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This paper is the first to differentiate between concave and convex price motion trajectories
by applying visibility-graph and invisibility-graph algorithms to the analyses of stock
indices. Concave and convex indicators for price increase and decrease motions are
introduced to characterize accelerated and decelerated stock index increases and
decreases. Upon comparing the distributions of these indicators, it is found that
asymmetry exists in price motion trajectories and that the degree of asymmetry, which
is characterized by the Kullback-Leibler divergence between the distributions of rise and
fall indictors, fluctuates after a change in time scope. Moreover, asymmetry in price motion
speeds is demonstrated by comparing conditional expected rise and fall returns on the
node degrees of visibility and invisibility graphs.

Keywords: asymmetry, stock index, price motions, Kullback-Leibler divergence, visibility graph

1 INTRODUCTION

The use of network science to perform time series analysis has emerged in recent decades. Of the
numerous approaches to rendering a time series into a complex network, three major categories of
approaches have most attracted researchers’ attention [1–11]. The first approach uses recurrence
networks and was introduced by Donner and Zou et al. in 2009 [5–8]. This approach analyzes phase
space recurrence of a time series from a geometric point of view by interpreting the recurrence matrix
of a time series as the adjacency matrix of a complex network. Transition networks represent the
second major approach to transform a time series into a complex network. These networks are
constructed by partitioning the phase space of a dynamic system and were introduced by Nicolis et al.
in 2005 [9]. Hence, a node in a transition network represents a certain discrete state or pattern that
describes the dynamic system. Direct links are established if one of the nodes is followed by another
with nonzero probability along the time series [10]. The third category is the algorithmic group of
visibility graphs (VG) [11]. In 2008, Lacasa et al. proposed an effective method called the visibility-
graph algorithm (VGA) for converting a time series into a graph network by analyzing the mutual
visibility relationships between points and cutting points in a computational geometry landscape [12,
13]. This concept has attracted great interest and numerous extensions of the standard VGA have
been proposed. Luque et al. [14] came up with a simplified VGA called a horizontal visibility graph
(HVG) to transform a time series into a complex network. Specifically, two observations are
connected in an HVG if and only if there are no obstacles in between [15]. Based on the concepts of
the VG and HVG, parametric VGs introduce a viewing angle α and allow one to study the
dependence of network structural measures on α [16]. Limited penetrable VG (LPVG) is a less
restricted HVG in which two observations are connected if either one has a larger value than the
obstacles in between [17, 18].
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Analyses of financial time series via a VG approach have been
studied intensively [19–29]. For example, Long Yu discovered
small-world characteristics in visibility-graph networks
converted from the time series of the price of gold and its
returns [24]. Moreover, Yao et al. found that exchange-rate
networks converted from the currency-rate time series of the
US dollar, euro, yen, and sterling against the Chinese yuan share
consistent topological characteristics with hierarchical structures
and mixed small-world and scale-free properties. They also
discovered that network communities are actually composed
of large numbers of trending points and small numbers of
discrete peaks and trough points [25]. Furthermore, a novel
method that combined VGA with link prediction was
proposed by Zhang et al. to forecast the time series. Using
fuzzy logic, better predictability can be achieved by fusing the
direct and indirect effects of historical data [26].

Asymmetry in financial time series has generally been
explored via statistical analysis [30–42]. Typically, it is found
that the distribution of time horizons over which a detrended
stock index moves from an arbitrary initial return to a
predetermined positive level deviates to a symmetrically
predetermined negative level [37–40]. This property is known
as the gain-loss asymmetry and has been regarded as a
characteristic of financial time series [30, 34, 36, 37]. Another
well-known asymmetry, which describes the negative correlation
between volatility and the direction of price motion, is the
leverage effect [41]. Recently, Jiang et al. investigated
asymmetry in large-scale price fluctuations. Analyses reveal
that dynamic relaxation before and after large fluctuations is
characterized by a power law with exponents p+ and p−. On
minute time scales, large-fluctuation dynamics are time-reversely
symmetric with p+ � p−. On daily time scales, however, large
price fluctuations that approach financial crashes are asymmetric
with p− ≠ p+ [42]. We shall point out that the results of these
studies are rather generic in the sense that only the price increases
and decreases are considered. In fact, price motions can be
classified in more detail into accelerated or decelerated rise
(AR; DR) and fall (AF; DF), depending upon the convexity or
concavity of the price motion trajectories. Symmetry analysis
should also be performed by taking these four types of price
motion trajectories into account. However, since different price
motion modes can form different convoluted temporal
structures, it would be quite difficult to decompose these price
movements via statistical approaches.

