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The stock market is a canonical example of a complex system, in which a large

number of interacting agents lead to joint evolution of stock returns and the collective

market behavior exhibits emergent properties. However, quantifying complexity in stock

market data is a challenging task. In this report, we explore four different measures for

characterizing the intrinsic complexity by evaluating the structural relationships between

stock returns. The first two measures are based on linear and non-linear co-movement

structures (accounting for contemporaneous and Granger causal relationships), the third

is based on algorithmic complexity, and the fourth is based on spectral analysis of

interacting dynamical systems. Our analysis of a dataset comprising daily prices of a

large number of stocks in the complete historical data of NASDAQ (1972–2018) shows

that the third and fourth measures are able to identify the greatest global economic

downturn in 2007–09 and associated spillovers substantially more accurately than the

first two measures. We conclude this report with a discussion of the implications of such

quantification methods for risk management in complex systems.

Keywords: complex systems, networks, spectral analysis, mutual information, interaction, Granger causality,

algorithmic complexity

1. INTRODUCTION

How can complexity in financial markets be measured? Although financial markets are routinely
thought of as complex systems, exact characterization of their embedded complexity seems
non-existent, as pointed out in Brunnermeier and Oehmke [1]. In various contexts, different
characterizations and underlying mechanisms have been proposed; explanations include the
emergence of macroscopic properties from microscopic interactions [2, 3], the presence of power
laws and/or long memory in fluctuations [4], and scaling behavior in growth rates of economic and
financial entities [5], to name a few.

In this brief research report we investigate the following question: Given the realized dynamical
behavior of a system, can we find the degree of complexity embedded in the system? We note
that in the case of financial markets, while interactions between economic agents can be non-
linear in nature (due to heterogeneity in behavioral aspects, institutional properties, or information
processing abilities), a complete enumeration of all such non-linearities is almost impossible. In
this work we do not attempt to find a microfoundation of complexity based on traders’ behavior;
instead, we aim to quantify complexity in terms of a summary statistic inferred from observed
behavior that potentially evolves over time.

We consider four main candidate measures of complexity in multivariate financial asset return
data. The dataset we analyze is extracted from complete historical data between 1972 and 2018 of
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NASDAQ (National Association of Securities Dealers Automated
Quotations), which is one of the largest stock markets in the
world in terms of trading volume. We divide the whole time
evolution into overlapping windows of 4 years long. To fix
ideas, let N be the number of stocks in the stock market and
T the number of return data points within each time window,
where N ≪ T (in the actual implementation for each window
of data, N = 300 and T ≥ 1, 000, which corresponds to 4
years of trading in NASDAQ; we elaborate on the data structure
and sample selection in section 2.1). The first measure is based
on mutual information across stocks. Mutual information is an
entropy-based measure that generalizes the linear co-movement
structure to non-linear co-movements. The second measure is
based on dispersion in systemic risk captured via Granger causal
relationships across stocks; Granger causality captures lagged co-
movement structure in the data. The third measure is based
on algorithmic complexity evaluated on the projection of the
N-dimensional data onto a two-dimensional space. The fourth
measure is based on a vector autoregression estimation of N-
dimensional data. This measure is motivated by the famous
May-Wigner result that characterizes the instability of many-
dimensional heterogeneous interacting systems. We compute
each of these measures on 4-years windows and study how the
measure evolves when we move the windows by 1 year (from
1972 to 2018 there are 44 such windows).

We assess the usefulness of the measures by seeing whether
they can identify the only major financial crisis in the time period
under consideration (1972–2018), which occurred during 2007–
09 (for an overview of the economic and financial impacts and the
implications of the crisis, readers can consult [6, 7] and references
therein). During this crisis, the housing market meltdown in the
USA led to an avalanche of collapse in the global financial market.
Therefore, if any of the four measures of complexity show an
increase in magnitude during this time period (or around it),
we will take this as a sign of increased instability and hence
embedded complexity.

To summarize the results, we find that the first two measures
do not exhibit any unusual behavior during or around 2007–09.
However, the third and fourth measures (based on algorithmic
complexity and heterogeneity of interactions, respectively) do
show a substantial increase in magnitude during the crisis period.

