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In this paper Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are

proposed to solve nonlinear partial differential equations (PDEs) in right triangles. These

algorithms evaluate more times the function than a standard explicit Runge–Kutta

scheme (nt times per step), and these extra evaluations do not increase the order of

convergence but the stability region grows with O(n2t ). Hence, the total computational

cost is O(nt) times lower than with a traditional explicit algorithm. Thus, these algorithms

have been traditionally considered to solve stiff PDEs in squares/rectangles or cubes.

In this paper, for the first time, ESERK methods are considered in a right triangle. It is

demonstrated that such type of codes keep the convergence and the stability properties

under certain conditions. This new approach would allow to solve nonlinear parabolic

PDEs with stabilized explicit Runge–Kutta schemes in complex domains, that would be

decomposed in rectangles and right triangles.

Keywords: complex geometries, higher-order codes, multi-dimensional partial differential equations, nonlinear

PDEs, Stabilized Explicit Runge-Kutta methods

1. INTRODUCTION

Let us suppose that we have to solve a nonlinear PDE with dominating diffusion:

ut = d(ux̄x̄ + uȳȳ)+ f (t, x̄, ȳ, u) (x̄, ȳ) ∈ � ⊂ R
2, (1)

subject to traditional initial and Dirichlet boundary conditions:

u(0, x̄, ȳ) = g1(x̄, ȳ) (x̄, ȳ) ∈ �, (2)

and

u(t, x̄, ȳ) = g2(x̄, ȳ) (x̄, ȳ) ∈ ∂(�). (3)

These types of problems are very common in a large amount of areas such as atmospheric
phenomena, biology, chemical reactions, combustion, financial mathematics, industrial
engineering, laser modeling, malware propagation, medicine, mechanics, molecular dynamics,
nuclear kinetics, etc., see [1–9], to mention a few.

A widely-used approach for solving these time-dependent and multi-dimensional PDEs is to
first discretize the space variables (with finite difference or spectral methods) to obtain a very large
system of ODEs of the form

y′ = f (t, y); y(t0) = y0; (4)
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where y, y0 ∈ R
n, t ≥ t0, and f (t, y) takes value in R

n, this
procedure is well-known as the method of lines (MOL). But these
systems of ODEs not only have a huge dimension, additionally
they might become very stiff problems.

Hence, traditional explicit methods are usually very slow, due
to absolute stability, it is necessary to use very small length steps,
see [6, 7] and references therein. Therefore, these schemes are not
usually considered.

Implicit schemes based on BDF and Runge–Kutta methods
have much better stability properties. However, since the
dimension of the ODE system is very high, then it is necessary
to solve very large nonlinear systems at each iteration.

Other numerous techniques have also been proposed based
on ETD schemes (but it is necessary to approximate operators
including matrix exponentials), alternating direction implicit
methods (they have limitations on the order of convergence) and
explicit-implicit algorithms. However, in any case the number of
operations is huge when the system dimension is high.

For those cases where it is known that the Jacobian eigenvalues
of the function are all real negative or are very close to this semi-
axis, there is another option: stabilized explicit Runge–Kutta
methods (they are also called Runge-Kutta-Chebyshev methods).
This happens, for example, when diffusion dominates in the
PDE, when the Laplacian is discretized using finite differences or
some spectral techniques, then the associated matrix has this type
of eigenvalues.

These types of algorithms are totally explicit, but they
have regions of stability extended along the real negative
axis. These schemes typically have order 2 or 4 [8, 10–
16]. Recently, we propose a new procedure combined with
Richardson extrapolation to obtain methods with other orders of
convergence [17, 18], but in all these methods, these integrators
have many more stages than the order of convergence. Most of
these extra stages seek to extend as much as possible the region of
stability along the negative real axis. Regions of stability increase
quadratically with the number of stages. Thus, the cost per step
is greater than in a classic Runge–Kutta, because it is necessary
to evaluate the function in Equation (4) nt times. However, the
number of steps reduce proportionally with n2t , thus the total
computational cost is reduced proportionally with nt .

These schemes have been traditionally considered in
squares/rectangles or cubes. But this makes difficult to apply
them in PDEs with complex geometries, which happens in most
of the cases. Some different strategies have been proposed to
apply them when the original domain is not a square nor a cube
(see [3–5]). They implemented stabilized Runge–Kutta methods
after using adaptive multiresolution techniques or fixed mesh
codes in space. But simulations in complex geometries constitute
a very challenging problem, see (section 4, [5]), where they stated
for their results based on adaptive multiresolution techniques
that they “will only present here 2D and 3D simulations in
simplified geometries for the sake of assessing our results and
perspectives in the field.”

