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It is common to consider using a data-intensive strategy as a way to develop systemic and
quantitative analysis of complex systems so that data collection, sampling,
standardization, visualization, and interpretation can determine how causal
relationships are identified and incorporated into mathematical models. Collecting
enough large datasets seems to be a good strategy in reducing bias of the collected
data; but persistent and dynamic anomalies in the data structure, generated from
variations in intrinsic mechanisms, can actually induce persistent entropy thus affecting
the overall validity of quantitative models. In this research, we are introducing a method
based on the definition of homological groups that aims at evaluating this persistent
entropy as a complexity measure to estimate the observability of the systems. This method
identifies patterns with persistent topology, extracted from the combination of different
time series and clustering them to identify persistent bias in the data. We tested this
method on accumulated data from patients usingmobile sensors tomeasure the response
of physical exercise in real-world conditions outside the lab. With this method, we aim to
better stratify time series and customize models in complex biological systems.
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INTRODUCTION

The quantitative description of complex systems often makes use of time series because its
relationships and correlations aim to infer causal connections between observations [1]. At the
end, a robust quantitative description must fulfill the condition of system’s observability, that is, the
system’s internal states being accessed from the data, such that a mathematical model can be
extrapolated or used to make predictions about future states of the system.

In this research work, we face the problem of estimating persistent entropy generated by all the
internal processes and states in complex systems that could compromise the stability of a quantitative
description of a complex system.

Previous research has focused on the definition of causality tests by using time series [1], for
example, using transfer entropy [2]. But understanding causal relationships that lead to the
successful implementation of models requires a sound analysis of the influence of the sampled
data [3]. In some cases, causality inference can be complicated by a bias when estimating a limited
amount of data that is possibly noisy [1]. This causality inference is based on the notion of
cooperative behavior of complex coupled systems, where synchronization and related phenomena
have been observed, for example, in physical and biological systems [4].
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However, there are constant individual variations between
organisms that challenge this approach. For example, a bird
flying in a forest calculates its trajectory according to the
distribution of the trees in the environment. Bees also
“compute” and create a model of their environment [5]. Also, a
cancer cell adapts its response represented by changes in its
microenvironment as well as internal changes in the regulatory
systems, for instance, depending on the acidity of the tissue, the
presence of toxic chemicals [6], or the existence of landscapes with
complex attractors in stem cells that depend on different molecular
signatures (for a study on this topic, see, e.g., Ref. 7). Such
representations are useful considering that an environment and
changes in internal constraints like molecular shapes or boundary
conditions are not static: a storm can change the distribution of trees
in a forest affecting an ecosystem, or changing a diet can induce
substances capable to modify microenvironments or regulation
mechanisms of cells in tissues affected by cancer cells [8].

The reason why individual biological variations can take place
is thus not easy to precise; but the important fact is that this
problem permanently challenges the construction of models [9].
In effect, the myriad of possible interactions motivates a
continuous update in the information registered in database.
Thus, while some canonical pathways are well known, many
other interactions, and possible variations, are still unknown and
must be constantly updated when these mechanisms are
reconstructed [8]. Therefore, a good strategy is the
identification of individual deviations that might require
individual modeling or an update in the database.

These individual deviations generate persistent entropy that can
be estimated by analyzing persistent patterns in time series. For this
reason, we make use of persistent homology groups to qualitatively
assess persistent incoherencies and imbalances in the sampled data
associated to the trajectories Γ. This method is useful to detect and
“shape recognize” in high-dimensional data [10], which has been
recently used in different fields in biology, from the analysis of cancer
tumors [11] to the analysis of time series in biology [12], as well as in
physics, for instance, in the analysis of folding structures of proteins
in soft matter [13], the analysis of the structure of complex networks
[14], or in combination with machine learning techniques for the
identification of novel materials and structures from molecular
database [15]. Since this methodology is robust against noise
[16], it is best suited to detect persistent defects in the sampled
Γ’s. Such imbalances are more than errors in the sampling of data
and can be identified as persistent and inherent characteristics of the
trajectories Γ. A qualitative assessment is not only relevant for the
optimization of modeling methods, for example, avoiding expensive
training of models (mechanistic or based on machine learning), but
also to assure the safety in the use of models by recognizing when a
sample of data from a biological system or organism can be
represented with a common underlying model, or instead
requires a customized mathematical representation, which is for
instance helpful to determine if personalization of relevant
mathematical models is required for the diagnose and therapy in
medicine [17]. Furthermore, our methodology aims at being an
alternative method to perform signal analysis in this context.

