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The science returns of gravitational wave astronomy will be maximized if electromagnetic

counterparts to gravitational-wave sources can be identified. Kilonovae are promising

counterparts to compact binary mergers, both because their long timescales and

approximately isotropic emission make them relatively easy to observe, and because

they offer astronomers a unique opportunity to probe astrophysical heavy-element

nucleosynthesis and merger-driven mass ejection. In the following, I review progress

in theoretical modeling that underpinned advances in our understanding of kilonovae

leading up the first detection of a neutron star merger, GW170817. I then review the

important lessons from this event and discuss the challenges and opportunities that

await us in the future.

Keywords: gravitational wave astronomy, kilonovae, kilonovae: TNS 2017 gfo, DLT17ck, SSS17a, r-process
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1. INTRODUCTION

Multi-messenger astronomy refers to the revolutionary possibility of combining electromagnetic
(EM) and gravitational-wave (GW) observations to gain new insight into astrophysical phenomena.
In the current era of ground-based gravitational-wave detectors, the mergers of compact objects—
black holes (BHs) and neutron stars (NSs)—are the systems most accessible to multi-messenger
astronomy, and their routine observation promises to teach us more about stellar binary evolution,
dynamics in the strong gravity regime, the production and evolution of astrophysical jets, the NS
equation of state (EOS), and the origin of the heavy elements. Among mergers’ EM counterparts,
“kilonovae,” radioactively-powered, quasi-isotropic transients that shine at optical and infrared
wavelengths and evolve on timescales of days to weeks, are unique in their ability to shed light
on merger-driven mass ejection and nucleosynthesis.

2. BACKGROUND ON R-PROCESS TRANSIENTS

The idea that compact object mergers produce radioactively-powered EM emission in addition to
gravitational wave signals is rooted in the realization [1–3] that mergers could synthesize unstable
nuclei whose decays would power an electromagnetic transient [4].

More specifically, the partial disruption of a NS in a NS2 or NSBH merger produces a neutron-
rich outflow capable of assembling a broad range of heavy, unstable nuclei via rapid neutron
capture, or the r-process. As first outlined by [5] and [6], the r-process occurs in explosive
environments featuring a high flux of free neutrons, which allows successive captures of free
neutrons onto light seed nuclei on timescales shorter than typical β-decay lifetimes. This drives
the composition of the gas toward heavy, neutron-rich regions of the chart of the nuclides, in many
cases close to the neutron drip line. When neutron capture ceases, the newly-born nuclei decay
toward stability, producing an abundance pattern with characteristic peaks around mass numbers
A = 82, 130, 196. The stable and long-lived daughters account for about half of the elements in the
Periodic Table more massive than Iron.
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FIGURE 1 | The impact of nuclear physics and astrophysical uncertainties on

predicted r-process abundances. The reference case (black curve) was

calculated using the FRDM mass model [15] for a low-entropy, neutron-rich

gas. Every other curve differs from the reference case in only one way. The

orange curve shows the impact of decreasing the expansion time, while the

purple curve demonstrates the much stronger effect of raising Ye. The

influence of the choice of nuclear mass model is illustrated by the light blue

curve. Scaled solar r-process abundances from [16] are plotted as

black diamonds. This figure was adapted from Figure 1 of [17] with

permission from J. Barnes.

The complexity of r-process nucleosynthesis allows for
variation in the final abundance pattern. While a lack of relevant
experimental data (e.g., nuclear masses and neutron-capture
cross sections) for many nuclei involved in the r-process present
a challenge for theoretical r-process simulations [7, 8], even if
nuclear physics uncertainties were eliminated, abundance yields
would still be sensitive to conditions when nucleosynthesis
begins. Traditionally [9, e.g.], gasses with the potential to undergo
an r-process have been parametrized in terms of three variables:
expansion timescale (τexp), entropy per baryon (sB), and initial
electron fraction (Ye), which is defined as the number of protons
per baryon and quantifies the relative number of free neutrons
available to build up heavy nuclei.