In this paper, we propose to study the financial time series
asymmetry via visibility-graph networks based on the intuition
that network approaches may be more effective in identifying
different price motion trajectories. Hence the terminology of
symmetry in this study specifically refers to the topological
symmetry of the price motion trajectories. In particular, in a
stock price series, we are concerned with whether concave and
convex price motions can form a time-reversed symmetry. The
research question reads as follows: whether those accelerated/
decelerated price rises are statistically symmetric with those
decelerated/accelerated falls. It is worth mentioning that
conventional VGA analysis cannot be applied directly to
investigation of the topologically asymmetric properties of

financial series because the method is incapable of
distinguishing different stock price rise and fall trajectories by
mapping the time series as a whole onto an undirected network.
To solve this problem, an idea from Yan et al. (2012) [43] is
borrowed to address discrimination between price movements
via visibility and invisibility-graph (IVG) networks. Using these
graph networks, asymmetry in stock index motion can be
measured using concave or convex indicator distributions or
expected returns that are conditional on node degrees, instead
of the conventional waiting-time statistics.

Recently, fruitful results have been achieved in the
investigation of time series time reversibility using the HVG
method [44–51]. In a study on how crises affect the motions of
US stock prices, different market price behaviors are identified
by examining the series irreversibility evolved over the time
[50, 51]. Based on the notion that the reversed and original
processes are statistically distinguishable if a stationary process
is time-reversible, we may postulate that a topological
symmetric time series must be a time-reversible one, and
vice versa. A quantitative analysis of this postulation is also
conducted.

The whole paper consists of four sections. Following the
introduction of the study in Section 1, the methodology is
detailed in Section 2. Asymmetry in price motion trajectories
and speeds is analyzed using graph networks in Section 3 and 4,
respectively. Finally, conclusions are described in Section 5.

2 METHODOLOGY

2.1 Basic Algorithms
Graph networks for AR and DF motions of a stock index can be
constructed by mapping a time series of length L, X(ti)(i< L)
onto a graph network using VGA. To start, two arbitrary data
points (ta, xa) and (tb, xb), where a< b, are specified. Two vertical
lines are drawn exactly at ta and tb, with heights equal to the
values of xa and xb, respectively.Next, the endpoints of the two
vertical lines are connected via a straight line whenever vertical
lines from any other data points within the range (ta, tb) do not
cut off the connection. That is, if any intermediate data point
(tc, xc) fulfills the condition

xc < xb + (xa − xb) tb − tc
tb − ta

, a< c < b, (1)

the two data points (ta, xa) and (tb, xb) are visible to each other.
The invisibility-graph algorithm (IVGA) [43] can be used to

build up the networks that describe DR and AFmotions of a stock
index. In contrast to the VGA, here, the data points (ta, xa) and
(tb, xb) are connected only if the point (tc, xc) intersects the
connecting line. Hence, the relationship between these three
data points is transformed into the following:

xc > xb + (xa − xb) tb − tc
tb − ta

, a< c < b. (2)

Based on Yan’s study [43], three conditions are further applied to
distinguish AR and DF in VG as well as DR and AF in IVG. These
conditions are stated as follows:
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1. Any data point in the time series can be linked only to data
points located on its left-hand side.

2. The link between (ta, xa) and (tb, xb) (ta < tb) is connected
only if xb > xa when constructing the graph network for price
increases, and vice versa when constructing the graph
network for price decreases.