As far as we know, stabilized explicit Runge–Kutta methods
have not been tested in triangles yet. For this reason, in this paper,
we are analysing how ESERK methods can be employed to solve
nonlinear PDEs in these types of regions and their convergence.

In this paper, a summary on ESERK4 methods is provided
in section 2. The major advance of our contribution is given in
section 3: it is explained how ESERK4 can be utilized for (1) when
� is a right triangle. After some linear transformations and spatial
discretizations ESERK4 is numerically stable and fourth-order
convergence in time, and second-order in space is obtained. This
allows a new way to numerically approach parabolic nonlinear
PDEs in complex domains in the plane, which can be easier
decomposed in a sum of triangles and rectangles. Finally, some
conclusions and future goals are outlined.

2. ESERK4 METHODS

2.1. Construction of First-Order Stabilized
Explicit Methods
In [17], ESERK4 schemes were developed for nonlinear PDEs in
several dimensions with good stability properties and numerical
results in squares and cubes. The idea is quite simple: first-order
stabilized explicit Runge–Kutta (SERK) methods are derived
using Chebyshev polynomials of the first kind:

T0(x) = 1, T1(x) = x, Ts(x) = 2xTs−1(x)− Ts−2(x), (5)

s being the number of stages of the first-order method.
If we consider

Rs(z) =
Ts(w0,s + w1,sz)

Ts(w0,s)
, w0,s = 1+

µ4

s2
, w1,s =

Ts(w0,s)

T′
s(w0,s)

,

(6)
then |Rs(z)| oscillates between −λ4 and λ4 (for a value 0 < λ4 =
0.311688 < 1 that we will calculate later) in a region which is
O(s2), and Rs(z) = 1+ z + O(z2).

We can construct Runge–Kutta schemes with |Rs(z)| as
stability functions by just changing x = 1+αpx̄ (and considering
that 1,Ts(x) and x̄ are the stability functions of Identity operator,
gs, and hf (·), and writing Rs(z) as a linear combination of the
Chebyshev polynomials, see Theorem 1 [12] for more details).

2.2. Construction of Higher-Order ESERK
Schemes
Once first-order SERK methods have been derived, they
approximate the solution of the initial value problem (4), by
performing ni steps with constant step size hi at x0 + h, i.e.,
yhi (x0 + h) : = Si,1, with step sizes h1 > h2 > h3 > . . . (taking
hi = h/ni, ni = 1, . . . , 4).

Finally

S4,4 =
−S1,1 + 24S2,1 − 81S3,1 + 64S4,1

6
=

=
64yh/4(x0 + h)− 81yh/3(x0 + h)+ 24yh/2(x0 + h)− yh(x0 + h)

6

(7)

is a fourth-order approximation with

P4s(z) =
−Rs(z)+24(Rs(z/2))

2−81(Rs(z/3))
3+64(Rs(z/4))

4

6 .
(8)
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as its stability function. Additionally, we have that

|P4s(z)| ≤
|Rs(z)| + 24|Rs(z/2)|2 + 81|Rs(z/3)|3 + 64|Rs(z/4)|4

6
.

The positive real solution of

x+ 24x2 + 81x3 + 64x4

6
= 0.95

is λ4 = 0.311688. Hence, whenever |Rs(z)| < 0.311688, then
|P4s(z)| < 0.95. Taking µ4 = 27

16 , it can be checked numerically
that |Rs,4(z)| ≤ 0.311688 for z ∈ [−s2,−1] and 9 ≤ s ≤
4000, and therefore the ESERK4 methods derived in this way are
fourth-order approximations and numerically stable in a region
including [−s2, 0].

2.3. Parallel, Variable-Step, and Number of
Stages Algorithm
In [17], we constructed a variable-step and number of stages
algorithm combining all the schemes derived there, with s up to
4,000. The idea is quite simple: (i) First, we select the step size
in order to control the local error; the best results were obtained
using techniques considered for standard extrapolation methods
(see Equations (8–11) in [17]). (ii) Later the minimum s is chosen
so that the absolute stability is satisfied.

