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In order to improve the performance of Particle Swarm Optimization (PSO) algorithm

in solving continuous function optimization problems, a chaotic particle optimization

algorithm for complex functions is proposed. Firstly, the algorithm uses qubit Bloch

spherical coordinate coding scheme to initialize the initial position of the population. This

coding method can expand the ergodicity of the search space, increase the diversity of

the population, and further accelerate the convergence speed of the algorithm. Secondly,

Logistic chaos is used to search the elite individuals of the population, which effectively

prevents the PSO algorithm from falling into local optimization, thus obtaining higher

quality optimal solution. Finally, complex functions are used to improve chaotic particles

to further improve the convergence speed and optimization accuracy of PSO algorithm.

Through the optimization tests of four complex high-dimensional functions, the simulation

results show that the improved algorithm is more competitive and its overall performance

is better, especially suitable for the optimization of complex high-dimensional functions.

Keywords: PSO algorithm, complex function, chaos search, convergence rate, improve chaotic particles

INTRODUCTION

Complex function optimization is an important research direction of optimization problems.
Generally speaking, the solving methods of optimization problems can be divided into analytical
method and numerical calculation [1]. The analytical method solves the problem according to
the relationship between the derivative of the objective function and the extreme value of the
function. This method is only suitable for optimization problems with relatively simple objective
function. According to the variation rule of objective function value, In appropriate steps along the
direction that optimizes the value of the objective function, An approximate calculation method
that approaches the optimal point of the objective function step by step, This method is good at
solving continuous differentiated convex optimization problems, With the continuous expansion
of engineering optimization problems, most of the objective functions are non-convex optimization
problems. The emergence of group intelligent optimization algorithms provides a limited way for
complex function optimization problems [2, 3].

Particle Swarm Optimization (PSO) algorithm is a kind of bionic intelligent optimization
algorithm based on population, which is proposed by Kennedy et al. [4]. Each particle in the PSO
algorithm represents a feasible solution; the location of food source is the global optimal location
point. PSO has strong search diversity, simple operation and few adjustment parameters. As soon
as it was proposed, it was widely used [5, 6], especially PSO has shown excellent optimization ability
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in complex optimization problems [7]. In reference [8], Eberhart
and Shi found that when the maximum velocity of the particle
is not too small (vmax > 3), The inertia weight ω=0.8 is
best. In addition, this conclusion has been confirmed on many
subsequent issues. Clert [9] when carefully studying a general
PSO system, the change of speed can be controlled by controlling
φ1 and φ2. In order to improve the calculation speed of
particle motion trajectory, Clert introduced contraction factorχ
to improve the basic model of PSO algorithm. PSO algorithm has
the following advantages:

First, the algorithm is easy to describe.
Second, there are few parameters to be adjusted in the algorithm.
Third, the number of functions to be evaluated in the algorithm
is small.
Fourth, the number of populations required by the algorithm in
the process of solving the problem is small.
Fifth, the algorithm converges quickly.

Because there are few parameters in PSO, PSO is easy to
Realize , there is also less demand for computing resources, the
gradient information of fitness function is not needed, only the
value of fitness function is needed. Although PSO algorithm
has various advantages, but the PSO algorithm itself also has
several limitations, its performance is as follows. First, PSO is
a probabilistic algorithm, without systematic and standardized
theoretical support, It is still difficult to verify the correctness
of PSO algorithm from a mathematical point of view so
far. Moreover, based on the theory of random events, it is
an extremely difficult task to analyze the particle trajectory
quantitatively in the search process of PSO algorithm. However,
this is also related to the key issues of convergence and parameter
selection of PSO algorithm. Althoughmost scholars are currently
verifying the convergence of its improved PSO algorithm, But
none of them has produced a set of mature and universal theories.
Second, the behavior and characteristics of complex systems are
the emergence of behaviors that are continuously superimposed
through interaction between individual individuals in the system.
Although the control of individual behaviors is relatively simple,
however, this does not mean that the control of the whole
system is an easy task. Third, as far as the whole algorithm
is concerned, due to the lack of balance mechanism, when
solving some complex or special problems, the algorithm is
easy to lose population diversity and fall into local extreme.
The structure and contents of the paper are as follows: (1)
Introduce the basic particle swarm optimization algorithm and
the algorithm flow; (2) Introduce the quantum chaotic adaptive
particle swarm optimization algorithm, explaining the quantum
Bloch coordinate coding, chaos optimization method, quantum
particle swarm optimization algorithm, adaptive inertia weight
and the improved algorithm flow, respectively; (3) Comparing
the convergence test through experiments.