3. A moving time scope S is used to construct a graph network
throughout the entire time series; therefore, there is no link
between (ta, xa) and (tb, xb) if |a − b|> S.

With these three additional conditions, VGA and IVGA can
capture rise and fall trends by eliminating links converted from
the short-term disturbing price motions. We demonstrate the
capture of time series topological symmetry in Figures 1 and 2.
The networks in Figures 1 and 2 are built from an artificial
time series that combines the original Hang Seng Index sample
data with its mirror-symmetric counterpart. Figure 1 shows
that VGA can distinguish the concave trajectory of the price
rise from other price motions. For those data points located on
the concave upward trend (from node 11 to node 14 in the
original HSI section and from node 24 to node 26 in the
reversed HSI section), the degree numbers of AR nodes are
higher. For other data points, in contrast, the degree numbers
are lower. VGA can also distinguish concave decreasing price
motions as well (from node 3 to node 5 in the original HSI
section and from node 15 to node 19 in the reversed HSI
section). In Figure 2, however, the convex trajectories of price
motions are captured effectively by IVGA based on the degree
distributions for price rise (from node 10 to node 12 in the
original HSI section and from node 26 to node 28 in the
reversed HSI section) and price fall (from node 1 to node 3 in
the original HSI section and node 17 to node 19 in the reversed
HSI section). Obviously, the artificial time series has perfectly
symmetric price motion trajectories since the concave
(convex) rise in the original HSI section has a
corresponding convex (concave) fall in the reversed HSI
section. The identical rising and falling degree distributions
of VGs and IVGs in Figures 1 and 2 reveal that this artificial
time series does have a perfect topological symmetry. Given
the definition of time reversibility, a topologically symmetrical
time series must be a time-reversible one. The reason lies in
that if a time series is topologically symmetrical, the reversed
and original processes should be statistically indistinguishable
with regard to the degree distributions of nodes.

2.2 Concave and Convex Motion Indicators
To formalize the algorithms shown above, we specify a node b in a
time series of length L and set a time scope S (S< L/2). Based on
Eq. 1, node a, which has a link to node b in the visibility-graph
network, should belong to the following set:

A � [(ta, xa)|xa > xb + (xc − xb) tb − ta
tb − tc

, a< c < b< L]. (3)

Employing the three additional conditions described in Section
2.1, the subsets of nodes that connect to node b in the price rise
and price fall trajectories are defined as follows:

AR � {(ta, xa)|(ta, xa) ∈ A, xb > xa and |a − b|≤ S },
AF � {(ta, xa)|(ta, xa) ∈ A, xb < xa and |a − b|≤ S }. (4)

Hence, the degree of node b in the visibility-graph rise and fall
networks reads as

DX
VG(b) � n(AX), with X � R, F. (5)

By definition, DX
VG ∈ [1, 2S], X � R, F. The concave motion

indicator for a node i is proposed to be the following:

IXCC(i) �
DX

VG(i)
S

, with X � R, F. (6)

Note that, for an ideal concave trajectory consisting of L data
points, the concave indicators along the time axis can be sketched
as in Figure 3. For a realistic time series, the distribution of this
indicator measures how perfectly a concave curve could fit the
ideal AR or DF price motion trajectory.

Hence, the mean value of IR,FCC can be a measure of the
smoothness of AR or DF price motions. The higher the IR,FCC ,
the less the zigzag price variation, and vice versa.

In the same manner, the mathematical set that describes the
invisibility-graph network can be written as

A′ � {(ta, xa)|xa < xb + (xc − xb) tb − ta
tb − tc

, a< c < b< L}. (7)

Subsets of the rise and fall trend read, respectively, as follows:

A′
R � {(ta, xa)|(ta, xa) ∈ A′, xb > xa and |a − b|≤ S },

A′
F � {(ta, xa)|(ta, xa) ∈ A′, xb < xa and |a − b|≤ S }. (8)

The degree of node b in the invisibility rise and fall networks is

DX
IVG(b) � n(A′X), with X � R, F. (9)

Convex motion indicators can thus be defined via

IXCV(i) �
DX

IVG(i)
S

, with X � R, F, (10)

the distribution of which measures how perfectly a convex curve
can fit an ideal DR or AF motion price trajectories. Likewise, IXCV
measures the smoothness of the price motion trajectory.