Recently, we are working developing the parallel version of
this code (see [19]). Using 4 threads, CPU times are up to 2.5
times smaller than in the previous sequential algorithm. The
new parallel code also has a decreasing memory demand, and
therefore it is possible to solve problems with higher dimension
in regular PCs.

3. DECOMPOSITION OF COMPLEX
GEOMETRIES INTO RIGHT TRIANGLES

Complex geometric shapes are ubiquitous in our natural
environment. In this paper, we are interested in numerically
solving partial differential equations (PDEs) in such types of
geometries, which are very common in problems related with
human bodies, materials, or simply a complicated engine in
classical engineering applications.

One very well-known strategy, within a finite element
context, is to build the necessary modifications in the
vicinity of the boundary. Such an approach is studied in
the composite finite element method (FEM). Those methods
based on finite element are usually proposed only for linear
PDEs. FEM is a numerical method for solving problems of
engineering and mathematical physics (typical problems include
structural analysis, heat transfer, fluid flow, mass transport,
or electromagnetic potential, because these problems generally
require numerically approximating the solution of linear partial
differential equations). The finite element method allows the
transformation of the problem in a system of algebraic equations.
Unfortunately, it is more difficult to employ these techniques
with nonlinear parabolic PDEs in several dimensions, although
some results have been obtained to know when the resulting

discrete Galerkin equations have a unique solution in [20].
However, for some problems, some of these techniques are not
easy to be employed numerically, they are computationally very
expensive because they require solving nonlinear systems with
huge dimension at every step, or it is difficult to demonstrate that
the numerical schemes have unique solution in a general case.

On the other hand, Implicit–Explicit (IMEX) methods have
been employed to solve a very stiff nonlinear system of ODEs
coming from the spatial discretization of nonlinear parabolic
PDEs that appeared in the modelization of an ischemic stroke in
[5]. The authors employed an adaptive multiresolution approach
and a finite volume strategy for the spatial discretizations.
And a Strang splitting method in time, combining ROCK4, an
explicit Stalized Explicit Runge–Kutta scheme for the diffusion
part, and Radau5, an implicit A-stable method for the reaction.
These methods were previously analyzed in [3] for streamer
discharge simulations, and the authors demonstrated second-
order convergence in time. Later, they employed similar strategies
for different physical problems in [4, 21]. As the authors
state, some of these procedures are complicated except in
simple domains like squares and cubes, and only second-order
convergence in time is possible. However, there are complex
problems where nonlinear terms have potentially large stiffness,
and at the same time, it is necessary to efficiently solve the model
with small errors. This motivates to derive high-order schemes
with good internal stability properties.

In what follows we will explain a new strategy to numerically
solve the nonlinear parabolic PDE given by Equation (1) where
� is any right triangle, and therefore any researcher can combine
the theory (utilized with FEM) to spatially decomposed any
complex geometry into triangles (since any acute triangle and
obtuse triangle can be decomposed into two right triangles), and
later employing the method described in this paper. Additionally,
schemes proposed in this work are fourth-order ODE solvers (in
time), and numerical spatial approximations will be second-order
(although fourth-order formulae can be explored except for the
closest points to vertices).

3.1. Higher-Order Spatial Approximations
in the Triangle
Without loss of generality we can consider that our right triangle
is TR, the one with vertices (0, 1), (0, 0), (1, 0). Otherwise we first
use a linear transformation of the right triangle with vertices
P1 = (x̄1, ȳ1), P0 = (x̄0, ȳ0), P2 = (x̄2, ȳ2) [where (x̄0, ȳ0) is the
vertex of the right angle]:

(x, y) = L(x̄, ȳ) = (a1(x̄− x̄0)+a2(ȳ− ȳ0), b1(x̄− x̄0)+b2(ȳ− ȳ0)),
(9)

where the parameters a1, a2, b1, b2 can be computed easily as

a1 = ȳ2−ȳ0
Det , a2 = x̄0−x̄2

Det ,

b1 = ȳ0−ȳ1
Det , a2 = x̄0−x̄1

Det ,
(10)

where

Det =

∣

∣

∣

∣

∣

∣

1 1 1
x̄0 x̄1 x̄2
ȳ0 ȳ1 ȳ2

∣

∣

∣

∣

∣

∣

(11)

Frontiers in Physics | www.frontiersin.org 3 September 2020 | Volume 8 | Article 367

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Martín-Vaquero ESERK Methods for Nonlinear PDEs in Triangles

and it is easy to check that Det 6= 0 if and only the three points
are not in a line (but we always have a triangle).

