital encoding usually entails preparing a
quantum register in states

∣

∣bx
〉

, where bx ∈ {0, 1}n is binary
encoding of input datum x. Encoding in the amplitudes of a
quantum state, on the other hand, refers to preparing a an n-bit

quantum register in a state of the form |φx〉 : =
∑2n−1

j=0 φj(x)
∣

∣j
〉

,

where φj, j = 0, . . . , 2n − 1 is a family of encoding functions
which must ensure that |φx〉 is a quantum state for each x, i.e.,

that
∑

j

∣

∣φj(x)
∣

∣

2 = 1 holds for all x. We refer the reader to the

discussion of these concepts in Schuld and Petruccione [11] for
further details.

The present paper deals with redundancy in the input
data, i.e., giving the same datum several times. The most
straightforward concept here is that of “tensorial” encoding [12].
Here, several quantum registers are prepared in a state which
is the tensor product of the corresponding number of identical
copies of a data-encoding state, i.e., |φx〉⊗· · ·⊗|φx〉. For example,
Mitarai et al. [13], propose the following construction: To encode
a real number x close to 0, they choose the state

∣

∣φx
〉

= Ry(arcsin(x)/2)|0〉 = sin(arcsin(x)/2)|0〉
+ cos(arcsin(x)/2)|1〉, (1)

where Ry(θ) : = e−iθσY/2 is the 1-qubit Pauli rotation around
the Y-axis (and σY the Pauli matrix). But then, to construct a
PQC that is able to learn polynomials of degree n in a single
variable, they encode the polynomial variable x into n identical
copies,

⊗n
j=1 |φx〉. It is noteworthy, and the starting point of our

research, that the number of times that the input, x, is encoded
redundantly, depends on the complexity of the learning task.

Encoding the input several times redundantly, as in tensorial
encoding, is probably motivated by the quantum no-cloning
principle. While classical circuits and classical neural networks
can have fan-out—the output of one processing node (gate,
neuron, . . . ) can be the input to several others—the no-cloning
principle of quantum mechanics forbids to duplicate data which
is encoded in the amplitudes of a quantum state. This applies to
PQCs, and, specifically, to the input that is fed into a PQC, if the
input is encoded in the amplitudes of input states.

1.1. The Research Presented in This Paper
The no-cloning principle suggests that duplicating input data
redundantly is unavoidable. The research presented in this paper
aims to lower bound how often the data has to be redundantly
encoded, if a given function is to be learned. The novelty in this
paper lies in establishing that these lower bounds are possible.
For that purpose, the cases for which we prove lower bounds are
natural, but not overly complex, thus highlighting the principle
over the application.

The objects of study of this paper are PQCs of the following
form. The input consists of a single real number x, which is

encoded into amplitudes by applying a multi-qubit Hamiltonian
evolution of the form e−iη(x)H at one point (no redundancy),
or several points in the quantum circuit. The function η and
Hamiltonian H may be different at the different points the
quantum circuit.

Hence, our definition of “input” is quite general, and allows,
for example, that the input is given in the middle of a quantum
circuit—mimicking the way how algorithms for fault-tolerant
quantum computing operate on continuous data: the subroutine
for accessing the data be called repeatedly; cf., e.g., the description
of the input oracles in van Apeldoorn and Gilyén [14]. It
should be pointed out, however, that general state preparation
procedures as in Harrow et al. [15] and Schuld et al. [12] cannot
not be studied with the tools of this paper, because they apply
many operations with parameters derived from a collection of
inputs, instead of a single input.

Our lower bound technique is based on Fourier analysis.

1.2. Example
Take, as example, the parameterized quantum circuits of Mitarai
et al. [13] mentioned above. Comparing with (1) shows: The
single real input x close to 0 is prepared by performing,
at n different positions in the quantum circuit, Hamiltonian
evolution e−iηj(x)Hj with ηj(x) : = arcsin(x), and Hj : = σY/2,
for j = 1, . . . , n.

We say that the input x to the quantum circuits of Mitarai
et al. are encoded with input redundancy n—meaning, the input
is given n times.

The example highlights the ostensible wastefulness of giving
the same data n times, and the question naturally arises whether
a more clever application of possibly different rotations would
have reduced the amount of input redundancy.

