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Stochastic Electrodynamics:
Renormalized Noise in the Hydrogen
Ground-State Problem

Theo M. Nieuwenhuizen*

Institute for Theoretical Physics, University of Amsterdam, Amsterdam, Netherlands

The hydrogen ground-state problem is a touchstone for the theory of Stochastic

Electrodynamics. Recently, we have shown numerically and theoretically that the

H-atom self-ionizes after a characteristic time. In another approach, we reconsidered

the harmonic oscillator and renormalized the stochastic force in order to suppress

high-frequency tails so that all frequency integrals are dominated by the physical

resonances. In the present work, we consider the regularization of the noise in the

hydrogen ground-state problem. Several renormalization schemes are considered.

Some are well-behaved, whereas in others the high frequency renormalization induces

pathologies at low frequencies. In no situation did we find a way to escape from the

previously signaled self-ionization.

Keywords: stochastic electrodynamics, hydrogen problem, hydrogen ground state, self-ionization,

renormalization

1. INTRODUCTION

Stochastic electrodynamics (SED) is a classical theory that aims to explain quantum phenomena.
Particles move in classical orbits. The basic assumption is the existence of a physical stochastic
electromagnetic force that fills the universe and acts as an environment on charged particles and
causes their quantum behavior at a statistical level. There is much literature on this field, and it can
be summarized in the excellent books [1, 2].

The two celebrated touchstones of quantum physics, the harmonic oscillator [3–6] and the
hydrogen problem [7–9], have received much attention within SED. The harmonic oscillator
leads to a reasonable agreement, though not all details coincide. While the outcomes of various
frequency integrals were routinely taken from their resonances, we have recently introduced a
renormalization of the stochastic force such that high-frequency pathologies do not occur [10].

Our studies of the H-problem go back two decades. In [11], we showed how a classical phase
space distribution can produce the shape of the quantum ground state, even Dirac’s square-root
shape, including relativistic corrections.

Stability of circular orbits was demonstrated by [12–14]. The numerics of the hydrogen ground
state were performed in 2002 by [15] with amodestly optimistic outlook.With the aim to reconsider
the problem, new simulations were performed in our group in 2016. Various schemes for treating
the stochastic force numerically were formulated analytically. Liska employed video cards and a
modern computer code, speeding up the simulations significantly. They were carried out for the
non-relativistic problem [16] and with the inclusion of relativistic corrections [17]. Many CPU
hours were spent to achieve long run times and to incorporate many frequency modes. Ongoing
findings of self-ionization led to simulation of a variety of formulations of the problem. The bottom
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line was that there was always self-ionization, suggesting that SED
is not a basis for quantum mechanics.

On another track, Huang and Batelaan [18] reported that
quantum interferences do not show up in the SED version of a
double-slit-like quantum model.

Nieuwenhuizen [19] showed analytically for the H atom that
there is a trend for self-ionization when the energy of the elliptic
orbit is close to zero and the dimensionless angular momentum
lies below a critical value of order unity, thus supporting the
numerics and the non-recurrence of orbits found by [8].

The question of whether a proper definition of SED can
describe the hydrogen atom is of fundamental interest. It is the
purpose of the present work to reinspect stability in the hydrogen
ground-state problem, inspired by our recent renormalization of
the stochastic force for the harmonic oscillator. In section 2, we
recall some properties of elliptic orbits in the Kepler problem.
In section 3, we consider energy absorption from the stochastic
field for various renormalizations of the force. We close with
a discussion.

2. KEPLER ORBITS

We consider an electron bound to a nucleus with charge Ze
and employ the notation of our recent work [19]. Lengths are
expressed in terms of the Bohr radius h̄/αZmec, times in the Bohr
time h̄/α2Z2mec

2, speeds in the Bohr speed of αZc, energy in
the Bohr energy α2Z2mec

2, and angular momentum in terms of
h̄. Here, h̄ is the reduced Planck constant, α ≈ 1/137 the fine
structure constant, Z the atomic number, me the electron mass,
and c the speed of light.