The main reason of decomposing our general region � ∈ R2

into right triangles (and not other triangles) is, that after this
linear transformation given by Equations (9) and (10), our PDE
given by Equation (1) transforms into the Equation

ut = c1uxx + c2uyy + f (t, x, y, u) (x, y) ∈ TR, (12)

subject to (traditional) initial and Dirichlet boundary conditions.
Therefore, let us first study Equation (12), together with

u(0, x, y) = g1(x, y) (x, y) ∈ TR, (13)

and

u(t, x, y) = g2(x, y) (x, y) ∈ ∂(TR), (14)

where ∂(TR) is the border of the triangle with vertices
(0, 1), (0, 0), (1, 0). One positive issue is that, after the traditional
spatial discretization described below, the matrix obtained from
the diffusion term has all the eigenvalues real, and therefore
we can utilize the ESERK methods proposed in the previous
section 2.

Now, let us define the spatial discretization of our continuous
problem provided by Equation (12), the problem domain TR is
discretized by the grid points (xi, yj), where

xi = i · h, i = 0, 1, . . . ,N, N =
1

h
, yj = j · h,

j = 0, 1, . . . ,N − i, h = 1x = 1y, (15)

since xi + yj ≤ 1.
With this semidiscretizations we will approximate uxx and uyy

at point (xi, yj) with the following second-order formulae:

∂2ui,j

∂x2
=

ui+1,j − 2ui,j + ui−1,j

h2
,

∂2ui,j

∂y2
=

ui,j+1 − 2ui,j + ui,j−1

h2
.

(16)
After the linear transformation given by Equations (9) and (10),
our PDE given by Equation (1) may transform into one Equation
where one term in uxy would appear. Normally, this term can be
approximated in the square or the rectangle through the formula

∂2ui,j

∂x∂y

=
ui+1,j+1 − ui,j+1 − ui+1,j + 2ui,j − ui−1,j − ui,j−1 + ui−1,j−1

2h2
,

(17)

however, in TR, we can obtain that the point (xi, yj) is in TR, i.e.,
xi + yj < 1, but the point (xi+1, yj+1) might not satisfy that
xi+1 + yj+1 ≤ 1, and therefore we cannot employ these finite
difference formulae if a term in uxy appears. Fortunately, we will
check that this term cancels after this transformation [given by
Equations (9 and 10)] whenever the original triangle with vertices
(x̄1, ȳ1), (x̄0, ȳ0), and (x̄2, ȳ2) is a right triangle and (x̄0, ȳ0) is the
vertex of the right angle. This fact is explained in Figure 1. If we

FIGURE 1 | Spatial discretization in the right triangle TR. We need to

approximate partial derivatives of u in the interior (orange points), and therefore

we have obtained in the previous steps approximations of the function in the

interior, and the points in the border (blue points), but we do not have these

values outside of TR (red points).

would need to approximate
∂2u2,1
∂x∂y , then it would be necessary to

obtain an approximation of u3,2, but this point is outside of the
TR, the region of study.

In this work, we are employing only second-order
approximations in space. In other works, for example [13],
we have also employed SERK codes after higher-order
discretizations in space, but in rectangles. Normally, in
rectangles, we can use formulae similar to

∂2ui,j

∂x2
=

−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2
,

i = 2, . . . ,N − 2, (18)

and in the lower edge

∂2u1,j

∂x2
=

10u0,j − 15u1,j − 4u2,j + 14u3,j − 6u4,j + u5,j

12h2
. (19)

However, in the triangle, again we can observe in Figure 1, that
we would need to approximate the solution in points outside TR

before we can calculate (19) near the vertex (0, 1). Obviously, one
possible idea for the future is considering the decomposition of
complex regions into bigger rectangles in the interior, and small
right triangles near the border of the complex region where it is
necessary to solve the PDE.