In Topological Methods for the Assessment of Bias in the
Sampled Data, we introduce the mathematical background of

our methodology, which is tested in Supplementary Appendix 3
with synthetic data generated from a simple model on a
population of chemotactic cells with different response
mechanisms. In Proof of Concept for Data Analysis, we
perform a test on real data with the mhealth dataset, which
contains data of patients wearing Internet of things (IoT) sensors
connected to internet devices to measure electrocardiograms
(ECGs) and acceleration while they were performing physical
exercise in normal and noncontrolled conditions [18]. Finally, in
“Discussion” and “Conclusion,” we discuss the results and their
future perspectives.

Topological Methods for the Assessment of
Bias in the Sampled Data
As a starting point, we consider different biological/physiological
data (e.g., number of individuals in a population, nerve impulses,
concentration of chemicals, etc.), being recorded at different time
series that can be coupled in a path Γi(t) defined in a phase space
Γ, as shown in Figure 3.

Under similar conditions, all organisms must have similar
responses so that an average value of the data points in the phase
space can be sampled and used to train models represented by a
function f shown in Figure 1 for organisms A and B. These
models can be mechanistic, like network models with physical
constraints, or black box and statistical models defined using
machine learning. With this assumption, the function f is not
only descriptive, representing the distribution of different data
points associated to an average path Γ, but is also predictive,
helping to estimate future responses.

In the modeling process, there is a statistical error and a bias
associated with the way the researcher selects and validates the
model. And the more the data points are sampled in Γ, the smaller
is the model error f . This approach is the basis of methods using
big data attempting to detect regularities in sampled datasets.
However, subtle differences between datasets can be much more
than just statistical deviations or outliers in average data samples.
Such deviations may indicate a different physical constraints
originating in changes in the organisms environment or its
internal regulation mechanisms, as shown in the example of
the two organisms A and B in Figure 1. In this example, a
separate analysis helps to discover subtle changes in the
trajectory, implying that two different models for two
completely different trajectories, ΓA and ΓB, are required.

For this reason, a method, which goes beyond mere statistical
variations, is required to extract relative variations generated in
changes in physical constraints. Hence, we make use of the
variance and bias to assess differences and effectively cluster
trajectories with similar responses, leading to the concept of
persistent bias, which in turn is related to this persistent
variability of physical constraints.

Definition of Persistent Bias
According to the bias–variance decomposition, the error of a
model f̂ , Error(f̂ ), is composed of three terms: a bias that depends
on the definitions of the researcher, a variance term, and an
unavoidable irreducible error term which is given by Ref. 19
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Error(f̂ ) � E[(Γ − f̂ )2] � Bias(f̂ 2) + var(f̂ ) + σ2, where Bias(f̂ 2)
is the bias of the model f̂ .

This bias is the result of false assumptions in the parameters
used in the learning algorithm. But individual reactions of the
organism induce a persistent bias in the data structure, for
instance, how internal regulatory processes in an organism k
are defined and how they differentiate relative to other organisms
l. Therefore, the variability of the estimated error of a model is
defined as (see Supplementary Appendix 1)

ΔklError(f̂ ) � Bias[(Γkl)2] − 2 f̂ Bias[Γkl], (1)

where Bias[Γkl] � E[Γk − Γl], with E[X] as the expectation value
of X (see Supplementary Appendix 1). Considering that Γk and Γl

are the sets of discrete points (as is shown in Figure 3), then
(Γk − Γl) � {c1, c2, . . . , cn} and (Γk − Γl)2 � {c′1, c′2, . . . , c′m} are
also a set of discrete points as well, such that

Bias[Γkl],� E[Γk − Γl] � ∑n
i�1

P(ci), (2)

Bias[(Γkl)2] � E[(Γk − Γl)2] � ∑n
i�1

P(c′i).
Here, P(X) is the probability of occurrence of X. This basically is
a perturbation of the error in respect to the trajectories of other
organisms.