A quantitative measure of the topological asymmetry in price
motion trajectory can be done via the distinguishability between
distributions of the concave and convex rise/fall indicators
defined above. Specifically, denoting the distribution of rise
indicators as P(IRCC,CV ) and the distribution of fall indicators
as P(IFCC,CV ), a topologically symmetric time series should have
P(IRCC,CV ) � P(IFCC,CV ).

On the other hand, the degree of topological asymmetry is
measured by calculating the Kullback-Leibler divergence (KLD)
of P(IRCC,CV ) and P(IFCC,CV ). Stemming from information theory,
KLD is employed as a measure of the distance between two
probability distributions [52, 53]. KLD of concave/convex rise
and fall indicators distributions can be calculated as follows:

D(P‖Q)def ∑P(IRY)log P(I
R
Y)

Q(IFY), with Y � CC, CV , (11)

which equals 0 if and only if P(IRY ) � Q(IFY ) and exceeds 0
otherwise.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5395213

Liu and Chen Analysis of Stock Prices Asymmetry

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3 ASYMMETRY IN TRAJECTORIES OF
PRICE MOTION

Analyses that include the application of VGA and IVGA to
the stock indices of various countries and regions are
presented in this section. Eight data sets from
international stock market indices that span from June 28,
1999, to June 28, 2019, were selected. These include the Hong
Kong Hang Seng, Dow Jones Industrial Average, Japanese
Nikkei 225, London FTSE 100, German DAX, French CAC
40, Shanghai SSE Composite, and Indian BSE. Here, we set
the time scope as S � 262 since the number can be interpreted
as the trading days in a year.

Networks converted from the Hang Seng Index are used to
demonstrate how the concave and convex motion indicators [Eqs
6 and 10] change along with the time evolution of price.

In the upper panel of Figure 4, the long-lasting bubble right
before the subprime mortgage crisis in 2008 is characterized by
clusters of large concave rise indicators. The large concave fall
indicators in the lower panel of Figure 4, however, characterize
the decelerated fall of the index over 3 years after it reaches 18,000
points on March 27, 2000. The large convex rise indicators in the
upper panel of Figure 5 show that the Hang Seng Index exhibits a
decelerated rise from 2009 to 2011 after the subprime mortgage
crisis. The notorious 2008–2009 crisis is represented by the
extraordinarily large values of convex fall indicators in the
lower panel of Figure 5. Both figures show that the concave
rise indicator changes asynchronously with its fall counterpart,
just as the convex fall indicator changes asynchronously with its
rise counterpart.

To illustrate asymmetry in the price motion trajectories for
these eight financial time series, distributions of IR, FCC and IR, FCV are

FIGURE 2 | Application of the modified IVGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data. Note
that perfect reflectional symmetry between DR [nodes 5–8 in (A)] and AF [nodes 6–10 in (B)] is demonstrated via identically distributed degrees in the two networks.

FIGURE 1 | Application of VGA to the daily Hang Seng Index from August 13, 2013, to September 2, 2013, and its time-reversely mirrored data set. Note that the
perfect reflection symmetry between AR [nodes 10–14] and DF [nodes 1–5] is demonstrated via identically distributed degrees in the two networks.
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obtained from the statistics of VG and IVG networks,
respectively. Distributions of rise and fall ICC for the eight
stock indices are shown in Figures 6A–H. As in the small ICC
regime, the rise distributions are similar to the fall distributions in
all cases. However, as ICC becomes larger than 10− 2, the rise
distributions start to deviate from the fall distributions. This
suggests that the AR and DF motions of stock indices are
essentially asymmetric. Similarly, distributions of rise and fall
ICV are displayed in Figures 7A–H. Again, deviation in rise and
fall distributions can be found in the range ICV > 10− 2, indicating
that DR and AF motions of stock indices are essentially
asymmetric, too.