Our work is related to several strands of the existing literature.
First, it is related to an early attempt of Bonanno et al. to
characterize levels of complexity in financial data [8]. They
graded complexity in three levels: the lowest level has time
series properties (such as volatility clustering); level two contains
cross-correlations; and level three is characterized by extreme
movements in the collective dynamics, signifying the highest
level of complexity. The present work is an attempt toward
numerically quantifying the third level, i.e., the highest level
of complexity as described in Bonanno et al. [8]. Second, we
note that the goal of finding complexity measures for financial
data based on techniques from physics, economics, evolutionary
biology, etc. has often been discussed, for example in Johnson
and Lux [9] and references therein; however, to the best of our
knowledge, currently there is still no measure available (apart
from sudden changes in volatility) that can accurately identify

periods of large-scale financial distress from only asset return
data. We note that this goal is different from that of seeking
statistical precursors to financial crises (or even identifying
mechanisms correlated with financial crises), toward which some
work has already been done (see e.g., [10, 11]).

There is large volume of work on construction and inference
of network structures from multivariate stock return data (see
[12–14] and references therein). Our first measure is based
on non-linear relationships between stock returns, for which
we adopt an entropy-based measure of mutual information
(previously used in the context of financial time series, such
as in Fiedor [15]), and we compare the dynamics of the
corresponding eigenspectrum with that obtained from linear
correlation matrices [16]. We see that there is an overall increase
in the degree of correlation over time between what can be
inferred from non-linear and from linear relationships, along
with a cyclic oscillation in explanatory power. This indicates
that a non-linear relationship between assets does not necessarily
convey more information than a linear relationship.

Next, we quantify the behavior of a directional Granger causal
network over time. The spread in centralities of the nodes
in the directional lagged co-movement network (captured by
Granger causation) remains fairly stable over time. This analysis
is motivated by two influential papers in which the systemic risks
of assets were constructed from return data (see [17, 18]). There
is a related literature on characterizing shock spillover in a multi-
dimensional return network. However, here we do not consider
those constructions, since they do not directly relate to instability
of the financial system.

We then implement a non-parametric, information-theoretic
measure of complexity that is based on algebraic complexity
[19–24]. Zenil et al. [25] applied an algorithmic measure of
complexity to financial data. We adapt their measure to many-
dimensional data by transforming the data through multi-
dimensional scaling. This dimension-reduction technique makes
the method very generally applicable to time series data, and the
measure is able to accurately identify times of crisis.

Finally, the fourth measure is based on the ecology-inspired
dynamical systems theory proposed by Robert May [26]. In
reference [27] an adaptation of the original May-Wigner result is
proposed in the context of a discrete-time vector autoregression
model and applied to a limited set of data from the New York
Stock Exchange. We adopt the same approach and construct the
implied heterogeneity index of stock interactions, which exhibits
sharp transitions during the crisis and also in the post-crisis
period, indicating lagged effects.

2. MATERIALS AND METHODS

In this section we describe the data and the methods.
All background material and a step-by-step description
of the computational procedure are given in the
Supplementary Material.

2.1. Data Description
We collected daily NASDAQ stock return data over a period
of 47 years, from 1972 to 2018 [obtained from the Center for
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Research in Security Prices (CRSP) database, http://www.crsp.
org/, accessed throughWharton ResearchData Services (WRDS),
https://wrds-www.wharton.upenn.edu/]. Let T denote the length
of the entire data series in years, so T = 47. We considered
moving windows of width equal to 4 years, i.e., 1972–75, 1973–
76, and so on until 2015–18, with the windows indexed by
k = 1, 2, . . . , 441. For each window, we calculated the market
capitalization of all stocks at the end of the period and selected
the top N = 300, with the restriction that the data for chosen
stocks cannot havemore than 5%missing values within a window
(which we fill with zeros). This dataset covers pre-crisis, crisis,
and post-crisis periods (the crisis period was 2007–09).

We denote each price series by Ski (t), where i is the stock, t
is the time period within a window, and k is the window. A 4-
years window has ∼1,000 days (each year has slightly more than
250 trading days) and is denoted by Tk. All our analyses were
conducted on the log-return data, defined as

Gk
i (t) = log Ski (t + 1)− log Ski (t). (1)

Next, we normalize the log-return data as follows:

gki (t) =
Gk
i (t)− 〈Gk

i (t)〉

σ k
i

, (2)

where 〈·〉 denotes the sample average and σ k
i is the sample

standard deviation of Gi.

2.2. Quantification of Linear and Non-linear
Relationships
In this subsection we compare the information content in linear
and non-linear relationships.