In the case of Mitarai et al.’s example, it can easily be seen—
from algebraic arguments involving the quantum operations
which are performed—that, in order to produce a polynomial
of degree n, redundancy n is best possible for the particular
way of encoding the value x by applying the Pauli rotation to
distinct qubits, we leave that to the reader. However, already the
question whether by re-using the same qubit a less “wasteful”
encoding could have been achieved is quite not so easy. Our
Fourier analysis based techniques give lower bounds for more
general encodings, in particular, for applying arbitrary single-
qubit Pauli rotations to an arbitrary set of qubits at arbitrary time
during the quantum circuit.

Figure 1 next page shows the schematic of quantum circuits
with input x. The setup resembles that of a neural network layer.
The j’th “copy” of the input is made available in the quantum
circuit by, at some time, performing the unitary operation
e2π iηj(x)Hj on one qubit, where ηj(x) = ϕ(ajx + bj), for an
“activation function” ϕ. (We switch here to adding the factor 2π ,
to be compatible with our Fourier approach).

In the above-mentioned example in Mitarai et al. [13], the
activation function is ϕ : = arcsin. Figure 1 aims at making
clear that the input can be encoded by applying different unitary
operations to different qubits, or to the same qubit several
times, or any combination of these possibilities. Generalization
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FIGURE 1 | Schematic for the PQCs we consider. The classical input x, after being subjected to a transformations ηj (x) = ϕ(ajx+ bj ) with “activation function” ϕ, is fed

into the QNN/PQC through Hamiltonian evolution operations e2π iηj (x)Hj . Quantum operations which do not participate in entering the input data into the quantum circuit

are not shown; these include the operations which depend on the training parameters θ .

of our results to several inputs is straightforward, if the activation
functions in Figure 1 have a single input.

1.3. Our Results
As hinted above, our intention with this paper is to establish, in
two natural examples, the possibility of proving lower bounds on
input redundancy. The first example is what we call “linear” input
encoding, where the activation function is ϕ(x) = x. The second
example is Mitarai et al. [13] approach, where the activation
function is ϕ(x) = arcsin(x).

For both examples, we prove lower bounds on the input
redundancy in terms of linear-algebraic complexity measures of
the target function. We find the lower bounds to be logarithmic,
and the bounds are tight.

To the best of our knowledge, our results give the first
quantitative lower bounds on input redundancy. These lower
bounds, as well as other conclusions derived from our
constructions, should directly influence design decisions for
quantum neural network architectures.

1.4. Paper Organization
In the next section we review the background on the PQC model
underlying our results. Sections 3 and 4 contain the results on
linear and arcsine input encoding, respectively. We close with a
discussion and directions of future work.

2. BACKGROUND

2.1. MiNKiF PQCs
We now describe parameterized quantum circuits (PQCs) in
more detail. Denote by

UH(α) : ρ 7→ e−2π iαHρe2π iαH (2)

the quantum operations of an evolution with Hamiltonian H
(operating on some set of qubits); the 2π factor is just
a convenience for us and introduces no loss of generality.
Following, in spirit, Mitarai et al. [13], in this paper we consider
quantum circuits which apply quantum operations each of which
is one of the following:

1. An operation as in (2), with a parameter α : = η which will
encode input, x (i.e., η is determined by x);

2. An operation as in (2), with a parameter α : = θ which
will be “trained” (we refer to these parameters as the
training parameters);

3. Any quantum operation not defined by any parameter
(although its effect can depend on θ , η, e.g., via dependency
on measurement results).

Denote the concatenated quantum operation by E(η, θ). Now
let M be an observable, and consider its expectation value on
the state which results if the parameterized quantum circuit is
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applied to a fixed input state ρ0, e.g., ρ0 : = |0〉〈0|. We denote the
expectation value with parameters set to η, θ by f (η, θ):

f : R
n × R

m → R : (η, θ) 7→= tr(ME(η, θ)ρ0). (3)

The PQCs could havemultiple outputs, but we do not consider
that in this paper.We refer to PQCs of this type asMiNKiF PQCs,
as [13] realized the fundamental property

∂θj f (η, θ) = π
(

f (η, θ + 1
4 ej)− f (η, θ − 1

4 ej)
)

, (4)

where ej is the vector with a 1 in position j and 0 otherwise.
This equation characterizes trigonometric functions. (The same
relation holds obviously for derivatives in ηj direction.)

The setting we consider in this paper is the following.