Now, we are ready to understand why we chose right triangles
in the decomposition of complex regions. The main reason is,
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that simple calculations give us [after linear transformations
given by Equations (9–11)]:

ux̄x̄ + uȳȳ = a1
(

a1uxx + b1uxy
)

+ b1
(

a1uxy + b1uyy
)

+a2
(

a2uxx + b2uxy
)

+ b2
(

a2uxy + b2uyy
)

, (20)

and therefore, after this linear transformation, ux̄x̄ + uȳȳ has the
following term in uxy

(

2a1b1 + 2a2b2
)

uxy. (21)

If we change a1, a2, b1, and b2 for their values given by Equation
(10)

a1b1 + a2b2 =
ȳ2 − ȳ0

Det

x̄0 − x̄2

Det
+

ȳ0 − ȳ1

Det

x̄0 − x̄1

Det
(22)

which is 0 if and only if the vectors
−−→
P2P0 and

−−→
P0P1 are orthogonal,

i.e., if they form a right angle at P0.
Thus, if the original triangle has a right angle at P0,

there is not a term in uxy, and we can use the second-
order approximations in space, with the spatial discretization
described above. Additionally, the following theorem guarantee
that ESERK methods can be employed (with numerical stability
and good results) in this right triangle to solve the PDE
given by Equations (1)–(3) after the linear transformation given
by Equations (9)–(11) and the spatial discretization given by
Equation (15):

Theorem: Let Equations (1)–(3) be the PDE to be solved,
and � a right triangle with a right angle at P0. After linear
transformation given by Equations (9) and (10), this PDE
transforms into Equations (12)–(14), which can be discretized by
Equations (15) and (16), transforming into the system of ODEs



































u11
u21
...

uN−2 1

u12
...

uN−3 2

...
u1 N−2



































′

= A



































u11
u21
...

uN−2 1

u12
...

uN−3 2

...
u1 N−2



































+



































F(t, x1, y1, u11)
F(t, x2, y1, u21)

...
F(t, xN−2, y1, uN−2 1)

F(t, x1, y2, u12)
...

F(t, xN−3, y2, uN−3 2)
...

F(t, x1, yN−2, u1 N−2)



































,

(23)
F(t, xi, yj, uij) being the sum of f (t, x, y, u) at the grid points plus
the function given by the spatial discretization of the derivatives
at the boundary.

The associate matrix, A, to the terms c1uxx + c2uyy (with
c1, c2 ≥ 0) is real and symmetric, and therefore all the eigenvalues
of this matrix are negative and real. Hence, Extrapolated
Stabilized Explicit Runge–Kutta are numerically stable whenever
∂u[F(t, x, y, u)] does not modify this type of eigenvalues (real and
negative) in the Jacobian function and s >

√

41t(µ + σ ) (µ
being c1

h2
and σ = c2

h2
). Therefore, ESERK4 methods can solve

Equations (1)–(3) with a fourth-order convergence in time, and
second in space.

Proof: It only remains to study the associate matrix A.
But simple calculations allow us to obtain that

A =





















BN−2 CN−2,N−3 0N−2,N−4 . . . 0N−2,2 0N−2,1

Ct
N−2,N−3 BN−3 CN−3,N−4 . . . 0N−3,2 0N−2,1

0N−4,N−2 Ct
N−3,N−4 BN−4

. . .
...

...
...

...
. . .

. . .
. . .

. . .

02,N−2 02,N−3 . . . . . . B2 C2,1

01,N−2 01,N−3 . . . . . . Ct
2,1 B1





















,

(24)
where Bi is the square matrix with dimension i

Bi =



















−2µ − 2σ µ 0 . . . 0

µ −2µ − 2σ µ
. . . 0

0 µ −2µ − 2σ
. . .

...
...

. . .
. . .

. . . µ

0 0 . . . µ −2µ − 2σ



















,

(25)

Ci+1,i =
(

σ Idi
0i,1

)

,

0i,j is the i× jmatrix with all the values equal 0, Idi is the identity
matrix of dimension i, µ = c1

h2
and σ = c2

h2
, and therefore A is a

symmetric real matrix.
Finally, it is well-known that all the eigenvalues of any

symmetric real matrix A are real. Let us suppose that (λ, v) is a
complex pair of A, i.e., an eigenvector v = x + yi ∈ C

n, where
x, y ∈ R

n and λ = a + bi ∈ C is the corresponding eigenvalue
with a, b ∈ R. Therefore,

Ax+ iAy = Av = λv = (ax− by)+ i(bx+ ay). (26)

Hence, equalizing real and imaginary parts, we have

Ax = (ax− by), Ay = (bx+ ay), (27)

and therefore

Ax · y = a(x · y)− b||y||2, x · Ay = b||x||2 + a(x · y). (28)

In this way we can conclude that

0 = x · Ay− Ax · y = b(||x||2 + ||y||2), (29)

and, since ||x||2 + ||y||2 6= 0, then b = 0 and λ = a ∈ R

Additionally, since σ ,µ ≥ 0, the Gershgoring theorem
guarantees for all the eigenvalues of A that 4(µ + σ ) ≤ λi ≤ 0.