2.2.1. Correlation Matrix
We construct the cross-correlation matrix Ck as

Ck
ij = 〈gki (t)g

k
j (t)〉 (3)

for all i, j ≤ N for the kth window, where k = 1, . . . ,T. For the
{i, j}th pair we construct a distance measure in the form of (this
form is widely used; see e.g., [13]).

Dk
ij =

√

2(1− Ck
ij). (4)

2.2.2. Entropy and Mutual Information Matrix
First we need to define entropy. For the probability
distribution p(x) of a discrete variable X defined over a
domain [x1, x2, . . . , xN], the Shannon entropy is given by [23]

H(X) = −
∑

i

p(xi) log2 p(xi). (5)

For two discrete variables X and Y with probability distributions
p(x) and p(y), the joint entropy is given by [23]

H(X,Y) = −
∑

i

∑

j

p(xi, yj) log2 p(xi, yj), (6)

1Because of missing data, the first window contains 124 stocks.

where p(xi, yj) denotes joint probability. Mutual information is
an entropy-based measure that is defined for two variables X and
Y having probability distributions p(x) and p(y) [23]:

I(X;Y) =
∑

i,j

p(xi, yj) log2
p(xi, yj)

p(yj)p(xi)
, (7)

which is always guaranteed to be non-negative and symmetric.
We construct the mutual information matrix Mk for each
window k, where the elementMk

ij of the matrix is defined as

Mk
ij = I(gki ; g

k
j ). (8)

By construction, M has all non-negative elements and is
symmetric. We have used the Freedman-Diaconis rule here
[28] to discretize the data. Further details are available in the
Supplementary Material.

2.2.3. Comparison of Linear and Non-linear

Relationships
We conduct an eigendecomposition of both the distance and the
mutual information matrices for every window k = 1, 2, . . . ,T.
First we carry out eigendecompositions of the distance matrix D
(from Equation 4) and the mutual information matrix M (from
Equation 8):

D =

N
∑

i=1

vDi (v
D
i )

′λDi and M =

N
∑

i=1

vMi (vMi )′λMi , (9)

where λi is the ith eigenvalue, vi is the corresponding
eigenvector, and a prime represents transpose. Since the
dominant eigenvector represents the contribution of each asset
to the aggregate interaction matrix, we extract the dominant
eigenvectors from both the distance and the mutual information
matrices for every window and regress the eigenvector obtained
from the kth mutual information matrix (vmi,k) on that obtained
from the corresponding kth distance matrix (vD,k):

vmi,k
j = α + βvD,kj + ǫj for j = 1, . . . ,N, (10)

where α and β are constants and ǫj is an error term. The
explained variation (i.e., the R2 of the regression) over 47
windows is plotted in Figure 1. High explanatory power would
indicate that the information content is similar in the two
measures. Two features stand out from the results. First, there
is substantial time variation and an almost cyclic oscillation
in the explanatory power. Second, there seems to be a general
increase over time in the degree of relationship, indicating that
the information content is becoming more similar, at least for
pairwise relationships. The mutual information estimates were
computed by discretizing the data, with each series converted
into an ordinal categorical series with b classes, where b = 8, 12,
and 16, utilizing the useful property that mutual information is
a probability-based measure. Upon varying number of bins, the
results are similar in all cases [29]. Therefore, the information
content seems to be captured well by linear correlation matrices,
which are much less computationally intensive.
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FIGURE 1 | Evolution of the dominant eigenvalues of the distance matrices (λD) and the mutual information matrices (λbMI with b = 8, 12, 16) over the time period

1972–2018. The dominant eigenvalues of the mutual information matrices (for three bin choices) show variation over time in the semi-log plot. Due to scaling, the

variation in the dominant eigenvalue of the distance matrix is subdued. Inset: Time series of R2 obtained from regressing the dominant eigenvector of the mutual

information matrix on the dominant eigenvector of the distance matrix over the period 1972–2018 comprising 44 time windows. The choice of the number of bins b

seems to have a negligible effect (results are shown for b = 8, 12, and 16). The dominant eigenvectors representing market modes in the distance matrices D and the

mutual information matrices M became strongly correlated after the year 2000.

2.3. Complexity Through Dispersion in
Systemic Risk
The spread in systemic risk across different stocks may indicate
the degree of complexity. A high spread would imply that some
assets are extremely risky while other assets are safe; a low spread
would indicate a similar risk profile for all stocks. We quantify
systemic risk following the method proposed in Yun et al. [17],
which uses the Granger causal network as the fundamental
building block.