• The training parameters, θ , have been trained perfectly and
are thus ignored, in other words, omitting the θ argument, we
conveniently consider f to be a function defined onR

n (instead
of on R

n × R
m);

• The inputs, x, are real numbers;
• The parameters η of f are determined by x, i.e., η is replaced

by (ϕ(a1x + b1), . . . ,ϕ(anx + bn)), where a, b ∈ R
n; in other

words, we study the function

R → R : x 7→ f (ϕ(a1x+ b1), . . . ,ϕ(anx+ bn)).

We allow a, b to depend on the target function1.
This setting is restrictive only in as far as the input is one-

dimensional; the reason for this restriction is that this paper aims
to introduce and demonstrate a concept, and not be encyclopedic
or obtain the best possible results.

This setting clearly includes the versions of amplitude
encoding discussed in the introduction by applying operations
UHj (ϕ(ajx+bj)) to |0〉〈0| states (of appropriatelymany qubits) for
several j’s, with suitableHj’s. However, the setting is more general
in that it doesn’t restrict to encode the input near the beginning
of a quantum circuit, indeed, the order of the types of quantum
operations is completely free.

To summarize, we study the functions

f : R → R : η 7→ f (η) (5a)

: = tr
(

MVn Un(ηn)Vn−1 Un−1(ηn−1) . . . V1 U1(η1)V0 ρ0

)

where

U1 : = UH1 , . . . ,Un : = UHn for Hamiltonians Hj, j = 1, . . . , n.
(5b)

and

R → R : x 7→ f (η(x)) (6)

where η : R → R
n
: x 7→ ϕ(a1x+ b1), . . . ,ϕ(anx+ bn). Then we

ask the question: How large is the space of the x : f (η(x)), for a
fixed activation function ϕ, but variable vectors a, b ∈ R

n?

1Cf. Remarks 6 and 12. Indeed, our analysis suggests that the a, b should be training
parameters if the goal is to achieve high expressivity; see the Conclusions.

2.2. Fourier Calculus on MiNKiF Circuits
This paper builds on the simple observation of [16] that, under
assumptions which are reasonable for near-term gate-based
quantum computers, the Fourier spectrum, in the sense of the
Fourier transform of tempered distributions, is finite and can
be understood from the eigenvalues of the Hamiltonians. In
particular, if, for each of the Hamiltonians Hj, j = 1, . . . , n,
the differences of the eigenvalue of Hj are integer multiples of a
positive number κj, then η 7→ f (η) is periodic.

Take, for example, the case of Pauli rotations (e−2π iσ⋆/2 in
our notation): There, each of the Hj is of the form σuj/2 (with
uj ∈ {x, y, z}). The eigenvalues of Hj are ±1/2, the eigenvalue
differences are 0,±1, and f : R

n → R is 1-periodic2 in every
parameter, with Fourier spectrum contained in

Z
n
3 : = {0,±1}n. (7)

More generally, if the Hj have eigenvalues, say, λ
(0)
j ∈

R and λ
(s)
j = λ

(0)
j + s for s = 1, . . . ,Kj, then the

eigenvalue differences are {−Kj, . . . ,Kj}, and f : R
n → R is 1-

periodic in every parameter, with Fourier spectrum contained in
∏n

j=1{−Kj, . . . ,Kj}.
We refer to [16] for the (easy) details. In this paper, focusing

on the goal of demonstrating the possibility to prove lower
bounds on the input redundancy, we mostly restrict to 2-level
Hamiltonians with eigenvalue difference 1 (such as one-half
times a tensor product of Pauli matrices), which gives us the
nice Fourier spectrum (7), commenting on other spectra only
en passant.

For easy reference, we summarize the discrete Fourier analysis
properties of the expectation value functions that we consider
in the following remark. The proof of the equivalence of the
three conditions is contained in the above discussions, except
for the existence of a quantum circuit for a given multi-linear
trigonometric polynomial, for which we defer [17], as it is not
the topic of this paper.

REMARK 1. The following three statements are equivalent. If they
hold, we refer to the function as an expectation value function,
for brevity (suppressing the condition on the eigenvalues of the
Hamiltonians). The input redundancy of the function is n.

