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A topological index (TI) is a quantity expressed as a number that help us to catch

symmetry of network.With the help of quantitative structure property relationship (QSPR),

we can guess physical and chemical properties of several networks. A neural network is a

computer system based on the nerve system. There are numerous uses of these systems

in different fields of studies but their most critical use to date is in Neurochemistry. In this

paper, we will discuss thirteen irregularity indices for probabilistic neural networks (PNN).
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1. INTRODUCTION

PNN are likewise Parzen window pdf estimator. In last few years these networks are widely used
in different problems. With the help of these networks, we can solve email security problems, also
helpful in signature verification. A PNN network contain different sub networks. The input data is
from the set of measurements. The Gaussian functions produce the second layer with the help of
given set of data points. An average operation is perform by second layer which produce third layer.

Molecular structures can be studied by means of graph. A branch of mathematics thats deals
with the study of molecular graphs is know as chemical graph theory. With the help of different
tools of mathematics, we are able to identify the features that helps us in QSPR. Contaminate, TIs
are arithmetic value link with graph of PNN and has utilization in different fields of study. TIs stay
invariant of two isomorphic graphs and helpful to predict many properties of PNN [1–7]. Other
growing field is Cheminformatics, in which QSAR and QSPR relationship is used to figure out
properties of concerned network. In these investigation, a few Physico-chemical properties and TIs
are helpful to examine the behavior of compound structures [8–17].

The other primeval TI is Randić index, introduced by Randić [18] in 1975. Due to huge
applications of Randić index, the generalized Randić index was given in [12]. This variant develop
intrust for both the mathematicians and chemists [19–24].

After Randić index, the most examined TIs are Zagreb indices [25–27]. The different variants of
Zagreb index was studied in [28]. An other important topological invariant is a symmetric division
index which is an excellent descriptor of the aggregate surface area for polychlorobiphenyls [29].

2. TOPOLOGICAL INDICES

A special number, in graph theoretical term, representing a molecular structure, is known as
topological descriptor. A topological descriptor when correlates with a molecular property, it can
be determine as graph-theoretic index or topological index. The First and second Zagreb indices
are the oldest molecular descriptors invented in 1975 by Gutman [18] and their properties are
extensively investigated. They are defined as:
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FIGURE 1 | PNN(4, 2, 3).

M1(G) =
∑

uv∈E(G)
(du + dv).

M2(G) =
∑

uv∈E(G)
(du × dv).

The first genuine degree based TI was given by Randić in 1975
[18] as:

R(G) =
∑

uv∈E(G)

1√
du.dv

.

The GRI known as General Randic Index [30] and is defined as:

GRI(G) =
∑

uv∈E(G)
(du.dv)

α .

where α is an arbitrary real number.
The TI is known as Irregularity index [31], if TI of graph is

greater equal to zero and TI of graph is equal to zero if and only
if graph is regular. The Irregularity indices are given below. All
these Irregularity indices are belong to degree based topological
invariants excluding IRM2(G). A simplified way of expressing the
irregularity is a irregularity index.

• VAR(G) =
∑

uǫV
(du − 2m

n )2 = M1(G)
n − ( 2mn )2

• AL(G) =
∑

uv∈E(G)
|du − dv|

• IR1(G) =
∑

u∈V
(du)

3 − 2m
n

∑

u∈V
(du)

2 = F(G)− 2m
n M1(G)

• IR2(G) =

√
∑

uv∈E(G)
dudv

m − 2m
n =

√

M2(G)
m − 2m

n

• IRF(G) =
∑

uv∈E(G)
(du − dv)

2 = F(G)− 2M2(G)

• IRFW(G) = IRF(G)
M2(G)

• IRA(G) =
∑

uv∈E(G)
(d

−1/2
u − d

−1/2
v )2 = n− 2R(G)

• IRB(G) =
∑

uv∈E(G)
(d

1/2
u − d

1/2
v )2 = M1(G)− 2RR(G)

TABLE 1 | E[PNN(n, k,m)].