Therefore, whenever the nonlinear part does not modify this
type of eigenvalues (real and negative) in the Jacobian function, a
bound of the spectral radius of the Jacobian is 4(µ + σ ), and we
merely need to use an ESERK method with s >

√

41t(µ + σ ) to
guarantee numerical stability.
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TABLE 1 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15) (top) and p2 = (t, x, y) = (1, 0.5, 0.25) (bottom) for the

ESERK4 algorithm with s = 100 with k = 1t = 0.2, 0.1 and 0.05, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 100, p1 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 2.264e−4 1.215e−5 1.595e−5

h = 0.0125 3.355e−4 6.364e−6 2.479e−6

h = 0.00625 4.430e−4 5.842e−5 3.109e−6 3.577

Spatial conv. 1.180

s = 100, p2 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 3.449e−4 2.709e−6 4.073e−5

h = 0.0125 1.412e−3 8.117e−5 1.479e−5

h = 0.00625 1.649e−3 1.975e−5 4.536e−6 4.253

Spatial conv. 1.583

4. NUMERICAL EXAMPLE

Let us now study the numerical behavior of ESERK methods in a
right triangle with one example. We will consider

ut =
5

π2
(ux̄x̄ + uȳȳ)+ (1− u)3 + f (t, x̄, ȳ) (x̄, ȳ) ∈ � ⊂ R

2,

(30)
where

f (t, x̄, ȳ) = e−3t

(

sin

(

π(ȳ− 2x̄− 3)

5

)

− et
)3

,

� is the triangle with vertices (−1, 1), (−3, 2), and (0, 3) and
initial and boundary conditions are taken such that u(t, x̄, ȳ) =
e−t sin

(

π(ȳ−2x̄−3)
5

)

is its solution.

Hence, we first consider the linear transformation given by
Equations (9) and (10), i.e., a1 = −2/5, a2 = 1/5, b1 = 1/5, b2 =
2/5. In this way Equation (30) transforms into the Equation

ut =
1

π2
(uxx + uyy)+ (1− u)3 + f (t, x, y) (x, y) ∈ TR, (31)

where

f (t, x, y) = e−3t
(

sin (πx) − et
)3
,

and initial and boundary conditions are taken such that
u(t, x, y) = e−t sin (πx) is its solution.

Now, it is possible to utilize second-order approximations in
space, as it was explained in the previous section. ESERK4 with
s = 100 and 150 where considered for this numerical experiment
with different values of h = 1x = 1y and k = 1t. Numerical
convergence at several points was analyzed with both methods,
and numerical errors at two points [p1 = (t, x, y) = (1, 0.15, 0.15)
and p2 = (t, x, y) = (1, 0.5, 0.25)] are shown in Tables 1, 2.

First of all, we calculated all the eigenvalues of the matrix A
after spatial discretization. As it was demonstrated in Theorem

TABLE 2 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15) (top) and p2 = (t, x, y) = (1, 0.5, 0.25) (bottom) for the

ESERK4 algorithm with s = 150 with k = 1t = 0.2, 0.1 and 0.05, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 150, p1 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 2.150e−4 1.228e−5 1.599e−5

h = 0.0125 3.235e−4 5.693e−6 2.132e−6

h = 0.00625 4.401e−4 5.842e−5 2.625e−6 3.695

Spatial conv. 1.303

s = 150, p2 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 3.275e−4 3.657e−6 4.042e−5

h = 0.0125 1.327e−3 7.585e−5 1.788e−5

h = 0.00625 1.568e−3 1.975e−5 3.824e−6 4.340

Spatial conv. 1.701

TABLE 3 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15), and p2 = (t, x, y) = (1, 0.5, 0.25) for the ESERK4

algorithm withs = 100 and s = 150 with k = 1t = 0.025, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 100, p1 s = 100, p2 s = 150, p1 s = 150, p2

h = 0.025 1.749e−5 3.489e−5 1.750e−5 3.490e−5

h = 0.0125 4.544e−6 9.593e−6 4.542e−6 9.575e−6

h = 0.00625 2.086e−6 9.398e−7 2.026e−6 7.835e−7

Spatial conv. 1.534 2.607 1.555 2.738

23, they are real and negative, and they are inside the intervals
[−1, 292, 0] for h = 0.025; [−5, 183, 0] for h = 0.0125; and
[−20, 746, 0] for h = 0.00625. In the three cases, the bound
4(µ+σ ) given by Gershgoring theorem is a good approximation
for the spectral radius [4(µ+σ ) is 1296.91 for h = 0.025, 5187.64
for h = 0.0125, and 20750.6 for h = 0.00625, less than a 1% over
the real values].