The final abundance pattern depends on the interplay of all
these factors [e.g., [10]]. However, for conditions expected for
compact object mergers (i.e., neutron-rich, low-entropy gasses),
abundances appear from simulations to be particularly sensitive
to Ye, with Ye ≈ 0.25 emerging as a threshold above which
the r-process fails to burn nuclei beyond the second r-peak
[11, 12]. Such a truncated r-process is termed a “light” r-process,
as opposed to the “heavy” r-process, which takes place under very
neutron-rich conditions and synthesizes stable and semi-stable
nuclei up to A ∼ 260. In a merger, the NS material that forms
the expanding gas is very neutron rich [13], and will remain so
unless weak-current interactions are strong enough to push the
composition toward a more moderate Ye [14]. The potential for
r-process variability is illustrated in Figure 1.

The role of r-process nucleosynthesis and decay in generating
EM signals associated with compact object mergers was first

discussed by [4], who derived the earliest theoretical model of r-
process-powered transient emission. Since this groundbreaking
work, the community has undertaken increasingly detailed
studies of all the major parameters governing the nature of r-
process transients, from the energy supplied by the r-process,
to the ejected mass, to the optical properties of r-process atoms
and ions.

3. KEY PARAMETERS

While detailed computational models are required to fully
explain the evolution of radioactive astrophysical transients,
the basic character of these systems are functions of a few
physical parameters whose relationships to the emission can be
understood from basic physical principles.

In simple (semi-)analytic models [à la, [18]], a transient’s
luminosity peaks when the expansion time t equals the timescale
for photons to diffuse through the ejecta, tdiff ∝ (Mejκ/v)1/2,
where Mej and vej are the mass and characteristic velocity
of the ejecta, respectively, and κ is its effective opacity. The
luminosity at peak is roughly equivalent to the instantaneous
rate at which radioactive decay is heating the ejecta. This
correspondence reappears on the tail of the light curve, when the
ejecta is mostly transparent and the luminosity directly reflects
radioactive heating. Consideration of the above reveals that the
energy released (per unit mass) in the radioactive decays of r-
process nuclei is a crucial determinant of kilonova emission, as
are themass, velocity, and opacity ofmerger-driven outflows. The
effects of these parameters on kilonovae’s bolometric light curves
are presented in Figure 2.

3.1. R-Process Heating and Radioactivity
The dominant decay channel for unstable r-process nuclei is β-
decay [(Z,N) → (Z+1,N−1); 20], which emits high-energy
β-particles, neutrinos, and γ -rays. In most realizations of the
r-process, select nuclei will also undergo α-decay ((Z,N) →

(Z−2,N−2)) and fission, releasing energy in the form of more
massive α-particles and fission fragments. [17, 21–23]. These
suprathermal particles and photons transfer heat the ejecta as
they interact with it, and the thermal photons produced by the
heated gas diffuse outward to form the light curve. The emerging
luminosity, as well as the relationship between luminosity and
ejected mass, depend both on the rate at which the r-process
produces energy and the efficiency with which that energy is
converted to thermal photons.

When [4] constructed the first kilonova models, they treated
the overall normalization of energy from r-process decay as a free
parameter proportional to the rest mass energy of the ejected
material. In other words, the sum of all the energy released
from radioactivity was taken to equal fMejc

2, with f allowed to
vary. Despite this simplification, their model of the r-process
uncovered what turned out to be a robust feature of r-process
radioactivity. By assuming the lifetimes τ of decaying nuclei were
evenly distributed logarithmically and ignoring the correlation
between τ and decay energy, Li et al. [4] calculated that r-process
decay should release energy like Ėrad ∝ 1/t. More rigorous
calculations using full r-process nuclear reaction networks [20,

Frontiers in Physics | www.frontiersin.org 2 October 2020 | Volume 8 | Article 355

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Barnes Kilonovae

FIGURE 2 | Toy-model bolometric kilonova light curves, similar to those of [19], illustrating the effects of ejecta mass (left), velocity (middle), opacity (right) on

emission. R-process heating has been approximated as a simple power law with ζ = 1.3. In the middle and right panels, Mej is set to 0.01M⊙. The value of κeff is 10

cm2 g−1 in the left and middle panels, and vej is 0.2c in the left and right panels. Thermalization has been estimated from the numerical results of [17].