We construct the Granger causal network (GCN) for each
window of data (excluding the first window as its network size
was not comparable with that of the rest). Each network is
constructed as follows. If the jth asset’s return Granger causes the
ith asset’s return, then there exists an edge from j to i:

rit = α + βiiri,t−1 + βijrj,t−1 + ǫit for i, j = 1, . . . ,N, (11)

where α is a constant, βij is the parameter of interest, and ǫit is an
error term. In the estimated model, if βij is significantly different
from zero (evaluated at the standard 5% level of significance, with
estimation done using the lmtest package in R), we connect
i and j. We do the same for all i, j = 1, . . . ,N and create a
full Granger causal matrix GN×N . A visual example is shown in
Figure 2A. High dispersion in the degree connectivity is evident.

Once the network is created, we find the PageRank [30]
of the matrix as a measure of the systemic risk [17, 18]. The
interpretation is that a high PageRank would imply a higher
propensity of lagged movement with respect to other assets and,
therefore, higher risk of spillover from other stocks (see the
Supplementary Material).

We study the evolution of the influence of assets in the GCN
by calculating the dispersion in PageRank. High dispersion would
indicate high inequality in influence. We present the evolution

of the standard deviation and the differential entropy, two well-
known measures of dispersion, in Figure 2B. Both series seem to
be quite stable, indicating low spread in the influence of assets in
the predictive GCN, except for the high inequality around 2013
shown by the first series (the estimate for 2013 represents data
from the window 2012–15).

2.4. Algorithmic Measures Based on
Information Theory
In this subsection we treat the problem of defining complexity
in the financial network from the point of view of replicability of
the emergent pattern. Although the present approach is different,
we note that in Zenil and Delahaye [25] it was proposed to apply
an algorithmic complexity measure to financial price data. The
authors analyzed deviation of financial markets from log-normal
behavior in a parametric setup under distributional assumptions.
Here we use a non-parametric formulation and study the time
series behavior of the implied complexity measure.

Our main idea is as follows. Given financial time series
data for a certain window, we first create a correlation
matrix (as in Equation 3), and from that we construct a
distance matrix in the form of an identity matrix minus
the correlation matrix. Then, based on a clustering technique
(multi-dimensional scaling, a non-linear dimension-reduction
technique for information visualization that creates a pattern
of the relative positions of a number of objects in a dataset;
we employed Euclidean distance for the present implementation
[31] using the sklearn.manifold package in Python), we
project the distance matrix onto a two-dimensional plane. This
step generates a data cloud on the two-dimensional plane.

By defining a fine grid on the plane, we convert the data cloud
into a binary matrix, where each cell is evaluated according to
whether or not it contains an asset’s projection. Thus, we get
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FIGURE 2 | (A) Illustrative example of a Granger causal network of 100 firms (nodes) with greatest market capitalization in the last window of data (2015–2018) from

NASDAQ; an edge represents Granger causality between a pair of return time series. (B) Evolution of the spread in systemic risk as measured by PageRank

computed on Granger causality: the top panel shows the evolution of the standard deviation of PageRank for the nodes; the bottom panel shows the evolution of the

differential entropy (Jaynes’ method). The spread in centrality of assets remained stable over time, with a large spike occurring around 2013 in the standard deviation,

while the entropy remains quite stable.

a pattern on a two-dimensional grid. Given this binary matrix
pattern, we can construct a complexity measure [21, 22, 32] based
on how complex the pattern is that emerges on the matrix. Our
main object of study is the evolution of this complexity measure
(see the Supplementary Material).

Given this binary representation, one way to construct a
complexity measure would be to employ a lossless compression
method that captures statistical regularities related to
information-theoretic measures, such as Shannon entropy,
instead of algorithmic measures [22, 33]. A key limitation of such
approaches is that they are not invariant with respect to different
descriptions of the same object, while methods in algorithmic
complexity, such as the “invariance theorem,” can overcome this
difficulty [32]. In the following we adopt an algorithm (the block
decomposition method, BDM for short) developed in Zenil et al.
[21, 22, 32] to construct a complexity measure which in our view
is a potential candidate.

The algorithmic complexity of a string can be defined in terms
of the shortest algorithm that generates that string [34–36]. The
algorithmic complexity K(s) of a string s is the length of the
shortest program p that generates s when executed on a universal
TuringmachineU (prefix-free; for details see [37, 38]), which can
be formally expressed as

KU(s) = min{|p| : U(p) = s}. (12)

In the following we apply BDM estimation of the complexity
of the projection of the data on a two-dimensional grid.
For a complete discussion of the methodology of complexity
calculations and the background, which is a vast literature in
itself, one can consult [34, 35, 39, 40, 40–43].