(du,dv) Frequency

(km, n+ 1) kmn

(n+ 1,m) km

• IRDIF(G) =
∑

uv∈E(G)
| du
dv

− dv
du
| =

∑

i<j
mi,j(

j
i −

i
j )

• IRLF(G) =
∑

uv∈E(G)

|du−dv|√
(dudv)

=
∑

i<j
mi,j(

j−i√
ij
)

• IRLA(G) = 2
∑

uv∈E(G)

|du−dv|
(du+dv)

= 2
∑

i<j
mi,j(

j−i
i+j )

• IRD1(G) =
∑

uv∈E(G)
ln1+ |du − dv| =

∑

i<j
mi,jln(i+ j− 1)

• IRGA(G)
∑

uv∈E(G)
ln( du+dv

2
√
dudv

)
∑

i<j
mi,j(

i+j

2
√

ij
)

3. COMPUTATIONS OF PROBABILISTIC
NEURAL NETWORK

In this section, we will discuss irregularity indices for
probabilistic neural network. The molecular graph of
PNN(n, k,m) is given in Figure 1. The edge partition of
PNN(n, k,m) is given in Table 1. The total vertices in
PNN(n, k,m) are n+k(m+1) and number of edges are km(n+ 1).

Theorem 3.1. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. VAR(G)

= km(K2m2−4kmn2+k2m+km2−5kmn−km+2kn+mn+2n2+2k+2n)
(km+k+n)2

2. AL(G) = k2m2n− kmn2 − km2 + 2kmn+ km
3. IR1(G) = 1

km+k+n
(km(k3m3+k3m2+k2m2n+2k2mn+km3+

2k2m + km2 + 2kn2 + m2n + 2mn2 + 2n3 + 4kn + 2mn +
4n2 + 2k+ 2n))

4. IR2(G) = 1
km+k+n

(
√
(k+ 1)mkm − 2kmn +

√
(k+ 1)mk +√

(k+ 1)mn− 2km)

Proof:

1. VAR(G) =
∑

u∈V

(

du −
2m

n

)2

= M1(G)

n
−

(

2m

n

)2

= k2m2 + km2 + 2kmn+ 2km

km+ k+ n
− (

kmn+ km

km+ k+ n
)2

= 1

(km+ k+ n)2

(

km(K2m2 − 4kmn2 + k2m+ km2

−5kmn− km+ 2kn+mn+ 2n2 + 2k+ 2n))

2. AL(G) =
∑

uv∈E(G)
|du − dv|

= |km− n− 1|(kmn)+ |n+ 1−m|(km)

= k2m2n− kmn2 − km2 + 2kmn+ km.
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3. IR1(G) =
∑

u∈V
d3u −

2m

n

∑

u∈V
d2u = F(G)−

(

2m

n

)

M1(G)

= (k3m3 + 2k2m2n+ 2k2m2 + km3 + 2km2n

+2kmn2 + 2km2 + 4kmn+ 2km)

−2(kmn+ km)

(km+ k+ n)
(k2m2 + km2 + 2kmn+ 2km)

= 1

km+ k+ n
(km(k3m3 + k3m2

+k2m2n+ 2k2mn+ km3 + 2k2m+ km2 + 2kn2

+m2n+ 2mn2 + 2n3 + 4kn+ 2mn

+4n2 + 2k+ 2n)).

4. IR2(G) =

√

∑

uv∈E(G) dudv
m

− 2m

n
=

√

M2(G)

m
− 2m

n

=

√

(kmn+ km)km+ km(mn+m)

kmn+ km

−
(

2(kmn+ km)

km+ k+ n

)

= 1

km+ k+ n
(
√

(k+ 1)mkm

−2kmn+
√

(k+ 1)mk

+
√

(k+ 1)mn− 2km).