BASIC PSO

Themathematical description of PSO algorithm is follow that the
population with dimension D and scale N can be expressed as

X = {X1,X2, ...,XD}, then at time t, the position of the ith particle
is Xi(t) = {Xi1(t),Xi2(t), ...,XiD(t)} and its velocity is Vi(t) =
{Vi1(t),Vi2(t), ...,ViD(t)}. The algorithm always maintains two
optimal positions: evolution process, the individual best position
pbesti(t) of particle i, expressed as pi(t) = {pi1(t), pi1(t), ..., piD(t)},
and gbest (t) of population a best location, expressed as pg(t) =
{pg1(t), pg1(t), ..., pgD(t)}. If the optimization model is max f (X),
the update formulas of pi(t) and pg(t) are as follows:

P(t+1)
i

=

{

X
(t+1)
i f (X(t+1)

i
> f (P(t)

i
);

P
(t)
i f (X(t+1)

i
≤ f (P(t)

i
)

(1)

p(t+1)
g

= max
1≤i≤N

p(t+1)
i

(2)

In the t-th iteration, pbest and gbest represent historical and global
optimal positions. Then the calculation formula for particle flight
update is expressed as follows:

vt+1
i,d

= wvti,d + c1r1(pbest
t
i,d − xti,d)+ c2r2(gbest

t
d − xti,d) (3)

xt+1
i,d

= xti,d + vt+1
i,d

(4)

Where vt+1
i,d

represents the flight speed of ith particle iterations

t + 1; XID represents the position of ith particle with iterations
t. w represents the inertia weight, which is taken here as 0.6; c1
and c2 represent learning factors, generally takingc1 = 2, c2 =
2; r1∈ [0, 1] r2 ∈ [0, 1].

The flow of the basic PSO algorithm is as follows:
(1) Set the parameters of PSO algorithm, such as population

size, problem dimension, inertia weight, maximum range
and maximum speed, etc. Randomly initialize group position
and speed.

(2) Judge whether the particle is beyond the search range, and
correct the position if it is beyond the range.

(3) According to the state of each particle, calculate the
corresponding fitness value.

(4) Update pbest according to the current fitness value.
(5) Update gbest according to the current fitness value.
(6) According to formulas (3) and (4), update the speed

and position.
(7) Judge the termination condition, and return to (2) if it is

not terminated, otherwise it will end.

QUANTUM CHAOS ADAPTIVE PSO
ALGORITHM

Initial Population of Quantum Bloch
Coordinate Coding
In quantum computation, the smallest information unit is
expressed by qubits, which are also called qubits. The state of a
qubit can be expressed as [10]:
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|ϕ〉 = cos (θ/2)
∣

∣0〉 + eiϕ sin(θ/2) |1〉 (5)

In Equation (5), numbers ϕ and θ define a point, Qubits establish
correlation with Bloch spherical points, and the conversion
formula is as follows:

|ϕ〉 =
[

cosϕ sin θ sinϕ sin θ cos θ
]T

(6)

Let pi be the i-th candidate solution in the group, and its coding
scheme is as follows:

pi =

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

(7)

Where ϕij = 2π × rnd, θij = π × rnd and rnd ∈ [0, 1];
Each candidate solution occupies three positions in the space, i.e.,
represents the following three optimization solutions:

Pix = (cosϕi1 sin θi1, · · · , cosϕid sin θid) ;
Piy = (sinϕi1 sin θi1, · · · , sinϕid sin θid) ;
Piz = (cos θi1, · · · , cos θid)

(8)

Note that the feasible solutions corresponding to Pix,Piy and Piz
are as follows:

xix = (x1i1, x
1
i2, . . . , x

1
in);

xiy = (x2i1, x
2
i2, . . . , x

2
in);

xiz = (x3i1, x
3
i2, . . . , x

3
in)

(9)