We start recalling the essential details of the dynamics. In Bohr
units the classical Newton equation reads

r̈ = − r

r3
. (2.1)

The Kepler orbit is solved in the parametric forms

r = 1− ε cos a

k2
(cosφ, sinφ, 0)

= (ca − ε, κsa, 0)

k2
. (2.2)

Here, φ is the angle of the orbit with respect to the x-axis, a
is a time-like parameter, ε is the ellipticity, and κ =

√
1− ε2.

Furthermore, ca is a shorthand for cos a and sa for sin a. The orbit
lies on the ellipse

(k2x+ ε)2 + k4

κ2
y2 = 1 (2.3)

Its perihelion lies at r = 0, the location of the nucleus, and the
aphelion at (−2ε/k2, 0, 0).

Time t and a second time s are parameterized as

t = τa

k3
, τa = a− ε sin a, (2.4)

s = τb

k3
, τb = b− ε sin b.

For circular orbits (ε = 0), τa = a is a scaled time. In general,
(2.4) exhibits an oscillation on top of this.

The angle φ is related to the variable a as

cφ = ca − ε

1− εca
, sφ = κsa

1− εca
, (2.5)

and reads explicitly

φ = 2 arctan

(

√

1+ ε

1− ε
tan

a

2

)

. (2.6)

It exhibits the ongoing revolutions; for circular orbits (ε = 0) it
equals φ = a = k3t. For general ε, the orbit and t are thus explicit
in terms of a.

In Bohr units, the energy is E = − 1
2k

2 and κ = kL with
L being the angular momentum in units of h̄. The period reads
P = 2π/k3. While the QM ground state corresponds to k = 1,
in SED, k takes any value between 0 and∞, that is, ranging from
loosely to strongly bound, respectively. In the philosophy of SED,
the time average of E produces the ground state energy E0 = − 1

2
as the average of E over the stationary distribution of E-values.
Presuming that it exists, its form has been determined in [11].

Linear perturbations h to the Kepler orbit satisfy

ḧ(t) = −W(t)·h(t), W = 1− 3r̂r̂

r3
. (2.7)

In [10], we presented a set of eigenmodes in the rotating frame.
A linear combination of these solutions reads, in the laboratory
frame,

h
(1)(t) = 1

ρa
(−sa, κca, 0),

h
(2)(t) = 2(ε − ca,−κsa, 0)+ 3τah

(1)(t),

h
(3)(t) = 1

2ρa
(−κs2a, 3− 4εca + c2a),

h
(4)(t) = κ

2ρa
(3− 2εca − c2a,

2εsa − s2a

κ
, 0),

h
(5)(t) = (0, 0, sa),

h
(6)(t) = (0, 0, ca − ε). (2.8)

The benefit of these modes is that the limits ε → 0 or κ → 0 to
be taken in each of them.

The Greens function satisfies

G̈(t, s)+W(t)·G(s, t) = 1 δ(t − s),

G
′′(t, s)+ G(t, s)·W(s) = 1 δ(t − s), (2.9)

where dots denote derivatives to t and primes to s. Generally, it
holds that

Ġ(t, t−) = −G
′(t, t−) = 1, Ġ

′(t, t−) = 0. (2.10)
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Following the approach of [19], we verify that for s < t, the
Greens function reads explicitly

G(t, s) =
∑

i=1,3,5

h
(i)(t)h(i+1)(s)− h

(i+1)(t)h(i)(s)

k3
.

while causality imposes G = 0 for s ≥ t.

3. STOCHASTIC ELECTRODYNAMICS

In SED the Kepler orbit is perturbed by the stochastic electric field
E and the dampingD,

r̈ = − r

r3
− βE+D, (3.1)

The small parameter β is related to the fine structure constant

β =
√

2

3
α3/2Z ≈ Z

1965
. (3.2)

with charge Z = 1 for hydrogen. The damping D(t) has been
analyzed in full detail in [10]; Here, the standard approximation
D = β2 ...r suffices. The stochastic field satisfies

E(t) = −Ȧ(t) = −C̈(t). (3.3)

It has zero average and correlation functions

CEE(t − s) = 〈E(t)E(s)〉 = ℜ 6× 1

π(t − s− iτc)4
,

CAA(t − s) = 〈A(t)A(s)〉 = ℜ − 1

π(t − s− iτc)2
,

CCE(t − s) = 〈E(t)C(s)〉 = ℜ − 1

π(t − s− iτc)2
,

CCC(t − s) = 〈C(t)C(s)〉

= − 1

π
ℜ logωc(t − s− iτc), (3.4)

where τc = α2Z2 is the Compton time h̄/mc in Bohr units and
ωc ∼ α3 log 1/α is a low frequency cutoff. These correlators are
large at s = t.