1. The function f is of the form 5, where the Hj, j = 1, . . . , n, have
eigenvalues±1/2.

2. The function f is a real-valued function R
n → R which

is 1-periodic in every parameter, and its Fourier spectrum is
contained in Z

n
3 . Hence,

f (η) =
∑

w∈Z
n
3

f̂ (w)e2π iw•η (8)

where w • η : =
∑n

j=1 ηjwj is the dot product (computed in

R), and f̂ the usual periodic Fourier transform of f , i.e., f̂ (w) =
∫

[0,1]n e
−2π iw•ηf (η) dη.

2This is where the factor 2π in the exponent is used.
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3. The function f is a multi-linear polynomial in the sine and
cosine functions, i.e.,

f (η) =
∑

τ∈{1,cos,sin}n
f̃τ

n
∏

j=1

τj(2πηj), (9)

(where “1” under the sum denotes the all-1 function).

3. LINEAR INPUT ENCODING

We start discussing the case where the input parameters are affine
functions of the input variable, e.g., ϕ = id and η(x) = x · a + b
for some a, b ∈ R

n, so the input redundancy is n.
For a ∈ R

n define

Ka : =
{

w • a
∣

∣ w ∈ Z
n
3

}

, (10a)

spread(a) : = 1

2
|Ka \ {0}|, (10b)

with |·| denoting set cardinality; we refer to spread(a) as the
spread of a. We point the reader to the fact that Ka is symmetric
around 0 ∈ R and 0 ∈ Ka, so that the spread is a non-
negative integer.

For every k ∈ R, consider the function

χk : R → C : t 7→ e2π ikt . (11)

These functions are elements of the vector space C
R of all

complex-valued functions on the real line. We note the following
well-known fact.

LEMMA 2. The functions χk, k ∈ R, defined in (11) are linearly
independent (in the algebraic sense, i.e., every finite subset is
linearly independent).

Moreover, for every x0 ∈ R and ε > 0, the restrictions of these
functions to the interval ]x0 − ε, x0 + ε[ are linearly independent.

Proof: We refer the reader to Appendix 1 for the first statement
and only prove the second one.

Suppose that for some finite set K ⊂ R and complex numbers
αk, k ∈ K we have g(z) : =

∑m
j=1 αjχkj (z) = 0 for all

z ∈ ]x0 − ε, x0 + ε[. Since g is analytic and non-zero analytic
functions can only vanish on a discrete set, we then must also
have g(z) = 0 for all z ∈ C. This means that the linear
dependence on an interval implies linear dependence on the
whole real line. This proves the second statement, and the proof
of Lemma 2 is completed.

We can now give the definition of the quantity which will
lower-bound the input redundancy for linear input encoding.

DEFINITION 3. The Fourier rank of a function h : R → R at a
point x0 ∈ R is the infimum of the numbers r such that there exists
an ε > 0, a set K ⊂ R \ {0} of size 2r, and coefficients αk ∈ C,
k ∈ {0} ∪ K such that

h(x) =
∑

k∈{0}∪K
αk χk(x) for all x ∈ ]x0 − ε, x0 + ε[. (12)

Note that the Fourier rank can be infinite, and if it is finite,
then it is a non-negative integer. Indeed, from h∗ = h it
follows that

∑

k∈{0}∪K αkχk =
∑

k∈{0}∪K α∗
k
χ−k, so that by the

linear independence of the χ ’s (Lemma 2) we have α−k = α∗
k
,

which means that in a minimal representation of h, the set K is
symmetric around 0 ∈ R.

EXAMPLES.

• Constant functions have Fourier rank 0 at every point.
• The trigonometric functions x 7→ cos(κx + φ), with κ 6= 0,

have Fourier rank 1 at every point.
• Trigonometric polynomials of degree d, x 7→

∑d
j=0 αj cosj(κjx + φj), have Fourier rank d at every point, if

αd 6= 0, κd 6= 0.
• The function x 7→

∣

∣sin(πx)
∣

∣ has Fourier rank 1 at every
x0 ∈ R \ Z and infinite Fourier rank at the points x0 ∈ Z.

• The function x 7→ x has infinite Fourier rank at every point.

THEOREM 4. Let f be an expectation value function, i.e., as in
Remark 1. Moreover, let a, b ∈ R

n, and h : R → R : x 7→
f (x · a + b). For every x0 ∈ R, the Fourier rank of h at x0 is less
than or equal to the spread of a.