Transformation of solution space: Bloch coordinates of the i-th

qubit on candidate solution pi are
[

xix, xiy, xiz
]T
, and the value

of solution space is
[

aj, bj
]

, then the transformation formula

mapping Id = [−1, 1]d is follow:

x1ij =
1
2

[

bj (1+ xix) + aj (1− xix)
]

;
x2ij =

1
2

[

bj
(

1+ xiy
)

+ aj
(

1− xiy
)]

;
x3ij =

1
2

[

bj (1+ xiz) + aj (1− xiz)
]

(10)

Therefore, individuals with smaller fitness values are selected
as the initial population among all candidate solutions.
Bloch coding can enhance the ergodicity of the optimization
space, improve the population, and further improve the
optimization performance.

Chaos Optimization Method
Chaos has the characteristics of randomness, ergodicity and
regularity. In the field of optimization design, the ergodicity of
chaos phenomenon can be used as an optimization mechanism
to avoid falling into local minima in the search process. Chaotic
variables are used to search and this method is applied to the
optimization of continuous complex objects. The steps of chaos
optimization algorithm using Logistic mapping are as follows:

(1) Let k= 0, xkj , j = 1, 2, ..., n to chaotic variables xkj ∈ [0, 1].

skj =
xkj − xmin,j

xmax,j − xmin,j
j = 1, 2, ..., n (11)

In the formula, xmax,j is max bounds and xmin,j is the search min
bounds of the j-dimensional variable, respectively.

(2) Calculate next value sk+1
j .

Sk=1
j = 4skj (1− skj ) (12)

(3) The chaotic variable skj is transformed into the decision

variable xk+1
j . Using a certain chaotic mapping structure to

generate chaotic sequences, m is the length of chaotic sequences.
These sequences are inversely transformed to the original search
space through equation (13).

xk+1
j = xmin,j + sk+1

j (xmax,j − xmin,j) (13)

The new solution is taken as the result of chaotic optimization
K=K+1, otherwise, the new solution is transferred to (2) and the
iteration is continued.

(4) Calculate the fitness value F(Xi) of Xi and compare it with
the fitness value F(Xi) of Xi to retain the best solution;

(5) Updating Chaotic Search Space (xmin,j, xmax,j).

Quantum PSO Algorithm
In 2004, Sun studied the convergence behavior of absorption-
related particles and proposed a quantum PSO algorithm based
on the model of quantum mechanics. In quantum mechanics,
when each particle moves in the search space, there is a
DELTA potential well-centered on p. The properties of particles
in quantum space satisfying aggregated states are completely
different from those in classical mechanics. The particle with
quantum behavior has no definite trajectory when moving, i.e.,
The velocity and position are uncertain, and this uncertainty
makes the possible position of the particle “everywhere” (i.e.,
In the whole feasible solution region) full of possibilities, and
the particle has the possibility to get rid of the local optimal
value point with large interference. It can ensure the global
convergence of the algorithm and has only position vector, no
speed vector, few control parameters and strong optimization
ability in the optimization model.

Quantum PSO algorithm is described as follows: in D-
dimensional space, there are m particles, the individual extreme
point ispBesti = (pBesti1,pBesti2, ..., pBestiD), and the potential
center point is p; The current global extreme point searched
by the whole particle swarm is gBest=(gBest1, gBest2, .., gBestD).
Then, The position update operation for this particle is as follows:

p =
rand1()× pBestid + rand2()× gBestd

rand1()+ rand2()
(14)
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l = z × |Xid(t)− p| 0 < z < ln
√
2 (15)

Xid(t + 1)

{

p− l× ln[1/rand3()] rand3() > 0.5;
p+ l× ln[1/rand3()] rand3() ≤ 0.5

(16)

Where i = 1, 2, ...,m and Z ≤ ln
√
2, usually 0.5–1.0; The range

are (0, 1).

Adaptive Inertia Weights
The global exploration ability and local mining ability of PSO
algorithm are contradictory to each other, and it is hard to seek
a balance point. To balance the global exploration and local
development capabilities of PSO algorithm, an improved chaotic
particle optimization Algorithm is proposed to further modify
the optimization algorithm effect.