The energy radiation is well-understood. Per revolution there
is an energy loss

(1E)rad = −β2k5π
3− κ2

κ5
. (3.5)

The theme of the present work is the average energy gained from
the field. It occurs at the rate

〈Ėfield〉 = β2

∫ t

s0

ds 〈E(t)·Ġ(t, s)·E(s)〉 (3.6)

where we must take s0 → −∞. Integrated over a period P =
2π/k3, it brings

〈1Efield〉 = β2

∫ P/2

−P/2
dt

∫ t

s0

ds I1(t, s) (3.7)

with

I1(t, s) = CEE(t − s) tr Ġ(t, s), (3.8)

This expression has been studied in our previous work. The s-
integral has potentially dangerous behavior at s = t where Ġ = 1

and CEE(0) is very large. But the shape (3.4) of CEE implies
that this high frequency effect has a vanishing contribution. Just
leaving it out corresponds to a motivated short-time (t ≈ s) or
high frequency renormalization. The remaining integrand

ġ(t, s) = tr Ġ(t, s)− 3 = O[(t − s)4], (3.9)

decays rapidly enough to set τc → 0 in CEE so that the integral is
well behaved in this limit.

3.1. Short-Time Regularization
In our recent study of the harmonic oscillator we introduced
a high-frequency regularization of the ultraviolet contributions
[10]. Leaving out the subleading damping D, it amounts to
replace E → E, where the frequency components are related as

Eω ≡ ω2
0

ω2
Eω = ω2

0Cω, (3.10)

with the equality from E(t) = −C̈(t). At the resonance frequency
ω = ω0, the Eω and Eω coincide. For nonlinear potentials this
demands a generalization. The definition of G is G̈ + W · G =
1 δ(t − s) in the hydrogen problem, while W(t) → 1ω2

0 in the
harmonic case. A natural and simple generalization is therefore

E(t) = W(t)·C(t). (3.11)

Indeed, this reduces to (3.10) for the harmonic case. With E

instead of E inserted in (3.1), there will now appear in (3.7) the
renormalized integrand

I2 = 〈E(t)·Ġ(t, s)·E(s)〉 (3.12)

= CCC(t − s) trW(t)·Ġ(t, s)·W(s).

We also consider the expressions with one E and one E, which
result in

I3 = CCE(t − s) tr Ġ(t, s)·W(s),

I4 = CCE(t − s) trW(t)·Ġ(t, s). (3.13)

By partial integration we can generally relate the s-integral over
I1 to one over I4.

∫ t

−∞
ds Ġ(t, s)ℜ 6

π(t − s+ iτc)4
= (3.14)

∫ t

−∞
ds Ġ(t, s)W(s)ℜ −1

π(t − s+ iτc)2
.
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In the boundary terms, we used Ġ
′(t, t) = 0 and inserted

Ġ
′′(t, s) = −Ġ(t, s) ·W(s). But when we do the same to relate

I3 to I2, we cannot omit the boundary terms at large negative s0,

∫ t

s0

dsℜ − Ġ(t, s)

π(t − s+ iτc)2
= Ġ(t, s0)

π(t − s0)

+ Ġ
′(t, s0)

logω1(t − s0)

π
(3.15)

−
∫ t

s0

ds Ġ(t, s)·W(s)
logω1(t − s)

π
,

where we took τc → 0 in the right-hand side. The main reason
for the complication is that G(t, s), as well as its derivatives,
contain an explicit factor t − s arising from the secular part
3k3t h(1)(t) of the h

(2)(t) mode, see (2.8). With the left-hand
side of (3.15) well-behaved for s0 → −∞, it follows that the
integral in the right hand side must have an s0 + s0 log |s0|
divergency in this limit. This is confirmed by inspection and
implies that the short-time regularization (2.8) creates a long-
time divergency. It is related to the 1/ω2 factor in (3.10) and
already led for the harmonic oscillator to a divergency; this was,
however, subdominant. For the hydrogen problem it is more
cumbersome and leads to an ill-defined leading order integral
over I2. Similar computational methods of integral calculation
have been used in other settings (see e.g., [20]).