ESERK4 schemes are stable in [−s2, 0] therefore any ESERK

method with s >
√
20750.6k ≥

√
4150.2 = 64.4214 (since our

bigger k = 0.2) is stable in this numerical example.
In both Tables 1, 2, if we take k = 0.2 (also with k = 0.1), we

can observe that errors are similar with the three different values
h = 0.025, 0.0125, and 0.00625 at many of the points. In this case,
most of the error is due to the temporal discretization. Actually,
in L2 norm, errors with constant k = 0.2 grow when h decrease
for the three step lengths in space, this is because there are more
points and they are close to the border.

If we take h = 0.025 constant, and we vary k = 0.2, 0.1, and
k = 0.05, in general we observe that errors in most of the points
decrease between k = 0.2 and 0.1, however, if we only compare
the errors with h = 0.025, k = 0.1 and k = 0.05, errors are similar
at most points (and also in L2 norm). Obviously, this is because,
with h = 0.025, k = 0.1, or k = 0.05, part of the error is due to
the spatial discretization.
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FIGURE 2 | Exact and numerical solutions in the right triangle TR. Numerical approximation is obtained with ESERK4 with s = 150, k = 1t = 0.025,

h = 1x = 1y = 0.00625.

Therefore, it is not so easy to observe 4−th order convergence
in time and 2−nd in space. If we choose h = 0.00625, then
most of the error with k1 = 0.2, k2 = 0.1, and k3 = 0.05 is

due to temporal discretization. Hence, calculating logk1/k3

(

err1
err3

)

(these values are called Temporal convergence in Tables 1, 2, err1
being the error with k1, and err3 being the error with k3) we can
observe numerical rates in the range 3.6–4.3 in general, which
gives us a good idea of the fourth-order convergence in time of
ESERK4 schemes.

Now, if we fix k = 0.05, and we repeat the process with h1 =
0.025, h2 = 0.0125, and h3 = 0.00625, we observe that between
h1 and h2 errors divide (more or less) by 4 which gives us a good
idea of the second order in space of the discretization proposed
for the right triangle. However, with k = 0.05, and h3 a part of the
error is due to the temporal discretization. Thus, if we calculate

logh1/h3

(

err1
err3

)

(these values are called Spatial convergence in

Tables 1, 2, err1 being the error with h1, and err3 being the error
with h3), we observe numerical rates in the range 1.2–1.7.

Since, part of the error with k = 0.05 is due to the temporal
discretization, and the temporal convergence is fourth-order, let
us choose a smaller k4 = 0.025, and repeat the process with this
length step in time. InTable 3, errors with bothmethods (s = 100
and s = 150), and h = 1x = 1y = 0.025, 0.0125, and 0.00625
are shown at both points, p1 and p2.

Now, most of the errors are because of the spatial
discretization, and we can observe that the numerical spatial
convergence rates are in the range 1.5–2.7. They suggest that
the numerical convergence rate is 2 as it was expected from the
previous theoretical analysis.

In Figure 2, the exact solution and the numerical
approximation obtained with ESERK4 with s = 150,
k = 1t = 0.025, h = 1x = 1y = 0.00625 are shown.
We can check that both plots look identical.

5. CONCLUSIONS AND FUTURE GOALS

In this paper, for the first time, ESERK schemes are proposed
to solve nonlinear partial differential equations (PDEs) in
right triangles. These codes are explicit, they do not require
to solve very large systems of linear nor nonlinear equations
at each step. It is demonstrated that such type of codes
are able to solve nonlinear PDEs in right triangles. They
keep the order of convergence and the absolute stability
property under certain conditions. Hence, this paper opens
a new line of research, because this new approach will
allow, in the future, to solve nonlinear parabolic PDEs
with stabilized explicit Runge–Kutta schemes in complex
domains, that would be decomposed in rectangles and
right triangles.

Additionally, we consider that this procedure can be extended
to tetrahedron and other simplixes for the solution of multi-
dimensional nonlinear PDEs in complex regions in R

n.
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