Average values of rise and fall indicators are also calculated for
the eight stock indices. The rise and fall ICC and ICV values are
listed in Tables 1 and 2, respectively. The SSEC AR and DF
motions are smoothest since its IRCC and IFCC rank first in
magnitude among the others in the table. With regard to the
DR motions of stock indices, the Indian market behaves in the
smoothest manner because the IRCV of the BSESN is larger than
those of any other indices. On the other hand, the zigzag AF
appears less frequently in the Chinese stock market than in other
markets, as suggested by the fact that the SSEC has the largest IFCV
in Table 2. These observations are consistent with empirical
evidence that emerging financial markets are less efficient than
developed markets. The presence of fewer price oscillation in
emerging markets implies that investors are more likely to form
a herd.

As the time scale can be an important factor that influences
the topological asymmetry in stock price motion, we measure
the KLD between the rise and fall distributions of ICC and ICV
with different time scopes as S � 100, 130, 160, . . . , 610.
Values of KLD between the rise and fall ICC distributions are
shown in Figure 8 as functions of the time scope for the eight
stock indices, as well as for a purely random time series.
Compared with the KLD of the random series depicted in
blue line dots, the DJIA and BSESN have an impressively

higher value than any other stock indices. This indicates
higher degrees of asymmetry between AR and DF price
motions for these two indices. On the other hand, the
dependence of KLD on the time scope is rather weak outside
of the DJIA, SSEC, and BSESN.

The KL-divergence values between rise and fall ICV
distributions are shown as functions of time scopes in
Figure 9 for the eight stock indices, as well as for the purely
random series. Except in the case of BSESN data, the overall
degree of asymmetry between DR and AF price motions is weaker
than that in Figure 8. However, the dependence of the KL
divergence on the time scope strengthens in all cases except
for the FCHI, FTSE, and Nikkei 225.

In Figures 8 and 9, we note that the KLDs for random series
are close to 0 and vary little as the parameter S changes. This is in
agreement with the postulation that time-reversible time series
are topologically symmetrical. On the other hand, the bigger
KLDs for stock indices shown in the same figures are consistent
with the finding in the previous study on time irreversibility in
stock indices via the HVG method [45], which states that a
chaotic time series results in a bigger KLD between in- and out-
distributions than a Gaussian time series does.

In addition, KLDs of the BSESN are found to be dramatically
higher than those of other stock markets in Figures 8 and 9. In
particular, the observation that the BSESN KLD follows an
increasing trend in Figure 9 indicates that the Indian stock
market index exhibits a long-term, low-speed rise. This is in line
with observations that the Indian stock market was in a bull
market for over 20 years until the coronavirus outbreak. The
KLD results in Figure 8 also show that the DJIA has relatively
large topological asymmetry between AR and DF price motions
during the period from 1999 to 2019, which indicates that the
price is pushed upwards mostly by AF motions in the USA bull
markets. As Yan et al. [43] published, the AR price motion
implies a superexponential growth typically caused by investors’
herding behavior. Over the past decade, there have been several
reports on herd buying behavior of AAPL and MSFT [54, 55]. A
report published on December 4, 2019 [56], said “The Dow
Jones Industrial Average owes Apple and Microsoft corporation
a big thanks.” These reports may explain why AR motions
dominate the movement of DJIA index.

4 ASYMMETRY IN SPEEDS OF PRICE
MOTION

Yan et al. argued that a higher degree number ka indicates a
higher possibility that the time series is growing at a
superexponential rate at time tick a; hence, the degree number
of VG/IVG could be a good indicator for the proximity to the
point of a bubble-and-crash regime shift [43]. However, we
should point out that such an argument may not be accurate
because the high VG degree number can also be a result of a
relatively low-speed and smooth growth as long as the time scope
is large enough. As the price approaches the critical point in stock
markets, the magnitude of fluctuations becomes dramatically
large. Therefore, the correlation between degree number ka

FIGURE 3 | The distribution of concave indicators IR,FCC in an ideal
concave trajectory of length L with time scope S.
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and price return ra should be a more appropriate indicator
showing the possibility for the stock index to grow/drop at the
exponential rate (for AR and DF motions) or at the
logarithmic rate (for DR and AF motions). Comparisons of
these indicators may reveal the asymmetry in the speeds of
price growth and drop.