Though CCC in Equation (3.4) involves a cutoff ωc, Equation
(3.15) is valid for any ω1. But even the awkward choice ω1 ∼
−1/s0 would not eliminate the boundary terms that regularize
the integral.

3.2. Nearing the Self-Ionization
The important question of whether the H ground state is stable in
SED is analyzed for orbits in the limit where E = − 1

2k
2 vanishes.

In our previous works, we showed that this amounts to studying
the orbits in the limit where κ = kL vanishes, at fixed L, in an
order unity. From (3.5), one has the energy loss by radiation per
orbit

(1E)rad ≈ −3π
β2

L5
. (3.16)

To study this limit, the scaling a → κu, b → κv for κ → 0 is
introduced, expressing that the main contribution, described by
u and v of the order unity, comes from the part of the Kepler orbit
near the pericenter at u = 0. Indeed, it holds that

r = L2

2
(1− u2, 2u, 0), r = L2

2
(1+ u2). (3.17)

Clearly, this part of the orbit is in its k → 0 limit, while the
farthest point, lying at ((1 + ε)/k2, 0, 0) ≈ (2/k2, 0, 0), exhibits
a self-ionization for k → 0. For further details of the method we
refer to [19]. We reproduce its equations (2.24)–(2.26) for κ → 0
and multiplied by P,

〈1E
(1)
field

〉 = 144

5π

β2

L6

∫ ∞

−∞
du

∫ u

−∞
dv×

27

2

5+ 3u2 + 4(2+ u2)uv+ (u2 − 1)v2

(1+ u2)2(3+ u2 + uv+ v2)4
. (3.18)

Continuing along these lines, we find that 〈1E
(3)
field

〉 is equal to
this, while 〈1E

(4)
field

〉 comes out with the second line replaced by

15+ 20u2 + 3u4 + 4(5+ 8u2 + u4)uv

(1+ u2)5(3+ u2 + uv+ v2)2
+ (3.19)

5+ u2 + 8u4 + 2(5+ u2)uv+ (u2 − 1)v2

(1+ u2)5(3+ u2 + uv+ v2)2
v2.

Its v-integral is linearly divergent with logarithms, as it is for

〈1E
(2)
field

〉. This all results in

〈1E
(1)
field

〉 = 16
√
3

5

β2

L6

〈1E
(2)
field

〉 = divergent

〈1E
(3)
field

〉 = 16
√
3

5

β2

L6

〈1E
(4)
field

〉 = divergent (3.20)

The equality of the first and third case yields some justification
for the renormalization method we investigated.

In case 1 and 3, the average total energy change per orbit thus
comes out as

1E = 3π
β2

L6
(Lc − L),

Lc = 16

5π
√
3
= 0.588057. (3.21)

Orbits that have achieved a small k and L < Lc will gain energy
on average, which explains the self-ionization observed in all
our numerics.

3.3. Other Renormalization Schemes
The renormalization E → Ē = W(t) · C(t) involves W =
(1 − 3r̂r̂)/r3, of which the numerator has eigenvalues −2 and 1
(twice). One may wonder whether the “absolute value” |W| ≡
(1 + r̂r̂)/r3, with the eigenvalues +2 and 1 (twice), fares better.
Inspection shows that the divergence does not disappear; if
anything, it becomes worse.