When systems are observable, that is, when it is possible to
extract the internal states of the system, then ΔklError(f̂ ) � 0,
such that f̂ can describe these internal states and could eventually
fulfill the theorem of observability (see, e.g., Ref. 20).

Otherwise, when ΔklError(f̂ )> 0, then there is a probability
that P(ci)> 0 and P(c′i)> 0. In this case, we can use these
probabilities to define persistent entropy of the system

H[Γkl] � ∑n
i�1

P(ci) · log(P(ci))> 0, (3)

H[(Γkl)2] � ∑n
i�1

P(c′i) · log(P(c′i))> 0.
Therefore, a persistent bias is not a mere statistical error
originating from the observer or the sampled data but is the
amount that generates persistent entropy that originated from
variations in internal states of the system or organisms.

Topological Persistence: Separation of
Internal Bias from Statistical Error and
Modeling
In order to estimate the entropy in Eq. 3, we analyze the structure
of Γkl and (Γkl)2 and compute an observable similarity to a
persistent entropy [21]. The strategy we propose is to assess
the topological structure of the data before a model or regression
is performed, ideally combining different trajectories in a
phase space.

In the end, we construct point clouds Γk �
(Γk1(t), Γk2(t), Γk3(t), . . . . . . ) generated from the trajectory
sample {Γk} of the organism or system k (as shown in
Figure 3 as well as in Figure 2). A point cloud includes a
large but finite set of points sampled from the primary form.

In this theory, the combination of the time series of the
trajectories Γ, including the time delay of time series, can
recover the dynamics of the system [22]. Furthermore, the

FIGURE 1 | Differences between sampling trajectories in phase spaces generated by environmental changes or modifications of the internal regulation
mechanisms of organisms of two different organisms (A,B). For instance, Γ1(t) can be the size of a population (Supplementary Appendix 3), an electrocardiogram
(Proof of Concept for Data Analysis), the concentration of a substance, etc. Γ2(t) can be the size of another population (Supplementary Appendix 3), an acceleration
measured in a certain axis (Proof of Concept for Data Analysis), or other relevant observable in any scale which can be related to Γ1(t).
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presence of harmonic structures in the data represented in point
clouds, related to this dynamics, can be explored by analyzing
persistent homology [23].

Persistent homology, a tool in algebraic topology, is
particularly useful in situations where the “scale” is not a
known a priori. Persistence theory, as considered by H.
Edelsbrunner [24], starts with a space X equipped with finite

filtration rather than represented by smoothmanifolds using real-
valued function [25]; thus, it can be seen as a generalization of
hierarchical grouping of topological characteristics of the higher
order that leads to a type of invariants represented by bar codes
[23, 24, 26]. (For a more extensive introduction of this
methodology, see Refs. 24–27. For an overview of its
application, see Pun et al. [28] as well as Pereira et al. for the

FIGURE 2 | Exemplary estimation of topological persistence using a proximity parameter. A set of points can, for instance, be completed to a �Cech complex [10]. In
the example to the left, connected points and a surface with homologies 0 and 1 can be extracted. On the right, the same procedure allows the discovery of a second
structure with homology 1.

FIGURE 3 | Homology group and bar diagram for two different datasets based on example in Figure 1. Each concentric circle on each data point represents a
distance function dK . For S1, the persistent diagram delivers a homology group H0, that is, a group with genus � 1. For S2, the increase in the number of points allows the
definition of a homology group H1, that is, a surface with connected points. On the left, we schematically represent the difference between both persistent diagrams.
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application on topology persistence in different fields in biology
and medicine [29].)

We sample a collection of points in a metric space into a global
object defined as the vertices of a combinatorial graph whose
edges are defined by proximity [26]. While the graph captures the
connectivity of the data, it allows the construction of filtration of
simplexes using the values of the function and computes the
persistent homology of the filtration, as in the example illustrated
in Figure 2 for the discovery of different homologies in almost
similar clouds of points.

Γλ owns a topology that reflects the periodic behavior of a
signal with Euler characteristics; this means Γλ owns a function g
with a compact subset of RD and dΓk : R

D →R the distance
function of Γk (see Figure 3).