In order to measure the asymmetry in the speeds of price
motion, the expected price return r over a unit time span is
calculated conditionally on the node degree k in VG and IVG
networks. The conditional expected index return is defined as
follows:

〈r|k〉 � ∑araδ(ka − k)
∑aδ(ka − k) , (12)

where ra � logPa − logPa−1. Pa is the stock index, ka is the node
degree at time tick a, and δ(x) is the Kronecker delta function.
The conditional expected price rise and fall returns on the node
degree in VG and IVG networks are defined as follows in order to
illustrate the asymmetry in the speeds of price growth and price
drop for the eight aforementioned financial time series:

〈rrise|k〉 � ∑aH(ra)raδ(ka − k)
∑aδ(ka − k) , (13)

〈rfall
∣∣∣∣k〉 � ∑a[1 −H(ra)]raδ(ka − k)

∑aδ(ka − k) , (14)

where H(x) is a Heaviside step function [12].

FIGURE 5 | Price motion indicators measure DR and AF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Convex rise and fall indicators are shown in
the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines and indicators are represented using red bars. Here, the time scope is set to
S � 262, which is equal to the number of trading days per year.

FIGURE 4 | Price motion indicators measure AR and DF in the Hang Seng Index from June 28, 1999, to June 28, 2019. Concave rise and fall indicators are shown
in the upper and lower panels, respectively. The Hang Seng Index is plotted using blue lines, while the indicators use red bars. The time scope is set to S � 262, which is
equal to the number of trading days per year.
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FIGURE 6 | Rise and fall IR, FCC distributions for eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese Nikkei 225,
London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.
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FIGURE 7 | Distributions of rise and fall IR, FCV values for the eight stock indices: (A) Hong Kong Hang Seng; (B) Dow Jones Industrial Average; and (C) Japanese
Nikkei 225, London FTSE 100, German DAX, French CAC40, Shanghai SSE Composite, and Indian BSE.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5395218

Liu and Chen Analysis of Stock Prices Asymmetry

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The expected rise and fall returns that are conditioned on the
VG node degree for eight stock indices are plotted in Figure 10,
while those conditioned on the IVG node degree are in

Figure 11. Expected return data points are fitted linearly and
shown as black lines for rise motions and pink lines for fall
motions, respectively, in Figures 10 and 11. The slopes of the
fitting lines show the correlated relationships between expected
returns and degree regardless of whether the trajectories are
concave or convex. The larger the absolute slope, the more
significantly a stock index exhibits a superexponential or a
logarithmic motion.

For concave price trajectories in Figure 10, stock indices can
be classified into four categories. For category I, which includes
the DAX and FCHI, the rise in absolute slope is almost the same
as the fall in absolute slope, and both the rise and fall slopes are
quite small. This implies that AR and DF are not the main forms
in which these two stock markets exhibit bubbles and crashes.
For category II, which includes the DJIA and FTSE, the absolute
rise slope is far smaller than the fall slope. This suggests that it is
possible for the price to decrease at a logarithmic fall rate after
stock crashes in these two markets. For case III, which includes

TABLE 1 | Rise and fall ICC values of eight stock indices.

IXCC HSI DJIA Nikkei FTSE DAX FCHI SSEC BSESN

Rise 0.0275 0.0276 0.0291 0.0241 0.0251 0.0234 0.0326 0.0316
Fall 0.0243 0.0198 0.0248 0.0208 0.0216 0.0217 0.0279 0.0228

TABLE 2 | Rise and fall ICV values of eight stock indices.

IXCV HSI DJIA Nikkei FTSE DAX FCHI SSEC BSESN

Rise 0.0277 0.0276 0.0252 0.0258 0.0278 0.0252 0.0259 0.0304
Fall 0.0245 0.0225 0.0228 0.0234 0.0244 0.0243 0.0260 0.0228

FIGURE 8 | KL divergence between ICC rise and fall distributions as functions of time scopes for eight stock indices and a random series.