A renormalization with a broken power of |W| fares better at
large times. One may replace E = −Ȧ by E(t) = −

√

|W|(t) ·A(t)
with the expression

√
|W| = (1 + (

√
2 − 1)r̂r̂)/r3/2 squaring to

|W|. Like (3.11), this approach softens the short time behavior,
but it does not ruin the long time regime. This leads to a
contribution to 〈Ė〉field of the form

∫ t

−∞
dsℜ −f (t, s)

(t − s+ iτc)2
= f ′(t, t)| log τc|

+
∫ t

−∞
ds f ′′(t, s) log(t − s)+ O(τc). (3.22)

Using Ġ = 1 and Ġ
′ = 0 at s = t, the boundary term leads to

δ〈Ė〉field
| log τc|

= β2

2π

d

dt
tr |W| = −6β2

2π

ṙ

r4
. (3.23)
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It expresses energy gain (i.e., the electron becomes less bound,
on the average) on the approach to the pericenter, and loss
(becoming more bound) on departure. This cutoff dependence
is unexpected. Nevertheless, when integrated over a full period,
the effect averages out.

Next, we calculate, in analogy with (3.7), the energy gain per
period. In the scaling limit, the t, s integrals become u, v integrals,
of which the latter can be performed analytically. Its v = u
boundary term vanishes upon u-integration, while the integral
over the v = −∞ boundary term leads to a finite result,

〈1Efield〉 = 2.99842 〈1E
(1)
field

〉. (3.24)

Hence it also leads to self-ionization.
The combination E = (1−x)E−x

√
|W| ·A involves from the

AE and EA cross terms, a new contribution of the form

∫ t

−∞
dsℜ −2f (t, s)

(t − s+ iτc)3
= f ′′(t, t) log τc

+
∫ t

−∞
ds f ′′′(t, s) log(t − s)+ O(τc). (3.25)

with a lengthy f having f (t, t) = 0. The log τc again drops out
when integrated over a full period. After scaling, the v-integral
can be performed analytically; now, the primitive for v → −∞ is
odd in u, while the result comes from the v = u term. This ends
up in

〈1E
(x)
field

〉 = 16
√
3

5

β2

L6
× (3.26)

[(1− x)2 − 0.876444(1− x)x+ 2.99842x2].

Its minimum at x = 0.295028 leads to Lmin
c = 0.33855, smaller

than Lc = 0.58808 from (3.21). For all x, this still leads to
self-ionization.

The above “absolute” value |W| looks unnatural, but it was
necessary to define a real valued version of

√
W. The third roots

are real however:

W
1/3 = (1− (21/3 + 1)r̂r̂)/r,

W
2/3 = (1+ (22/3 − 1)r̂r̂)/r2, (3.27)

It is easily verified that (W1/3)2 = W
2/3 and (W1/3)3 = W. They

thus permit the renormalization

E → Ē = (1− x)W1/3 ·B1 + xW2/3 ·B2, (3.28)

for some real valued x, with the stochastic fields

B1 = ∂
−2/3
t E, B2 = ∂

−4/3
t E, (3.29)

defined by having e−iωt frequency components

(B1)ω = Eω

(−iω)2/3
, (B2)ω = Eω

(−iω)4/3
. (3.30)

In the notation of [10], their correlation functions 〈Bi(t)Bj(s)〉 =
1Bij(t − s) emerge as

B11(t) =
∫ ∞

−∞

dω

2π

|ω|3
|ω|4/3 e

−iωt−|ω|τc

= 1

π
Ŵ8/3ℜ

1

(it + τc)8/3
,

B22(t) = 1

π
Ŵ4/3ℜ

1

(it + τc)4/3
, (3.31)

B12(t) = B21(−t) = 1

π
ℜ e−π i/3

(it + τc)2
.