Here, we consider L � {δ : dΓk(δ)≤ ε} as a set of persistent bars
δε that estimates the length of the topological feature. For
example, for a first order homology group H1, that is, a loop
in the data cloud, δε|H1

in the persistence bar is a measure on how
a data point is properly clustered in the group by measuring the
distance of the data to the group with respect to the distance
parameter ε. In this context, a bar code is the persistence analogue
of a Betti number. Recall that the kth Betti number of a complex
acts as a coarse numerical measure ofHk.Key topological features
Hk include zero (connected points) and the first order topology
(loops) (see Figure 3). In the following equations, we use the
notation provided by Fasy et al. [30] (see Supplementary
Appendix 2 for a detailed explanation about the interpretation
of the persistence bars).

Therefore, the estimation of these equivalences helps to
characterize differences between trajectories as well as the
differences of the topological signatures. Using persistent

homology groups m as the difference of the clusters Hm, the
difference of the topological signatures can then be measured as
the sum over all the topological characteristics (see Figures 3, 4
and Supplementary Appendix 2)

(L{w(Γk)} − L{w(Γl)}) � ∑
m

Δkl

∣∣∣∣Hm

� ∑
m

({δk1, δk2,/, δkm}
− {δl1, δl2,/, δlm})

� M(Γkl), (4)

where δki,m is the persistence bar for corresponding topological
featurem, or homology groupHm, of the trajectory Γk, and Δkl|Hm

is the total difference of the persistent bars δkm and δlm associated to
Hm, as presented in Figure 3.

Bar codes are intuitive, but their statistical analysis is rather
complex. To perform a useful statistical analysis of persistent
homology for small samples, we need a real number which
encapsulates the information contained in the bar code. Using
a similar definition of a persistent entropy [21], we define it in
function of the length of the persistence bars defined as

E(Γk) � ∑m
i�1

δk1 · log(δk1); using this definition, we define the

entropy for the difference of the persistence bars, from Eq 4, as

S(Γkl) � ∑
i

Δkl

∣∣∣∣Hm,i · log(Δkl

∣∣∣∣Hm,i). (5)

Given that any differences in the trajectories contains topological
signatures, then

FIGURE 4 | Time series of each system or organism is analyzed as a point cloud in a phase space using topological invariance. Once the persistent diagrams are
obtained, they are normalized respect to the highest value. The difference of the bar codesM(Γkl) of the system k (for instance, the white mouse) respect to the other
systems l is estimated according to Eq. 4 and represented as a box plot.
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if M(Γkl)≥ 0 and S(Γkl)≥ 0 then

E(Γkl)≥ 0 and Biaskl(Γ)≥ 0.
(6)

This equation implies that a persistent internal bias, that is, a
persistent entropy that is originated from variations in internal
states of the system or organisms.

Otherwise,

if M(Γkl)→ 0 and S(Γkl)→ 0 then

E(Γkl)→ 0 and Biaskl(Γ)→ 0.
(7)

The matrix Mkl will be called, in what follows, a distortion matrix.
Finally, when both M(Γkl2)→ 0 and M(Γkl)→ 0, then,

according to Eq 1, ΔklError(f̂ )→ 0, implying that the system is
observable, since a model can be defined, and parameters can be
identified. Accordingly,

low relative persistence of data, that is., M(Γkl)≥ 0, implies a
persistent intrinsic entropy and complexity with a high probability
that a customized model f ̂k is required, that is, f l̂ will probably not
completely fit the sampled data of k.

Thus, the goal is to estimate both the distortion matrixM(Γkl)
and the entropy S(Γkl) to assess if the system can be modeled with
a function f̂ and if this function can account the internal states of
the system. This method is illustrated in Figure 4.

As a reference, we have performed a simple test of the
methodology using synthetic data from a predator/prey system
of chemotactic cells with two kinds of responses in
Supplementary Appendix 3. There we are able to show how
with these method, we can stratify the distance between different
background mechanisms generating the population dynamics
and show how the estimated entropy accounts for the
persistent bias that are associated to the difference of the
intrinsic mechanisms of the chemotactic cells.

In the next section, we present our main results for the
mhealth dataset.