24, 25] as well as more robust analytic treatments [26] modified
this picture, finding that, when heating is dominated by the β-
decays of a broad ensemble of nuclei, the energy production
is well-approximated by a steeper power-law, Ėrad ∝ t−ζ

with ζ = 1.2− 1.4.
However, while power-law heating is a useful model,

uncertainties in r-process calculations resulting from
unmeasured quantities, as well as the sensitivity of the r-
process to its astrophysical environment, leave room for
variability in nucleosynthesis and decay, and therefore Ėrad.
In particular, the behavior of Ėrad is likely to deviate from a
power-law if α-decay or fission becomes dominant over β-decay,
or if only a small number of nuclei are contributing to the
heating [22, 23, 27].

More detailed nuclear calculations also revealed the absolute
scale of the energy released by r-process decay, allowing [20] to
predict that the peak luminosity of transients from NS2 mergers
would be about a thousand time brighter than a classical nova,
motivating the term “kilonova.”

Metzger et al. [20] was also the first to estimate the fraction
of the energy from r-process decay able to effectively heat the
gas (the “thermalization fraction”). More detailed numerical
work on thermalization was carried out by [17], who found that
thermalization increased for denser ejecta configurations, lower-
energy decay spectra, and radioactivity profiles that favored α-
decay or fission relative to β-decay. These themes were revisted in
[28]. Later analytic work [27, 29], showed that thermalization also
depends on how the decay spectrum and Ėrad evolve with time.
The potential variation in r-process heating [see e.g., [23]], and
the sensitivity of the thermalization efficiency to that variation,
suggest that further detailed numerical studies may be useful

for understanding the true allowed range of kilonova heating
and luminosity.

3.2. Mass Ejection
There are three main channels through which merging compact
objects ejecta mass [see reviews by [30, 31]]. All produce an
outflow neutron rich enough to support at least a light r-process.

High-velocity tidally shredded outflows are produced during
the final stages of inspiral when a NS is disrupted by the
differential gravitational field of its binary companion. While
the quantity of ejected mass depends on the NS EOS (less
compact EOSs are more easily shredded) as well as the mass
ratio of the binary and the spins of the component stars
[32–35], it is generally expected to be small [∼10−4M⊙; [36,
37]] for a NS2 merger, though it can be substantially larger
(∼0.1M⊙) for a NSBH merger provided the NS disrupts outside
the innermost stable circular orbit [38, 39]. Tidal shredding
produces a cold, low-entropy outflow with an abundance
of free neutrons. It is therefore expected to undergo a
robust r-process with nucleosynthesis beyond the third peak
[e.g., [13]].

In contrast, dynamically squeezed matter is subject to enough
weak interactions to inhibit the synthesis of the heaviest elements.
Dynamical squeezing occurs when merging NSs finally collide
[36, 37, 40]. The violence of the collision expels material from
the contact interface via shocks, which accelerate the resulting
outflow to high velocities and heat it to high temperatures,
allowing the production of thermal electron/positron pairs and
neutrinos. Absorption of these particles then raises the Ye of the
gas [41, 42].
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The mass of this component increases with NS compactness
[36], since NSs with smaller radii make contact at a smaller
separation, and therefore a higher velocity, leading to more
energetic collisions capable of unbinding more matter (this
trend holds only up to a point; mass ejection is minimal if
the colliding NSs are compact enough to collapse promptly
to a BH [43], though mass asymmetry can offset this
effect [37]).

Some simulations [36, 44] suggest that, in certain cases, this
outflow will feature a high-velocity, low-mass (∼ 10−5M⊙) tail
of material whose rapid expansion hinders neutron capture,
resulting in a composition dominated by lighter nuceli and
leftover free neutrons [21]. Under such conditions, the free-
neutron decay could power a short-lived transient peaking on
timescales close to the free-neutron half life [45].

The most robust mass ejection channel may be winds from

accretion disks surrounding themergers’ central remnants (CRs).
In NSBH mergers, the disk is formed from disrupted NS matter
that remains gravitationally bound. For NS2 mergers, the primary
source of disk material is a NS CR, which pushes material
off its surface as it transitions from differential to solid-body
rotation [46] (The prompt collapse of a CR therefore inhibits disk
formation for NS2 mergers.) Disk material is unbound through
some combination of viscous heating [47], magnetic turbulence
[48], α-recombination [49], and ν-absorption [50, 51].