2.5. Interactive Dynamics: Complexity
Through Heterogeneity
Next, we explore an ecology-inspired [9] characterization of
economic complexity in terms of the stability of interlinked
dynamical systems [44], which comes from the work of Robert
May. The result (which goes by the name of the May-Wigner
result) is based on prior theoretical work done by E. Wigner on
random matrices. The key idea is that as a first-order dynamical
system defined on a vector of variables XN×1 with random
heterogeneous connections becomes larger (i.e., N increases),
the system tends to be become unstable [26]. Formally, if Ŵ

is an N × N interaction matrix with elements γij such that
Prob(γij = 0) = c and γij = f (0, σ 2) for all other elements,
where f is some distribution with mean zero and variance σ 2,
then in the limit N → ∞, the probability that the linear system

Ẋ = ŴXt (13)

is stable tends to 1 if Ncσ 2 < 1 and tends to 0 if Ncσ 2 > 1
[44]. Importantly, for us σ represents the heterogeneity in the
strengths of connections of the interaction matrix Ŵ. In Rai et al.
[27] this idea was applied to the stock market with a discrete-
time formulation in the form of a vector autoregression (Xt =

Ŵ̃Xt−1+ ǫt , where one allows for a constant vector c in the vector
autoregression estimation; see the Supplementary Material). It
is shown that during times of crisis the estimated heterogeneity
parameter (σ obtained from the estimated Ŵ̃ matrix) increases
substantially. However, the data considered in Rai et al. [27]
was limited (spanning the 16 years 2002–17), the time windows
were non-overlapping, and the analysis was done only on data
from the New York Stock Exchange. In the present paper, we
perform a complementary analysis with the same technique,
using NASDAQ data from 1972 to 2018 with overlapping
windows. We fit the vector autoregression model to the data
and estimate the Ŵ̃ matrix for each window; then we compute
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the standard deviation of the estimated parameters in the Ŵ̃

matrix, which represents the degree of heterogeneity in the
interaction strengths.

2.6. Decomposability of Complexity
Measures
We also explore whether a feature that we find at the level of
raw data can be decomposed in terms of slices of data obtained
via eigendecomposition. For this purpose, we consider singular
value decomposition,

g = U6V∗ (14)

where the returnmatrix g (of size T×N) is expressed as a product
of threematrices, namely aT×TmatrixU, anN×N orthonormal
matrix V , such that V = V∗, and a T × N rectangular diagonal
matrix 6 which contains non-negative numbers on the diagonal.
In the present context, T > N.

After de-meaning the data matrix g, we consider the matrix
6′ which contains only a subset of entries on the diagonal while
the rest of the entries are replaced by zeros. The original matrix
6 would have N entries on the diagonal. For 6′, we take the
subsets to be the first to fourth singular values and the fifth to
fifteenth singular values, implying that we can reconstruct the
return series associated with the first four and the next eleven
values by simply constructing

g′ = U6′V∗. (15)

We implement the complexity measures on these reconstructed
data matrices as well, to see whether a complexity measure
calculated from the whole data can be decomposed into
complexity measures pertaining to the dominant eigenmodes
in the data. We note that for the vector autoregression model
estimation, the estimated interaction matrices would have only
k non-trivial columns if we select k eigenmodes to construct the
data slices.

3. RESULTS

In Figure 3 we plot the complexity measure for rolling windows
using the BDM for the whole data. The results were obtained
by employing the multi-dimensional scaling method for fixed
axes using the scikit library in Python [45]. Fixing the axes is
required because the multi-dimensional scaling algorithm does
not always compute the projection in the same way since the
technique is invariant under rotation in the two-dimensional
plane, whereas the complexity measure is not invariant under
rotation. The BDM results were obtained using the Python
module developed by the AlgoDyn Development team (publicly
available at https://pybdm-docs.readthedocs.io/en/latest/index.
html). For the present purposes, we used the 2D implementation
and two symbols. For the heterogeneity estimates following
the May-Wigner theory, in Figure 4 we plot the evolution of
the heterogeneity in the interaction matrix. The analysis was
done using the VARS package in the R programming language.
Both of the above analyses were complemented by computing
the evolution of the same measures on the first four and the

next eleven eigenmodes using the singular value decomposition
(implemented using quantmod in R), as shown in the insets of
Figures 3, 4.