PROOF OF CONCEPT FOR DATA
ANALYSIS

From the example presented in Supplementary Appendix 3, we
learn that the methodology aims to group systems with similar
topological signatures, suggesting that the underlying mechanisms
and causal relationships are similar between systems 1 and 2. Of
course, the method is able to detect the fact that system 1 (switching
model) generates few topological signatures than that from system 2,
affecting the size of the error bars. But within the period where the
data are analyzed, the model correctly stratifies both datasets and
identifies a low distortion in the data, suggesting that systems 1 and 2
have its own similar causal relationships.

In this section, we test the methodology using data containing
physiological signals of patients. As has been suggested in other
studies in animals, the physical activity is associated to changes of
different physiological signals (like heart rate, arterial pressure,
etc.) [31]. Furthermore, the heart response to exercise

(macroscopic scale) has origin in complex molecular mechanisms,
for instance, in subjects undergoing investigation for angina, some
individuals with a low chronotropic index (a measure of heart rate
response that corrects for exercise capacity) had impaired endothelial
function, raised markers of systemic inflammation, and raised
concentrations of N-terminal pro-brain natriuretic peptide (NT-
proBNP) compared to those with a normal heart rate response [32].

Based on these notions, we assume that each individual
generates a unique pattern for this integrated response due to
the individual capacity—across several scales—to adapt and/or
accommodate to changes in the environment, similar to the case
presented in Figure 4 (in this case, the response to physical
exercise).

The data used in this analysis have been obtained from the
mobile health (mhealth) dataset [18], which comprises body
motion and vital signs recordings of ten volunteers with
diverse profile while performing several physical activities.
Sensors placed on the subject’s chest, right wrist, and left
ankle are used to measure the motion experienced by diverse
body parts, namely, acceleration, rate of turn, and magnetic field
orientation. The sensor positioned on the chest also provides 2-
lead ECG measurements, which can be potentially used for basic
heart monitoring, checking various arrhythmias, or looking at the
effects of exercise on the ECG. These activities were monitored
and collected in an out of lab environment with no constraints on
how it must be executed, with the exception that the subject
should try their best when executing them (see Figure 5).

Ideally, if this system is observable, then low persistent entropy
(low inherent complexity) must lead to a quantitative description
of the accelerations and ECGs.

The final raw data are analyzed when it is sampled in a phase
space as Γki � {ΓkECG(t), Γkaccel,i(t)}, where ΓkECG(t) is the normalized
time series of the ECG and Γkaccel,i(t) is the normalized time series
of the acceleration on the axis i (i � {x, y, z}). Thus, features are
extracted from sampled phase space and analyzed using a heat
map (see Supplementary Appendix 4 for an explanation about
how the heat maps in Figure 6 are constructed).

The homology groups were computed with the Dionysus
software1 which included the TDA package in R language; the
persistent homology has been measured over a triangular grid
using the Gaussian kernel density estimator.

Thereafter, the relative distance between the homology groups
M(Γkl) is shown in detail in Supplementary Appendix 4. We
perform an analysis linking the acceleration measured with a
chest sensor in relation to the ECG and apply the methodology
described in the previous section and in Figure 4. The final
M(Γkl) and M(Γkl2) are represented with heat maps defined
from 0 to 1 as is shown in Figure 6 (see Supplementary
Appendix 4 for an explanation of the construction of the heat
maps).

In these figures, we discover a relatively rich structure, with
larger variations on the x axis (see also box plots in
Supplementary Appendix 4). According to these results, there
is a relatively low distortion of the response between patients,

1https://www.mrzv.org/software/dionysus/examples/rips.html#rips-example
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which is more evident on the y and z axes. On the other hand, we
can extract groups of patients with high relative distortion, which
are listed in Table 1.

We found that the seventh patient overlap all the groups, that
is, that any quantitative prediction based on the rest of the
population will deliver Δ7lError(f̂ )> 0, that is, that this patient
might require a customized observation.

However, the analysis of this relative entropy (Figure 7) is
additionally required to perform a complete assessment, using the
package “entropy” in R [33].

After computing the overlapping results between the groups,
we find that patients 4, 2, and 7 also reoccur in all these groups.
However, remnant differences in the entropy values indicate that
persistent entropy remains for several patient groups, that is, that
there is a persistent difference in the mechanisms leading to the
response of each patient to physical exercise (Table 2).