The effect of weak interactions on the disk composition is
uncertain, and likely depends strongly on the CR.While a central
NS would be strong source of neutrinos [e.g., [52]], a central
BH would not be; in the latter case, weak interactions in the
disk would be limited to those driven by thermal neutrinos and
positrons produced by the disk itself [53]. Many studies [48, 54,
55] have found that, for a BH CR, the accretion disk regulates
its composition to a low Ye, though the exact distribution of Ye

appears to be sensitive to the neutrino transport method adopted
[e.g., [56]].

As with other mass ejection methods, the mass of the disk
(and therefore the disk wind) depends on the binary parameters
and NS EOS [e.g., [40]]. Less compact NS EOSs produce more
massive disks, and therefore more massive disk outflows. The
EOS also affects the composition (at least for NS2 mergers) by
controlling the fate of the CR, and the exposure of the disk to
neutrino irradiation [57–59].

3.3. Opacity
The distinct compositions burned in the various outflows
generated in NS2 and NSBH mergers have major effects on
kilonova emission because the composition of the gas determines
the opacity of the ejecta, which in turn influences the light curve
and the spectral energy distribution (SED).

As the gas expands, it cools to temperatures (∼few ×103 K)
that support low levels of ionization. Under these conditions,
the dominant source of opacity is bound-bound (“line”) opacity
[60]. In the bound-bound regime, the absorption of photons
by atoms results not in ionization, but in the excitation of its
bound electrons to a higher-energy configuration. While the
probability that any particular absorption will occur is a function
of the many-body quantum mechanics governing the absorbing

atom, the effective continuum opacity depends on the number
of opportunities for a photon of a given energy to suffer an
absorption—i.e., on the density of moderate to strong lines in
wavelength space.

Determining bound-bound opacity is particularly challenging
for r-process compositions, since there is limited experimental
data on energy levels and absorption probabilities for many of
the species burned by the r-process. Nevertheless, general trends
can be deduced from simple heuristics. First, the more unique
species are present in a composition, the greater the number of
lines, and the higher the opacity. Second, and more significantly,
the presence of atomic species with a high degree of complexity
(i.e., with a greater number of distinct electronic configurations)
will increase opacity.

Atomic complexity is a function of the size of an atom’s
valence electron shell. A valence shell that accommodates a
larger number of electrons allows for more distinct electronic
configurations; each configuration has a slightly different energy,
so the net effect is a greater number of energy levels, more
transitions between energy levels, and a higher opacity [see
e.g., [61]]. This picture has been borne out both by available
experimental data [62] and by atomic structure calculations,
with groups using different atomic structure modeling codes all
finding a striking increase in opacity as valence shell size increases
[61, 63, 64].

The relationship between atomic complexity and opacity
has profound implications for kilonovae. Lanthanides and
actinides are the most complex elements in the Periodic
Table. These species have a high number of closely spaced
energy levels, resulting in an abundance of low-energy bound-
bound transitions and a high opacity that extends out into
the near infrared (NIR). While lanthanides and actinides are
easily synthesized by the heavy r-process, they are produced
in negligible quantities in a light r-process event [11, 12]. The
opacity of the kilonova ejecta—and the color of its emission—
therefore depend sensitively on the nucleosynthesis that took
place in its ejecta.

As first explained in [65], the high opacity of a lanthanide-
rich (heavy r-process) ejecta delays and dims the light curve
peak, while the extreme density of lines at optical wavelengths
pushes the emission redward, causing the spectrum to peak in
the NIR [see also [62]]. Of course, not all outflows from compact
object mergers will undergo a heavy r-process. Light r-process
compositions, will have a lower opacity. The emission associated
with these outflows will have a faster rise; a sharper, brighter light-
curve peak; and an SED concentrated at blue/optical wavelengths,
similar to the original predictions of [20].