Accord to the particle position update formula (3), two
adaptive inertia weights wj and w′

j are introduced. Among
them, wj is used to control the influence degree of the original
particle position on the new particle position, and w′

j is used to
balance the influence weight of the particle flight speed on the
new position. The improved particle position update formula is
expressed as follows:

xt+1
i,d

= wjx
t
i,d + w′

jv
t+1
i,d

(17)

From above formula 17, wj and w
′
j can keep the fault tolerance of

particle population, and enhance robustness of the algorithm to
quit the local optimization in the optimization process.

The mathematical expressions for wj and w′
j are as follows:

wj = 1/(1+ exp (−f (j)/u)iter) (18)

w
′
j = 1− wj (19)

In the formula, f (j) express adaptive value of the j-th particle,
u express the best value in the particle population in the
first iteration calculation, and iter represents the current
iteration number.

Quantum Chaos Adaptive PSO Algorithm
Steps
The specific steps of QCPSO algorithm search are as follows:

(1) Initialize all parameters including N, c1, c2,M,v,D, t = 0;
(2) The current fitness value of each particle is calculated by

the optimization function and compared with the fitness value
corresponding to the individual historical optimal solution. If the
current fitness value is better than the fitness value corresponding
to the individual historical optimal solution, the current solution
is replaced by the individual optimal solution pbest, otherwise it
is not replaced.

(3)The optimal solution gbest of the current population
is determined by comparing the optimal fitness values of
all particles;

(4) Updating the flight speed of particles;
(5) Updating the weights wj and w′

j;
(6) Updating the position of particles;
(7) If t < M and not converge
t= t+ 1
Go to step (3);
Otherwise
Find the global optimal solution and go to step (8);
(8) Output the best value.

CONVERGENCE TEST COMPARISONS

The PSO algorithm is improved by parameter adjustment
strategy, and the search process is optimized by re-search and
reverse learning. In order to embody the effectiveness of the
improved PSO algorithm put forward in the research of test
case generation, it is relative to other algorithms, and has the
best effect. Based on existing problems that need to be studied,
this paper uses Matlab 2016a programming to implement the
above-mentioned algorithm, and evaluates the advantages and
disadvantages through fitness value, average coverage rate and
iteration times. To ensure the fairness and scientificity of
the performance comparison of all algorithms, each group of
experiments is run 100 times to obtain the average value.

The basic parameters of the whole experiment are seen as
follows: M = 1,000, N = 30, D = 30, and the range of values
is [0.4, 0.9]. To verify the superiority of QCPSO algorithm
put forward, four typical test functions Sphere, Rosenbrock,
Rastrigrin and Griewank are compared and tested. These four
functions include unimodal function, multimodal function and
trigonometric function, which are relatively comprehensive. The
specific formulas of the test functions are as follows.

f1(x) =
n

∑

i=1

x2i x ∈ [−100, 100] (20)

f2(x) =
n−1
∑

i=1

(100(xi+1 − x2i )
2 + (1− xi)

2) x ∈ [−30, 30] (21)

f3(x) =
n

∑

i=1

(x2i − 10 cos(2πxi)+ 10) x ∈ [−5, 5] (22)

f4(x) = (

n
∑

i=1

x2i −
n

∏

i=1

cos(xi/
√
i)+ 1)/4000 x ∈ [−600, 600] (23)

In order to verify the performance advantages of the improved
PSO algorithm, it is necessary to judge the fitness values of four
typical test functions and compare them with the results of other
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TABLE 1 | Value for three Algorithms.

Algorithm Value D = 30, Iteration = 100 D = 50, Iteration = 100

F1 F2 F3 F4 F1 F2 F3 F4

PSO Optimal 2.397 5.761 1.986 1.238 1.987 4.679 1.658 0.832

Average 3.537 6.231 2.421 2.179 2.589 4.998 2.821 1.998

S.D 4.176 7.876 3.876 3.459 3.765 5.452 3.239 2.987

GA Optimal 2.568 6.324 2.451 1.591 2.512 5.311 1.981 1.287

Average 3.679 6.981 3.318 2.993 2.991 5.688 3.003 2.342

S.D 4.876 9.546 4.584 3.987 4.327 7.444 4.176 3.561

QCPSO Optimal 0.112 2.346 0 0 0.021 0.114 0 0

Average 1.543 3.378 1.2 × 10−3 1.6 × 10−9 1.221 1.557 1.1 × 10−18 1.2 × 10−25

S.D 2.129 4.127 0.0334 0.0564 1.967 2.227 0 0

The optimization experiments are carried out under the test (F1, F2, F3, and F4) functions from the PSO, GA, and QCPSO algorithm, and the experimental results are analyzed

and compared.