These results are relevant when the mhealth data are used in
the definition and training of predictive models. For example,
activity recognition (AR) systems are typically built to recognize a
predefined set of physical activities common in different
applications, such as patient surveillance or as support systems
to help individuals change or modify their habits. To this end, the
data from the mhealth collection has been used to extract features
and train AR models for the recognition of different physical
activities such as walking, sitting, etc. [34]. However, when
building a model, it is necessary to know whether the feature
extraction can be generalized for any dataset and any new
observations (low persistent entropy), or whether the model
can only be generalized locally for selected datasets or
observations [35]. Therefore, it is relevant to know if the
dataset can be used to train models that can be validated over
an entire patient population and be extrapolated to any new

patient (extreme generalization), or can only be effectively used
for specific subsamples of data (local generalization).

Our result helps to identify the degree of generalization of
trained models and indicates that an AR model [34] can in
principle be used for any patient excepting individuals with
topological signatures similar to the seventh individual (and
eventually, the second and fourth patients). These patients
require a personalized approach, that is, persistent entropy in
the data may be an indication of a heart failure or similar
physiological impairments, which implies that AR models
require additional features to account such individuals.

DISCUSSION

The extraction of topological features is useful for pattern
recognition and is an alternative to methods like 1-
dimensional convolutional neural networks (CNNs) [36]. This
methodology has been already used in different fields, particularly
in biology and medicine, from the analysis and classification of
tissue structures [11], to the analysis of time series in physiology
[29] and thus can be considered as a kind of unsupervised
learning machine with some advantages such as the following:

• It does not require large data samples to detect patterns in
this data.

• It is much transparent in the way how patterns are
computed in comparison to CNNs.

• It is robust against noise and data variations.

Topological persistence aims to identify structures in data and
is suitable for pattern recognition. This technique is indeed used

FIGURE 5 | Exemplary data obtained from patients wearing sensors to measure ECG and acceleration in three axes (x, y, z).
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in Uniform Manifold Approximation and Projection for
Dimension Reduction or topological autoencoders [37] for the
optimization of deep learning methods. These approaches are

based on local manifold approximations and patch together their
local fuzzy simplicial set representations to construct a
topological representation of a high-dimensional data [38], or
they are used to identify topological signatures and using them as
topological constraints while training deep neural networks [37].
Therefore, in these approaches, the estimation of topological
signatures are used as constraints for an efficient training of
neural networks, for instance, for image recognition [37],
eventually improving the training and performance of deep
learning models.

The present study follows a different strategy since we do
not aim to implement a topological analysis to outperform
current established methods for training of deep neural
networks but to analyze and cluster topological signatures
in the data, in this case, time series. Thus, the analysis of the
topological signatures of the sampled data is helpful to better
assess how a model can be generalized, for example, to
estimate how other modeling methods for time series, like
Long short-term memory models [36], can be generalized for

FIGURE 6 |DistortionmatrixM(Γkl) andM(Γkl2) for ΓkECG(t), the normalized time series of the ECG, and Γkaccel,i(t), the normalized time series of the acceleration on
the axis i (i � {x, y, z}).

TABLE 1 | Patient groups with high variability from clusters in Figure 6.

Γ Γ
2

X 4, 2, 7 2, 7, 5
Y 5, 7 7
Z 7 4, 7

TABLE 2 | Patient groups with high variability from clusters in Figure 7.

Γ Γ
2

X 6, 4, 2, 5, 7 6, 4, 2
Y 4, 1, 7, 2 4, 1, 7, 8, 2
Z 4, 7, 1, 2, 8, 3 4, 7, 3
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the data analysis of novel datasets or for extrapolation of
predictions.

Thus, we implemented this kind of pattern recognition to
analyze the structure of sampled time series and to find out
relative differences in order to

• assess the structure of time series,
• get hints about possible differences in underlying causal

relations and intrinsic mechanisms, and
• help to drive the construction of predictive models since it

allows the detection of implicit bias in the sampled data.

Therefore, instead of accumulating and managing very large
datasets, it seems a better strategy is to first recognize which data
collections are appropriate and balanced for training models that
can be validated and reliable for further extrapolation, improving

the safety (reliability) of the conclusions derived from models,
while minimizing the amount of data used for model training.
This means, an appropriate customization of models ab initio
after assessing persistent bias is more efficient than the training of
universal models on several datasets that will be problematic in its
validation [39].2

We demonstrate that our method allows the analysis of
sampled data which in turn helps to find out individual
structures that can be interpreted as intrinsic bias. We tested
this method in data collected from individuals performing
physical activity (see Figures 6, 7).