Kilonova emission may be due to a combination of signals
from multiple outflows characterized by different histories of
nucleosynthesis: a “red” component associated with a lanthanide-
rich outflow, and a “blue” component from a composition that
failed to burn lanthanides [58, 65]. The outcome of the r-process
is closely tied to the manner of mass ejection and, in the case
of disk winds, the nature or lifetime of the CR. The presence
or relative prominence of red or blue kilonova components can
therefore reveal the mass ejection mechanisms at play, and even
shine an (indirect) light on the NS EOS.
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4. LESSONS FROM GW170817

The theory outlined above was established before a compact
object merger was definitively detected, but was corroborated
by the first such detection. On August 17, 2017, the LIGO*-
Virgo network picked up a signal consistent with the inspiral
of a merging neutron star binary [66]. A spatially-coincident
short-gamma ray burst was observed contemporaneously [67–
69], increasing confidence in the signal and triggering a
worldwide search by observational astronomers for a radioactive
counterpart, which was soon identified in a galaxy a mere 40
Mpc distant [70–77]. These observations yielded a wealth of
data which, in combination with theory, crystallized into a fairly
coherent picture of the post-merger system.

The bolometric light-curve evolution was consistent with an
approximately power-law injection of energy, as expected from
the decay of a large ensemble of r-process nuclei [78]. The
transient’s broadband evolution showed signs of two distinct
components, with the blue and optical bands rising to an early
peak and declining swiftly thereafter, while emission in the
redder bands evolved on a much longer (∼2 week) timescale
[e.g., [70, 72, 72, 78, 79]]. The disparate behavior at red and
blue wavelengths was interpreted by most groups [72, 80–82] to
require two separate outflows [but see [83]]: a lanthanide-poor
one driving the early blue component, and a lanthanide-rich one
powering the extended red and NIR emission.

Since long-lived red emission is difficult to explain without
invoking the uniquely high opacity of the lanthanides and
actinides produced in abundance by the heavy r-process [84,
85], the broadband light curves confirmed that GW170817 had
indeed triggered r-process nucleosynthesis, and that its optical
counterpart was in fact a kilonova.

The identification of kilonova spectral features with particular
r-process ions would further corroborate this conclusion, and
early work on GW170817 demonstrated the promise of such
an approach. For example, [86] linked one feature of the
kilonova spectrum to singly-ionized Strontium, thus claiming
the first detection of an individual r-process element in an
electromagnetic transient. Future studies of kilonova spectra will
increase confidence in such identifications and improve our
ability to constrain compositions from spectral analysis.

In the meantime, kilonova spectra encode information critical

for a rigorous reconstruction of the outflow(s) that produced
their electromagnetic emission. The spectrum of the GW170817

kilonova was originally dominated by a smooth blue blackbody
[73, 87–89], which was replaced after a few days by pseudo-
blackbody peaking in the NIR and exhibiting broad absorption
features [74, 90]. While the dramatic shift from blue to
redder wavelengths is consistent with the kilonova’s broadband
evolution, the spectrum provided additional information on the
velocities of the outflows associated with each component of the
emission. The lack of features in the blue spectrum suggested
velocities high enough to smooth out any absorption lines, vej ∼
0.3c [e.g., [73, 80]]. In contrast, the broad absorption troughs in
the red spectrum indicate a slower outflow with vej ∼ 0.1c.

The combination of spectral and photometric data suggested
that the merger launched a high-velocity, lanthanide-poor

outflow in addition to a lower-velocity outflow rich in
lanthanides. Some authors [e.g., [80, 85, 87]] have attributed
the “blue” component to shock-heated, dynamically “squeezed”
ejecta. However, the mass required to explain the luminosity
(Mblue ≈ 0.01M⊙) is higher than predicted by numerical
relativity simulations [36, 37, 41, 91], motivating others to
consider alternate scenarios [92, 93].

The kilonova’s red component has been somewhat more
securely associated with a wind unbound from the accretion disk
surrounding the CR. The mass (Mred ≈ 0.04M⊙ and velocity
inferred for this component are consistent with expectations
from simulations [48, 55], and the conditions in the disk are
thought to be favorable for heavy r-process nucleosynthesis as
long as the CR collapses instantly to a BH or survives for only
a limited time as a hyper- or supramassive NS [although see [56]
for an illustration of the how the treatment of neutrino transport
in disks can alter the predicted nucleosynthetis].