FIGURE 9 | KL divergences between ICV rise and fall distributions as functions of the time scope for eight stock indices and a pure random series.
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the HSI, SSEC, and BSESN, the absolute rise slope is larger than
the fall slope. Obviously, these markets are likely to increase via
a superexponential growth rate within bubble regimes. For case
IV, which includes the Nikkei 225, the absolute rise slope and

absolute fall slope are almost the same. However, their values are
bigger than those noted in case I. This means that the Nikkei 225
rise and fall trajectories contain many concave motions in the
bubble-and-crash regime. For the convex trajectories in

FIGURE 10 |Conditional expected index returns for the degree of rise and fall price motions within VG networks for the eight stock indices. Red indicates a rise and
black indicates a fall.
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Figure 11, the absolute fall slopes exceed the rise slopes for all of
the stock indices. This implies that all of the markets crash at
logarithmic rates. We also note that the FTSE and FCHI have

rather large absolute rise slopes, which means that the price
approaches the critical point in the DR way within the bubble
regimes.

FIGURE 11 | Conditional expected index returns based on the degree of rise and fall price motions in IVG networks for the eight stock indices. Red indicates a rise
and black indicates a fall.
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Overall, the findings in this section agree with the previous studies
of gain-loss asymmetry [37–40]. In particular, stockmarket prices fall
faster than they rise in developed countries. The analysis in this study
provides a clearer picture regarding the conclusion made in Ref. [40]
that the rise speed overtakes the fall speed in developing country stock
markets, such as those of India and China. Indeed, the speed of AR
price motion is larger than that of DF motion, while the speed of AF
price motion exceeds that of DR motion, just as in mature markets.

5 CONCLUSION

In this paper, we developed a new concept of financial time series
asymmetry based on the topological distinguishability of price
motion trajectories. A new application of VGA and IVGA was
developed to capture different types of price motion trajectories.
Measures based on VGA and IVGA were employed to analyze
asymmetry in price motion trajectories as well as in price motion
speeds. To analyze topological asymmetry in price motion
trajectories, we compared the distributions of concave and
convex indicators for both rise and fall price motions.
Deviations in rise and fall indicator distributions among VG
and IVG networks showed that AR-DF and DR-AF stock index
motions are asymmetric with each other. To investigate the
influences of time scopes, the relation between KLD and time
scope was also illustrated. Unlike with the random series, the KLD
of stock index rise and fall indicator distributions is significant
and the dependence of KLD on time scopes is strong. This is
especially true for Indian and American stock indices.

Furthermore, we calculated the conditional expected index
return on node degree to show asymmetry in price motion
speeds. The rise and fall conditional expected index returns on
VG or IVG network node degrees were distributed in an
asymmetric manner, which indicates that asymmetry is
embedded in AR-DF and DR-AF price motion speeds when
the stock index approaches a bubble-and-crash regime shift. Our
result was in line with gain-loss asymmetry overall. However, it
offered details regarding why AF motions in emerging markets
(e.g., China and India) contribute to faster rises and slower falls.

As a byproduct of this study, we also get some knowledge of
the relationship between the topological symmetry and the time
reversibility of a time series. By the definition of time reversibility,
we proved, with an artificially combined piece of HSI time series,
that the topologically symmetrical time series must be time-
reversible. On the other hand, by checking the topological
symmetry of a random series, the numerical evidence, which
supports the postulation that a time-irreversible series must be
topologically asymmetric, has also been found.

Future research will include exploration of topological
asymmetry in other empirical data that exhibits chaotic
behaviors, such as sunspots, heartbeats, and earthquake waves.
The relation between topological symmetry and time reversibility
is also to be investigated theoretically. Finally, the most important
task is to explore how topological symmetry among financial time
series affects the time reversibility. In this sense, we must study
the network properties of VG and IVG networks and identify
network characteristics right before large-scale price changes.
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