Theorem 3.2. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. IRF(G) = k3m3 + km3 + 2kmn2 + 4kmn+ 2km

2. IRFW(G) = k2m2+m2+2n2+4n+2
m(kn+k+n+1)

3. IRA(G) = 1√
kmn+km(mn+m)

km(n
√
mn+m+

√
kmn+ km)

4. IRB(G) = (−2k2m2n2 − 2k2m2n + k2m2 − 2km2n − km2 +
2kmn+ 2km)

Proof:

1. IRF(G) =
∑

uv∈E(G)
(du − dv)

2

= (km− n− 1)2(kmn)+ (n+ 1−m)2(km)

= k3m3 + km3 + 2kmn2 + 4kmn+ 2km.

2. IRFW(G) = IRF(G)

M2(G)

= k2m2 +m2 + 2n2 + 4n+ 2

m(kn+ k+ n+ 1)
.

3. IRA(G) =
∑

uv∈E(G)
(d−1/2

u − d−1/2
v )2

= n− 2R(G)

= 1√
kmn+ km(mn+m)

km(n
√
mn+m+

√

kmn+ km).

4. IRB(G) =
∑

uv∈E(G)
(d1/2u − d1/2v )2

= M1(G)− 2RR(G)

= (km+ n+ 1)km+ km(m+ n+ 1)

−2k2m2n2 − 2k2m2n− 2km2n− 2km2

= (−2k2m2n2 − 2k2m2n

+k2m2 − 2km2n− km2 + 2kmn+ 2km).

Theorem 3.3. Consider G as graph for probabilistic neural
network PNN(n, k,m. Then,

1. IRDIF(G) = k2m2n−km2+kn2−n3+2kn−2n2+k−n
n+1

2. IRLF(G) = kmn(km−n−1)√
kmn+km

+ km(n−m+1)√
mn+m

3. IRLA(G) =
km(km2n+kmn2−km2+2kmn−mn2−n3+km−2mn−n2−m+n+1)

(km+n+1)(m+n+1)

4. IRD1(G) = k2m2n− kmn2 − km2 + km
5. IRGA(G) = 1√

(kmn+km)(mn+m)
(km(0.71ln)km + n +

1)n
√
mn+m+ 0.70ln(m+ n+ 1)

√
kmn+ km

Proof:

1. IRDIF(G) =
∑

uv∈E(G)
|du
dv

− dv

du
|

=
(

km

n+ 1
− n+ 1

km

)

kmn

+
(

n+ 1

m
− n+ 1

m
− m

n+ 1

)

km

= k2m2n− km2 + kn2 − n3 + 2kn− 2n2 + k− n

n+ 1
.

2. IRLF(G) =
∑

uv∈E(G)

|du − dv|√
du.dv

=
( |km− n− 1|√

kmn

)

(kmn)+
( |n+ 1−m|√

mn

)

(km)

= kmn(km− n− 1)√
kmn+ km

+ km(n−m+ 1)√
mn+m

.

3 IRLA(G) =
∑

uv∈E(G)
2
|du − dv|
(du + dv)

= 2

( |km− n− 1|
km+ n+ 1

)

(kmn)

+2

( |n+ 1−m|
n+ 1+m

)

(2km)
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= 1

(km+ n+ 1)(m+ n+ 1)
(km(km2n+ kmn2

−km2 + 2kmn−mn2 − n3

+km− 2mn− n2 −m+ n+ 1).

4. IRD1(G) =
∑

uv∈E(G)
ln{1+ |du − dv|}

= ln{1+ |km− n− 1|}(kmn)

+ln{1+ |n+ 1−m|}(km)

= k2m2n− kmn2 − km2 + km.

5. IRGA(G) =
∑

uv∈E(G)
ln

(

du + dv

2
√
dudv

)

= ln

(

km+ n+ 1

2

√

km(n+ 1)

)

(kmn)

+ln

(

m+ n+ 1

2
√
m(n+ 1)

)

(km)

= 1√
(kmn+ km)(mn+m)

(km(0.71ln)km+ n+ 1)

n
√
mn+m+ 0.70ln(m+ n+ 1)

√

kmn+ km.

CONCLUSION

In this article, we have calculated degree-based irregularity
indices of probabilistic neural network. Our outcomes are
pertinent in material science and other applied sciences. It is
demonstrated certainty that TIs help to anticipate numerous
properties without setting off to the wet lab.
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