5. OPEN QUESTIONS AND A LOOK TO THE
FUTURE

GW170817 allowed the astronomy community to make inroads
on some of most pressing questions multimessenger astronomy
promises to help untangle. First, it demonstrated a long-
theorized [94–99] association between short gamma-ray bursts
and compact object mergers. Second, it allowed the derivation
of the first multi-messenger constraints on the NS EOS [e.g.
[100, 101]]. It also allowed an entirely original and independent
calculation of the Hubble Constant H0 [102, 103]. Finally, it
conclusively identified mergers as an astrophysical site of r-
process nucleosynthesis [70, 72, 80, 90, among many others].
However, the mysteries surrounding mergers and post-merger
phenomena are far from resolved.

One major remaining question is related to the source of
the blue kilonova component. While the emission seems to be
powered by radioactivity, the NS EOS required to produce such
a massive outflow via dynamical squeezing is seemingly too
compact to simultaneously explain the similarly high mass of
the red disk wind component. (Recall that disk wind represents
a fraction of the total disk mass, and that less compact EOS’s
favor heavier accretion disks.) Further observations of kilonovae,
especially at early times, will be instrumental in revealing the
nature of the blue component and providing additional tools for
evaluating the NS EOS [104].

A second question is the role of mergers in astrophysical r-
process production. GW170817 proved that NS2 mergers are
a site of the r-process nucleosynthesis, and simple estimates
suggest that the entire r-process content of the Universe may
originate in compact object mergers [80, 105]. However, these
arguments hinge on the (still very uncertain) merger rates and
average r-process mass per event, not to mention the largely
unconstrained contribution from NSBH mergers.

In addition to these uncertainties, there are concerns about
whether mergers can explain r-process enrichment everywhere
it is observed [106]. For example, r-process-enriched extremely
metal poor stars seem to require an early-Universe source of the
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r-process, while mergers typically occur at a delay of hundreds
of millions or even billions of years relative to star formation
[e.g., 107]. Likewise, it is difficult to explain enrichment in ultra-
faint dwarf galaxies [108] with mergers, given that the velocities
pre-merger binaries acquire when their component stars go
supernova generally exceed the low escape velocities of these low-
mass galaxies [109]. A variety of alternative r-process sites have
been proposed [110–113]; however, a complete census ofmerging
systems will clarify rates and ejected mass, and illuminate the role
of mergers in burning the heaviest elements.

Additional observations will also unveil the full diversity of
merging systems and kilonovae (this is an especially enticing
prospect given how distinct the second NS2 merger, GW190425,
was from the first [114]). Neutron star-black hole (NSBH)
mergers, which have not yet been observed, should provide
an additional source of heterogeneity, as they are expected to
produce ejecta that is more massive [32], more neutron-rich
[115], and less isotropic [39] than a typical NS2 merger. There
is also likely to be substantial diversity among kilonovae from
NSBH mergers, since mass ejection is sensitive to parameters
such as mass ratio and component star spin [e.g., [116]].
Observations of NSBHmergers and their kilonovae are therefore
crucial for documenting the full range of compact objects
mergers’ radioactively powered EM emission.

We can hope, in the next several years, to better constrain
merger rates, and to understand how merging systems are
distributed by total binary mass, mass ratio, and binary type

(NS2 v. NSBH). We can map out the relationship between
binary and kilonova parameters, a map that will become
increasingly accurate as parallel advances and theory and
nuclear physics experiment (e.g., the Facility for Rare Isotopes
Beams; [117]) allow us to more confidently infer ejected mass
from observations. We can determine how common various
components are (and we can hope to observe as-yet unseen
components, like tidal tails or neutron precursors) and assess
whether the net enrichment from these components is consistent
observed stellar r-process abundances (and variations in those
abundances). Ideally, we will develop the tools to measure or
constrain abundance yields from the spectra of individual merger
events. Our deeper understanding of kilonovae will allow us
to confidently progress on the questions—r-process origins, NS
EOS, H0—that multi-messenger astronomy is uniquely well-
poised to address.
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The origin of r-process elements in the milky way.Astrophys J. (2018) 855:99.

doi: 10.3847/1538-4357/aaad67

106. Côté B, Eichler M, Arcones A, Hansen CJ, Simonetti P, Frebel A, et al.

Neutron star mergers might not be the only source of r-process elements

in the milky way. Astrophys J. (2019) 875:106. doi: 10.3847/1538-4357/

ab10db

107. Safarzadeh M, Sarmento R, Scannapieco E. On neutron star mergers as the

source of r-process-enhanced metal-poor stars in the milky way. Astrophys J.