Proof: With the preparations above, this is now a piece of cake.
Let x0 ∈ R and set ε : = 1. With Ka as defined in (10), for
x ∈ ]x0 − ε, x0 + ε[, we have

h(x) = f (x · a+ b) =
∑

w∈Z
n
3

f̂ (w)e2π iw•(x·a+b) [Remark 12]

=
∑

w∈Z
n
3

f̂ (w)e2π iw•be2π ix·w•a

=
∑

k∈Ka

(

∑

w∈Z
n
3 ,

w•a=k

f̂ (w)e2π iw•b
)

e2π ix·k

=
∑

k∈Ka

αk χk(x),

where we let

αk : =
∑

w∈Z
n
3 ,

w•a=k

f̂ (w)e2π iw•b

This shows that h has a representation as in (12) with K : = Ka \
{0}. It follows that the Fourier rank of h is bounded from above
by |Ka|/2 = spread a. This completes the proof of Theorem 4.

The theorem allows us to give the concrete lower bounds for
the input redundancy.

COROLLARY 5. Let h be a real-valued function defined in some
neighborhood of a point x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with linear input encoding, i.e., there is
an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an ε > 0
such that h(x) = f (x · a+ b) holds for all x ∈ ]x0 − ε, x0 + ε[.

The input redundancy, n, is greater than or equal to log3(r+1),
where r is the Fourier rank of h at x0.
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To represent a function h by aMiNKiF PQCwith
linear input encoding in a tiny neighborhood of a
given point x0, the input redundancy must be at
least the logarithm of the Fourier rank of h at x0.

Proof of Corollary 5: For every a ∈ R
n, we have |Ka| ≤ 3n, by the

definition of Ka, and hence spread(a) ≤ (3n − 1)/2.
We allow that a, b are chosen depending on h (see the

Remark 6 below). Theorem 4 gives us the inequality

r ≤ max
a

spread(a) ≤ (3n − 1)/2,

which implies n ≥ log3(2r + 1) ≥ log3(r + 1), as claimed. (We
put the +1 to make the expression well-defined for r = 0.) This
concludes the proof of Corollary 5.

REMARK 6. If the entries of a are all equal up to sign, then we
have spread(a) = n. It can be seen that if the entries of a are
chosen uniformly at random in [0, 1], then spread(a) = (3n−1)/2.
Hence, it seems that some choices for a are better than others.
Moreover, looking into the proof of Theorem 4 again, we see that
the χk, k ∈ Ka, must suffice to represent (or approximate) the target
function, and that the entries of b play a role in which coefficients
αk can be chosen for a given a. Hence, it is plausible that the choices
of a, b should depend on h.

REMARK 7. Our restriction to Hamiltonians with two eigenvalues
leads to the definition of the spread in (10). If the set of eigenvalue
distances of the Hamiltonian encoding the input ηj is Dj ⊂ R, then,
for the definition of the spread, we must put this:

Ka : =
{

w • a
∣

∣ w ∈
n

∏

j=1

Dj

}

.

Theorem 4 and Corollary 5 remain valid, with essentially the same
proofs, but with a higher base for the logarithm.

4. ARCSINE INPUT ENCODING

We now consider the original situation of the example in Mitarai
et al. [13], where the activation function is ϕ = arcsin. More
precisely, for a, b ∈ R

n, we consider

η(x) : = arcsin((ax+ b)/(2π)).

Abbreviating sj : = ajx + bj and cj : =
√

1− s2j for j = 1, . . . , n,

Remark 13, gives us that the expectation value functions with
arcsine input encoding are of the form

h(x) = f (η(x)) =
∑

S,C⊆[n]
S∩C=Ø

f̃S,C
∏

j∈S
sj

∏

j∈C
cj

=
∑

S,C⊆[n]
S∩C=Ø

f̃S,C
∏

j∈S
(ajx+ bj)

∏

j∈C

√

1− (ajx+ bj)2, (13)

where we use the common shorthand [n] : = {1, . . . , n}, and set
f̃S,C : = f̃τ (S,C) with τj(S,C) = sin if j ∈ S, τj(S,C) = cos if j ∈ C,
and τj(S,C) = id otherwise.