FIGURE 1 | Convergence Comparison of four Functions (D = 30).

algorithms. First of all, the inertia weight is used to improve the
learning factor. The relationship between the two can be divided
into three types: linear, non-linear and trigonometric functions.
In this paper, the non-linear relationship is used to carry out
the relationship of learning factors, so that the learning factor
changes non-linearly and gradually with the inertia weight, and
the equation is expressed as c = Aω2 + Bω + C; c2 + c1 = 2,
and the inertia weight adopts the commonly used exponential

function decreasing method, taking A = 0.45, B = 0.9, C =
0.45, ωmax = 0.9,ωmin = 0.4. Secondly, the optimal solution
and suboptimal solution in the current iteration are searched
again, and the particles outside the tabu region are optimized
by chaos. The improved algorithm is compared with PSO, GA
and QCPSO through four typical test functions. The comparison
of four typical test functions in four algorithms is shown
in Table 1.
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FIGURE 2 | Convergence Comparison of four Functions (D = 50). (A) F1 convergence, (B) F2 convergence, (C) F3 convergence, (D) F4 convergence.

For a variable dimension of 20, As can be seen from Table 1:
In 20 independent repetitions, For the test functions F3 and F4,
QCPSO algorithm result the best value, but for average value and
standard deviation of these two test functions, QCPSO is best
again, and QCPSO are obviously better than PSO algorithm and
GA algorithm. Accord to four functions, QCPSO is significantly
better than PSO and GA, accord to the average value, standard
deviation and the optimal value.

For the variable dimension of 50, it can be seen from Table 1

that for the test functions F1, F2, F3, and F4, the average
value and standard deviation of the optimal value of QCPSO
are significantly better than those of PS0 algorithm and GA
algorithm, and when the corresponding value ratio dimension is
20, it is smaller as a whole.

In order to verify the convergence, the following is verified
by iterations of the algorithm. The standard deviation value
increases with the number of iterations. The specific effect is
shown in Figures 1, 2.

Figures 1, 2 is a 30-dimensional optimization curve of 4
benchmark test functions in QCPSO, PSO, and GA (semi-
logarithmic curve, and the optimization curve is drawn by
semilogy function). The 30-and 50-dimensional optimization
curves obtained in the experiment are similar to those in Figure 2
and will not be given here due to limited space.

As can be seen from Figures 1, 2, when QCPSO algorithm
optimizes F2 and F4 functions, there are many inflection points,

indicating that QCPSO’s ability to jump out of local optimization
is enhanced. As can be seen intuitively from Figure 1, QCPSO
algorithm is more effective than the PSO and GA algorithms for
most of the four functions in Table 1 with dimension 30. Among
them, QCPSO algorithm obtains the optimal values in four test
functions (F1, F2, F3, F4). The convergence speed of QCPSO is
best than other three algorithms. As can be seen from Figures 1,
2, QCPSO quickly searches for satisfactory solutions for most
optimization problems.

In short, QCPSO algorithm has greatly improved its
optimization capability compared with standard PSO. For most
optimization problems, QCPSO algorithm is better than GA and
standard PSO algorithms.

CONCLUSION

In our research, an improved chaotic PSO algorithm based
on complex functions are proposed. By comparing the
convergence of four complex functions, the proposed QCPSO
algorithm has high convergence and stable performance.
The convergence of complexity functions is verified to
illustrate the advantages of the algorithm, and more
complexity functions are used to verify the advantages of
the algorithm in the later period. It is proved in different
dimensions that the reliability of the algorithm is verified by
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the population of higher dimensions, and the universality
of the algorithm is better explained. In the future research
work, the improved particle swarm optimization algorithm for
complex functions will be applied in other fields to improve
the actual effect of the existing work [11–14]. For example,
geographic location prediction, GPS trajectory prediction, flow
prediction, etc.
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