FIGURE 7 | Persistent entropy S(Γkl) and S(Γkl2) for ΓkECG(t) and Γkaccel,i(t) on the respective axis i (i � {x, y, z}).

2Therefore, we think that any research in machine learning do a better job by
dealing with the natural symbiosis between information and life sciences, rather
than try to simulate or imitate human cognitive capabilities.
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Based on this result, we estimate the persistent entropy in
synthetic vs. real data, thus helping us to assess if a model can be
defined. The results suggested that few individuals probably
require a customized model, that is, that the system is not
completely observable. In this way, our method
complements traditional modeling methods, such as the
search of causal structures and deduction of network
models [40] or the use of artificial intelligence techniques,
to distinguish organisms that potentially cannot be reduced
to canonical models [9].

However, the methodology has also some disadvantages:

• It generates large datasets for the analysis.
• It requires the fine tuning of parameters like the grid size

where the analysis is performed.
• It is computationally intensive.

For this reason, extended analysis and optimization of the use
of this technique in several datasets is required to further improve
and standardize its applicability.

In this way, this method can either be used for direct pattern
recognition and analysis of data structures or to pair it with other
machine learning methods as a promising perspective to increase
the effectiveness and safety of trained models [15], as already
shown in autoencoders for image recognition [37]. This will be the
subject of future research, in particular for automated workflows to
autonomously estimate the generalization of a model.

CONCLUSION

The quantitative description of complex systems is limited from
the internal states of the system from accessible data, which is in
practice limited to a subset of variables. A system is called
observable if we can reconstruct the system’s complete internal
state from its outputs [20]. Under this assumption, it should be
even possible to define optimal number of measurements in
order to develop such quantitative descriptions.

In this research work, we have developed a method to
qualitatively detect data imbalances by measuring the
variability of the modeling error. If the data obtained from
any organism’s trajectory has a persistent structure, that is,
having low persistent entropy, then the variability of the
modeling error is low, implying that a model can be identified
and trained.

Otherwise, the errors in the model can not only be
assigned to the sampling techniques and model selection
but also to persistent entropy which has originated from
constant intersystem variations in internal states (between
individuals, organisms, or in general systems). This has an
impact in the way how models and theoretical approaches
are developed in any field, not only in biophysics but also in
other complex fields like sociology and economics (in
particular, in economic-socio physics, for instance, with
complex networks), since persistent entropy values
generated in intrinsic mechanisms limit the observation of
the system.

This type of qualitative analysis prior to any data
processing serves to better understand the data to be
analyzed, as well as to avoid costly model formation. To
detect persistent structures in trajectories, we have
implemented methods using persistent topology for the
analysis of time series [41], which have become a
promising way to detect patterns in data different to
entropy-based methods, combined with a clustering
analysis. This methodology complements other
methodologies like the measure the complexity of the data
to be analyzed, using for instance, a Kolmogorov or a Chaitin
complexity measurement [42] (see also Ref. 1; Discussion),
together with the design of alternative learning
architectures.

Our aim and vision was to use this method to alleviate
problems like bias and disparity in big datasets used in train
machines as well as the ever-increasing use of resources used in
modeling and machine learning: the increasing processing and
storage of information requires a lot of energy and resources that
end up in the atmosphere in the form of greenhouse gases [44].3

In addition, this method provides the capability to better select
data for training and indicates the possibility to introduce
methods such as intelligent bias into the modeling process to
reduce the amount of training data [39]. The concrete application
of this method in the analysis of physiological data helps to
characterize structural deviations of integrated data of a single
individual from the rest of the population, which is relevant in
machine learning and mathematical modeling in biology and
medicine [9].

Of course, it is necessary to extensively test this methodology
on different datasets and in different problems to get a better
standardization. However, we have managed to demonstrate that
this with method is possible to recognize structures in training
data to have a better assessment of the possible differences in
causal relationships, which is a relevant information for the
derivation of models in complex systems (for instance in
biology and medicine), and in general, for various applications
in the field of artificial intelligence [3].
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