The main takeaway from these results is that both of the
complexity measures correctly indicate the time of crisis. The
BDM-based measure computes an analog of the dispersion in the
clustering of data (even with normalized return data), whereas
the vector autoregression-based measure captures the dispersion
in terms of the strength of interactions. Interestingly, when we
apply the same techniques to slices of data corresponding to
different eigenmodes, similar features are absent. Therefore, these
complexity measures, while reasonably correct at the aggregate
level, do not seem to be decomposable.

4. SUMMARY AND DISCUSSION

The goal of this work was to extract statistical features from time-
varying data that indicate evolution of complexity. Financial
systems are thought of as canonical examples of complex
systems in terms of interaction, emergence, evolution, and non-
stationarity. Here we have analyzed historical financial data on a
comprehensive set of stocks from NASDAQ, which is one of the
three most followed indices of the US stock market and consists
mostly of non-financial tech-oriented firms.

We have estimated four indices of complexity: a measure
based on the information content of non-linear co-movements,
a systemic risk-based measure constructed from Granger
causal networks, an algorithmic complexity measure based on
multi-dimensional scaling, and a heterogeneity-based measure
motivated by dynamical systems theory. To summarize, the first
two measures do not seem to indicate the crisis period (2007–
09) clearly, whereas the third and fourth measures perform
substantially better and are more accurate. However, neither of
the latter two measures is decomposable, in the sense that for
each of them the sum of the complexities of decomposed data
is not the same as the complexity of the original data.

Some caveats and future directions for research are as follows.
First, the results indicate that the information content of the
mutual information matrix and that of the correlation matrix
become quite similar after the year 2000, so a non-linear measure,
such asmutual information is not very useful. There are, however,
some new measures of association, with different asymptotic
theory (e.g., [46]), that could be explored in future work. Second,
an open problem relating to the construction of the Granger
causal matrix from pairwise regression is that it does not test
for joint significance and there can be type I error due to
multiple testing, leading to false discovery of edges [47]. In future
work we intend to explore this issue in more detail. Third, for
the BDM-based measure of complexity, implementation with
more symbols may yield better results, although this would be
computationally quite costly. Fourth, following Rai et al. [27] we
have shown that the heterogeneity of interaction strengths among
the stocks significantly increases during the crisis period and
attains an even higher level in the post-crisis period. Two major
differences between our results and those of Rai et al. [27] are
that (i) in the present work, the spike in heterogeneity has a much
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FIGURE 3 | Evolution of the complexity of financial linkages among the stocks over the period 1972–2018 obtained from the BDM. The dimension of the financial

linkage data was reduced by mapping the dissimilarity matrices (constructed from the cross-correlation matrix ρN×N as IN×N − ρN×N ) onto two-dimensional grids using

a multi-dimensional scaling technique, and the complexity measure was then evaluated on these. The measured value peaks around the crisis period. Inset: Result of

the same procedure applied to data slices corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles).

FIGURE 4 | Evolution of the heterogeneity in interaction strengths among the stocks over the period 1972–2018 obtained from the vector autoregression model. Each

point estimate corresponds to a 4-years data slice. The x-axis plots the midpoints of the windows. Inset: Result of the same procedure applied to data slices

corresponding to the first four eigenmodes (black dashed line) and the next eleven eigenmodes (red circles). No particular pattern emerges from the decomposition,

but at the aggregate level heterogeneity increases substantially during the time of the crisis and rises further in the post-crisis period.

larger magnitude than that found in Rai et al. [27]; and (ii) in our
results the greatest spike in heterogeneity occurs shortly after the
crisis (rather than during the crisis as in the analysis of NYSE data
in Rai et al. [27]) and seems to continue for a long time without
tapering off.

Management of risk in complex systems, such as financial
markets requires clear quantification of the complexity. The

measures proposed in this paper complement the existing

statistical finance literature on describing evolution of markets

during crisis and non-crisis periods [11, 48–51]. In this work
we have used the word complexity to mean emergent instability,

similar to Kuyyamudi et al. [11]. It would be interesting to see

whether similar ideas can be applied to other complex systems
[12]. In the context of financial markets, such quantification of
complexity brings us closer to answering the question of what
factors (economic or financial) drive the evolution of complexity.

A causal explanation of the mechanisms can inform policy-
making with regard to complex financial systems.
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