The difficulty is again to deal with the singularities in the limit
τc → 0. To proceed, we perform partial integrations. We

introduce B
(3)
11 and B

(1)
22 to get

B11 =
...
B
(3)
11 , B

(3)
11 (t) = − 27

20π
Ŵ8/3 t

1/3,

B22 = Ḃ
(1)
22 , B

(1)
22 (t) =

3

2π
Ŵ4/3 t

−1/3,

B12(t) = B21(t) = − 1

2π t2
, (3.32)

where we took τc → 0. In view of (3.21) we define

L
ij
c = L6

3π

∫ P/2

−P/2
dt

∫ t

s0

ds Bij(t − s)Ŵij(t, s),

Ŵij(t, s) = trWi/3(t)·Ġ(t, s)·Wj/3(s), (3.33)

for i, j = 1, 2. For L11c we perform a partial integration w.r.t.
s. Next we write the t-integral as the difference between two
integrals starting at s0 and switch the t and s integrals. Then we do
a partial integration w.r.t. t, switch back and do a final one w.r.t.

s. This leads to a t, s integral over −Ŵ̇′′
11B

(3)
11 . One boundary term

at t = s is non-trivial, namely

δL11c = 3Ŵ8/3L
6

10π2 τ
2/3
c

∫ P/2

−P/2
dsŴ′

11(s, s) (3.34)

=−3(1− 2−1/3)Ŵ8/3L
6

5π2 τ
2/3
c

∫ P/2

−P/2
ds

r′(s)

r(s)3
.

This vanishes again since it involves a total derivative
integrated over a full period. But the integrand itself is
moderately large, so that, as before, the average rate of energy
exchange with the field results in gain on approach to the
pericenter and loss on departure. While weakened by the
prefactor and canceling over a period, this cutoff dependence
is unexpected.

For L22c we perform a partial integration w.r.t. s and evaluate
the double integral in the limit τc → 0. The boundary term
at s = t vanishes identically. With Ŵ12 ∼ Ŵ21 ∼ (t − s)2

for s → t, the L12c and L21c integrands are already regular
for τc → 0.
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We are interested in these results in the scaling limit κ =
kL → 0 at fixed L. The resulting integrals are of the type (3.18).
Numerical evaluation yields

L11c = 8.5191, L22c = 2.1944, (3.35)

L12c = 0.3182, L21c = −0.5615.

The combined Lc corresponding to (3.28) reads

L11c (1− x)2 + (L12c + L21c )x(1− x)+ L22c x2.

(3.36)

It has a minimum at x = 0.7886,

Lmin
c = 1.7048, (3.37)

which sets the boundary for self-ionizing orbits because (3.36)
exceeds this for other x-values.

4. DISCUSSION

Previous studies, both analytical and numerical, have pointed
out that the hydrogen problem in Stochastic Electrodynamics
leads to a self-ionization of the electron. The present work
investigates whether “easy fixes” of the stochastic force may
improve the situation. We consider a short time or high
frequency renormalization of the stochastic force that we recently
proposed for the harmonic oscillator problem and generalized
it for the hydrogen ground-state problem. To achieve this,
we consider several options, of which some do, and some
do not, lead to a well-defined approach. We find that the
renormalization does not help to stabilize the situation, and

that its impact on long time behavior actually makes the
situation worse.

Next, we study various further renormalization schemes
which lead to well behaved dynamics, but neither heal the self-
ionization problem. Our approach generally puts forward that
stability of orbits with energy near E = 0 can only be achieved
for a scheme in which the parameter Lc in (3.21) vanishes. On
physical grounds one expects that it can be proven that this
quantity is positive. However, we are not aware of such a proof,
not even in the scaling limit E → 0.

In our view, the problem does not lie in the Kepler orbits but in
the close enough approach to the nucleus where a relatively high
amount of energy is absorbed from the stochastic force. Indeed,
Kepler orbits can be stable in SED. Nieuwenhuizen [19] adds
an L20/2r

2 potential to the −1/r Newton potential. It induces an
effective angular momentum Leff = (L2+L20)

1/2, which, if L0 & 6
is large enough, leads to a stable system without self-ionization.
Then Leff , and with it the distance between the pericenter and the
nucleus, is large enough to prevent orbits that keep on gaining
energy on the average.

In the absence of such an extra potential, we confirm
previous findings that the hydrogen self-ionizes in Stochastic
Electrodynamics. When the orbit has nearly zero energy and
the angular momentum lies below some critical value, then, on
the average, more energy gets absorbed from the field than is
radiated away, making the orbit more and more delocalized
so that ultimately self-ionization occurs. To circumvent this, a
fundamental reformulation of Stochastic Electrodynamics seems
to be necessary.
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