Consider a formal expression of the form

µ
(a,b)
S,C : =

∏

j∈S
(ajx+ bj)

∏

j∈C

√

1− (ajx+ bj)2 (14)

where x is a variable (for arbitrary a, b ∈ R
n and S,C ⊆ [n] with

S ∩ C = Ø). We call it an sc-monomial of degree |S| + |C|. An
sc-monomial can be evaluated at points x ∈ R for which the
expression under the square root is not a negative real number,
i.e., in the interval

Iµ : =
⋂

j∈C

]−1−bj
aj

,
+1−bj

aj

[

(15)

(which could be empty), and it defines an analytic function there.
Note, though, that it can happen that an sc-monomial can be
continued to an analytic function on a larger interval than Iµ.
The obvious example where that happens is this: For j, j′ ∈ C
with j 6= j′ we have (aj, bj) = ±(aj′ , bj′ ). In that case, the
formal power series of the sc-monomial simplifies, and omitting

the interval
]−1−bj

aj
,
+1−bj

aj

[

(also for j′) from (15) makes the

intersection larger.
The following technical fact can be shown (cf. [17]).

LEMMA 8. Let g =
∑

j αjµj be a linear combination of sc-

monomials with degrees at most d, and suppose that
⋂

j Iµj 6= Ø.

If an analytic continuation of g to a function g̃ : R → R exists,
then g̃ is a polynomial of degree at most d.

From this lemma, we obtain the following result.

COROLLARY 9. Let h : R → C be an analytic function, and
x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with arcsine input encoding, i.e., there
is an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an
ε > 0 such that

1. −1 ≤ x · aj + bj ≤ +1 for all x ∈ ]x0 − ε, x0 + ε[, and
2. h(x) = f (arcsin(x · a+ b)) holds for all x ∈ ]x0 − ε, x0 + ε[.

Then h is a polynomial, and the input redundancy, n, is greater
than or equal to the degree of h.

To represent a polynomial h by a MiNKiF
PQC with arcsine input encoding in a tiny
neighborhood of a given point x0, the input
redundancy must be at least the degree of h.

Proof of Corollary 9: Let us abbreviate g : x 7→ f (arcsin(x ·
a + b)) : ]x0 − ε, x0 + ε[ → R. From the discussion
above, we know that g is a linear combination of
sc-monomials.

Both functions h and g are analytic, and they coincide on
an interval. Hence, g has an analytic continuation, h, to the
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real line so that Lemma 8 is applicable, and states that h is a
polynomial with degree at most n. This completes the proof of
Corollary 9.

As indicated in the introduction, in the special case
which is considered in Mitarai et al. [13]—where the input
amplitudes are stored (by rotations) in n distinct qubits
before any other quantum operation is performed—this
can be proved by looking directly at the effect of a Pauli
transfer matrix on the mixed state vector in the Pauli
basis. Our corollary shows that this effect persists no
matter how the arcsine-encoded inputs are spread over the
quantum circuit.

The corollary allows us to lower bound the input redundancy
for some functions.

EXAMPLES. There is no PQC with arcsine input encoding that
represents the function x 7→ sin x (exactly) in a neighborhood
any point. Indeed, the same holds for any analytic function
defined on the real line which is not a polynomial: the exponential
function, the sigmoid function, arcus tangens, . . .

Unfortunately, from these impossibility results, no
approximation error lower bounds can be derived. Indeed,
in their paper [13], Mitarai et al. point out that, due to the

√·
terms, the functions represented by the expectation values can
more easily represent a larger class of functions than polynomials.

To give lower bounds for the representation of functions
which are not analytic on the whole real line, we proceed as
follows. For fixed n ≥ 1, x0 ∈ R and a, b ∈ R

n, denote by

Mn;a,b
x0 the vector space spanned by all functions of the form

]x0 − ε, x0 + ε[ → R : x 7→ f (arcsin(x · a + b)) for an3 ε > 0,
where f ranges over all expectation value functions with input
redundancy n, i.e., functions as in Remark 1, a, b ∈ R

n satisfy
−1 < ajx0 + bj < +1, and the arcsin is applied to each
component of the vector.

PROPOSITION 10. The vector space Mn;a,b
x0 has dimension at

most 3n, and is spanned by the sc-monomials (14) of degree n.

Proof: With a, b fixed, there are at most 3n sc-monomials (14) of
degree n, as S,C ⊆ [n] and S∩C = Ø hold. Hence, the statement
about the dimension follows from the fact that the elements of
Mn;a,b

x0 are generated by sc-monomials.
The fact that the sc-monomials generate the expectation

value functions with arcsine input-encoding of redundancy n is
just the statement of (13) above. This concludes the proof of
Proposition 10.