(2019) 876:28. doi: 10.3847/1538-4357/ab1341

108. Ji AP, Frebel A, Chiti A, Simon JD. R-process enrichment from a

single event in an ancient dwarf galaxy. Nature. (2016) 531:610–3.

doi: 10.1038/nature17425

109. Bonetti M, Perego A, Dotti M, Cescutti G. Neutron star binary orbits in their

host potential: effect on early r-process enrichment.Mnthly Notices R Astron

Soc. (2019) 490:296–311. doi: 10.1093/mnras/stz2554

110. Mösta P, Roberts LF, Halevi G, Ott CD, Lippuner J, Haas R, et al. r-process

nucleosynthesis from three-dimensional magnetorotational core-collapse

supernovae. Astrophys J. (2018) 864:171. doi: 10.3847/1538-4357/

aad6ec

111. Halevi G, Mösta P. r-process nucleosynthesis from three-dimensional jet-

driven core-collapse supernovae with magnetic misalignments. Mnthly

Notices R Astron Soc. (2018) 477:2366–2375. doi: 10.1093/mnras/sty797

112. Siegel DM, Barnes J, Metzger BD. Collapsars as a major source of r-process

elements. Nature. (2019) 569:241–4. doi: 10.1038/s41586-019-1136-0

113. Fischer T, Wu MR, Wehmeyer B, Bastian NUF, Martinez-Pinedo G,

Thielemann FK. Core-collapse supernova explosions driven by the

hadron-quark phase transition as rare r process site. arXiv preprint

arXiv:2003.00972. doi: 10.3847/1538-4357/ab86b0

114. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott BP,

Abbott R, Abbott TD, Abraham S, et al. GW190425: observation of a

compact binary coalescence with total mass ∼ 3.4M − ⊙. arXiv preprint

arXiv:2001.01761. Available online at: https://ui.adsabs.harvard.edu/abs/

2017Natur.551...85A/exportcitation

115. Roberts LF, Lippuner J, Duez MD, Faber JA, Foucart F, Lombardi JC, et al.

The influence of neutrinos on r-process nucleosynthesis in the ejecta of black

hole–neutron starmergers.Mnthly Notices R Astron Soc. (2017) 464:3907–19.

doi: 10.1093/mnras/stw2622

116. Foucart F, Hinderer T, and Nissanke S. Remnant baryon mass in

neutron star-black hole mergers: Predictions for binary neutron star

mimickers and rapidly spinning black holes. Phys Rev D. (2018) 98:081501.

doi: 10.1103/PhysRevD.98.081501

117. Horowitz CJ, Arcones A, Côté B, Dillmann I, Nazarewicz W, Roederer

IU, et al. r-process nucleosynthesis: connecting rare-isotope beam

facilities with the cosmos. J Phys G Nuclear Phys. (2019) 46:083001.

doi: 10.1088/1361-6471/ab0849

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Barnes. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 9 October 2020 | Volume 8 | Article 355

https://doi.org/10.3847/2041-8213/aab267
https://doi.org/10.3847/1538-4357/aaad67
https://doi.org/10.3847/1538-4357/ab10db
https://doi.org/10.3847/1538-4357/ab1341
https://doi.org/10.1038/nature17425
https://doi.org/10.1093/mnras/stz2554
https://doi.org/10.3847/1538-4357/aad6ec
https://doi.org/10.1093/mnras/sty797
https://doi.org/10.1038/s41586-019-1136-0
https://doi.org/10.3847/1538-4357/ab86b0
https://ui.adsabs.harvard.edu/abs/2017Natur.551...85A/exportcitation
https://ui.adsabs.harvard.edu/abs/2017Natur.551...85A/exportcitation
https://doi.org/10.1093/mnras/stw2622
https://doi.org/10.1103/PhysRevD.98.081501
https://doi.org/10.1088/1361-6471/ab0849
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	The Physics of Kilonovae
	1. Introduction
	2. Background on R-Process Transients
	3. Key Parameters
	3.1. R-Process Heating and Radioactivity
	3.2. Mass Ejection
	3.3. Opacity

	4. Lessons From GW170817
	5. Open Questions and a Look to the Future
	Author Contributions
	Funding
	References