We can now proceed in analogy to the case of linear input
encoding. Let us define the sc-rank at x0 of a function h defined
in a neighborhood of x0 as the infimum over all r for which
there exist sc-monomials µ1, . . . ,µr , an ε > 0, and real numbers
α1, . . . ,αr such that x0 ∈

⋂

j Iµu , and

h(x) =
r

∑

j=1

αjµj(x) for all x ∈ ]x0 − ε, x0 + ε[.

3Mathematically rigorously speaking,Mn;a,b
x0 is the germ of functions at x0.

Proposition 10 now directly implies the following result.

COROLLARY 11. Let h be a real-valued function defined in some
neighborhood of a point x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with arcsine input encoding, i.e., there
is an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an
ε > 0 such that h(x) = f (arcsin(x · a + b)/(2π)) holds for all
x ∈ ]x0 − ε, x0 + ε[.

The input redundancy, n, is greater than or equal to log3(r),
where r is the sc-rank of h at x0.

To represent a function h by aMiNKiF PQCwith
arcsine input encoding in a tiny neighborhood of
a given point x0, the input redundancy must be
at least the logarithm of the sc-rank of h at x0.

We conclude the section with a note on the choice of the
parameters a, b.

REMARK 12. It can be seen [17] that the dimension of the space
Mn

x0
is 3n, if aj, bj j = 1, . . . , n are chosen in general position,

but only O(n) if a is a constant multiple of the all-ones vector.
Moreover, as indicated in Proposition 10, the basis elements which

span the space depend on a, b, and hence the space Mn;a,b
x0 will

in general be different for different choices of a, b. Again, we find
that it is plausible that the choices of a, b should depend on the
target function.

5. CONCLUSIONS AND OUTLOOK

To the best of our knowledge, our results give the first rigorous
theoretical quantitative justification of a routine decision for the
design of parameterized quantum circuit architectures: Input
redundancymust be present if good approximations of functions
are the goal.

Both activation functions we have considered give clear
evidence that input redundancy is necessary, and grows at
least logarithmically with the “complexity” of the function:
The complexity of a function f with respect to a family B of
“basis functions” is the number of functions from the family
which are needed to obtain f as a linear combination. In
our results, the function family B depends on the activation
function. In the case of linear input encoding (activation function
“identity”), the basis functions are trigonometric functions t 7→
e2π ikt , whereas for the arcsin activation function, we obtain
the basis monomials (14) already used, in a weaker form, in
Mitarai et al. [13].

From Remarks 6 and 12 we see that the weights a, b, i.e.,
the coefficients in the affine transformation links in Figure 1,
should have to be variable in order to ensure a reasonable
amount of expressiveness in the function represented by the
quantum circuit. We use the term variational input encoding
to refer to the concept of training the parameters involved
in the encoding with other model parameters. A recent set
of limited experiments [18] indicate that variational input
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encoding improves the accuracy of Quantum Neural Networks
in classification tasks.

While we emphasize the point that this paper demonstrates
a concept—lower bounds for input redundancy can be
proven—there are a few obvious avenues to improve
our results.

Most importantly, our proofs rely on exactly representing a
target function. This is an unrealistic scenario. The most pressing
task is thus to give lower bounds on the input redundancy when
an approximation of the target function with a desired accuracy
ε > 0 in a suitable norm is sufficient.

Secondly, we thank an anonymous reviewer for pointing out
to us that lower bounds formanymore activation functions could
be proved.

Finally, Remark 1 mentions that for every multi-
linear trigonometric polynomial f , there is a PQC whose
expectation value function is precisely f . It would be
interesting to lower-bound a suitable quantum-complexity
measure of the PQCs representing a function, e.g.,
circuit depth. While comparisons of the quantum vs.
classical complexity of estimating expectation values
have attracted some attention [19], to our knowledge,
the same question in the “parameterized setting” has not
been considered.
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A. PROOF OF LEMMA 2

We have to prove that the functions χk, k ∈ R, defined in (11)
are linearly independent (in the algebraic sense, i.e., considering
finite subsets of the functions at a time). There are several ways
of proving this well-known fact; we give the proof that probably
makes most sense to a physics readership: The Fourier transform
(in the sense of tempered distributions) of the function χk is
δ(k− ∗), the Dirac distribution centered on k. These generalized
functions are clearly linearly independent for different values of k.
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