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In this contribution, we discuss the asymptotic safety scenario for quantum gravity with a
functional renormalization group approach that disentangles dynamical metric fluctuations
from the background metric. We review the state of the art in pure gravity and general
gravity–matter systems. This includes the discussion of results on the existence and
properties of the asymptotically safe ultraviolet fixed point, full ultraviolet-infrared
trajectories with classical gravity in the infrared, and the curvature dependence of
couplings also in gravity–matter systems. The results in gravity–matter systems
concern the ultraviolet stability of the fixed point and the dominance of gravity
fluctuations in minimally coupled gravity–matter systems. Furthermore, we discuss
important physics properties such as locality of the theory, diffeomorphism invariance,
background independence, unitarity, and access to observables, as well as open
challenges.
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1 INTRODUCTION

One of the major challenges in theoretical physics is the unification of the standard model of particle
physics (SM) with quantum gravity. Based on the classical Einstein–Hilbert action, gravity is
perturbatively nonrenormalizable and hence cannot be expanded about a vanishing gravitational
coupling, the Newton coupling. A very promising way out has been proposed by Weinberg [1], the
asymptotic safety scenario. It draws from the theory of critical phenomena developed for investigating
the phase structure of condensed matter and statistical systems. In the language of critical
phenomena, the standard perturbation theory about a vanishing Newton coupling is an
expansion about the free, Gaußian fixed point of the theory and fails since this fixed point is
ultraviolet (UV)-repulsive in the relevant couplings. In turn, the asymptotic safety scenario builds
upon the conjecture that quantum gravity also exhibits a nontrivial UV fixed point, the Reuter fixed
point. This asymptotically safe fixed point should exhibit a finite-dimensional critical hypersurface,
which renders the theory finite and predictive even beyond the Planck scale.

The method of choice for respective investigations is the renormalization group. Most
investigations of asymptotically safe gravity have been performed with the functional
renormalization group (fRG) in its form for the effective action [2]. The fRG approach to
quantum gravity has been initiated by the seminal work [3], where the UV fixed point has been
studied in the Einstein–Hilbert truncation. In this approximation, one retains only two couplings, the
Newton coupling GN and the cosmological constant Λ. Already this basic truncation exhibits a UV
fixed point in four dimensions [3, 4]. This exciting finding has triggered a plethora of works for
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asymptotically safe gravity with and without matter. (We refer the
reader to the textbooks [5, 6] and reviews [7–15]. For very recent
accounts of the challenges for asymptotically safe gravity, see 16,
17. For generic reviews on the fRG, we refer to 18–27.)

The fRG approach to gravity centers around the quantum
effective action of the theory Γ[gμ], hμ]], the quantum analog of
the classical action. Here, gμ] is a generic metric background and
the graviton field hμ] accounts for quantum fluctuations about
this background. The computation of the effective action
Γ[gμ], hμ]] is tantamount to that of the path integral: the
n-point correlation functions of the dynamical fluctuation field
h are given by n derivatives of the effective action with respect to
the correlation field, evaluated on the equations of motion, h � 0
and g � gEoM, that is, on-shell. These correlation functions are
nothing but the moments of the path integral and carry the
dynamics of the quantum theory.

This seemingly introduces a background dependence of the
approach. However, the approach has inherent on-shell
background independence, also related to physical
diffeomorphism invariance. Indeed, the background effective
action Γ[gμ]] � Γ[gμ], 0] is diffeomorphism-invariant. The
latter properties are the backbones of any quantum gravity
approach, and their realization even within approximations is
chiefly important.

The present review outlines the properties and results of the
fRG approach to asymptotically safe quantum gravity in terms of
background and fluctuation correlation functions of gravitons,
shortly baptized the fluctuation approach to gravity. This
approach is based on the observation that the dynamics of
quantum gravity is encoded in the correlation functions of the
fluctuation field h. Reliable computations of observables can only
be done from these correlation functions. This situation calls for a
systematic improvement of the standard background-field
approximation. In this approximation, the correlation
functions of the background metric and the fluctuation field
are identified. We refrain from going into more details here, the
underlying assumptions and challenges are discussed in Sections
5 and 6.

The fluctuation approach resolves these differences, and by
now, it has matured enough to host a large number of results: this
includes investigations of the Reuter fixed point in pure gravity in
a rather elaborate truncation within a vertex expansion with
momentum-dependent two-, three-, and four-point functions;
the computation of the background-effective action for
backgrounds with constant curvature; investigations of the
stability of general gravity–matter systems; investigation of
convergence properties of the expansion (apparent
convergence); and a potential close perturbativeness of the
asymptotically safe UV regime (effective universality). (We
refer the reader to Section 8 for an explanation of the
terminology and respective results.)

In Section 2, we discuss the general quantum field theory
setting of quantum gravity, which we use for the fluctuation
approach. This includes a discussion of the necessary gauge fixing
and background independence of the approach. In Section 3, we
discuss general parametrizations of the full metric in terms of a
metric background and a fluctuation field. The preparation in

Sections 2 and 3 allows us to introduce the fRG approach to
quantum gravity in Section 4 as well as discussing the standard
approximation used in the field, the background field
approximation, in Section 5. The symmetry identities that
relate the dynamical correlation functions of the fluctuation
field and those of the background metric are discussed in
Section 6. These symmetry identities imply the necessity to go
beyond the background field approximation, and thus, we detail
the fluctuation approach in Section 7. With the preparation of the
sections before, we discuss the results of the fluctuation approach
in Section 8 and close with a short conclusion and outlook in
Section 9.

2 QUANTUM FIELD THEORY APPROACH
TO QUANTUM GRAVITY

The present contribution discusses the advances and open
problems of a quantum field theory approach to quantum
gravity that is based on the computation of metric correlation
functions or, more generally, correlation functions of operators in
quantum gravity. Formally, such an approach is based on the
existence of a path integral for quantum gravity, for example,
defined by the integration over the space of all metrics {gμ]}with a
specific classical action for gravity Sgrav, a standard choice being
the Einstein–Hilbert action,

SEH[gμ]] � 1
16πG

∫

d4x
�
g

√ (2Λ − R), (1)

with the abbreviation g � det gμ]. In 1, we have introduced the
Newton couplingG and the cosmological constantΛ. R stands for
the Ricci scalar. In most works in the fRG approach, the theory is
considered in its Euclidean version, which is indicated here by the
missing minus sign in the square root of the determinant. The
expectation value of a diffeomorphism invariant operator O[gμ]]
is formally given by

〈O[ĝμ]]〉 � ∫ Dĝμ] O[ĝμ]] e−Sgrav[̂gμ]]
∫  Dĝμ] e

− Sgrav[̂gμ]] . (2)

Here and in the following, ^ indicates the fields that are
integrated over. The formal definition 2 faces several
problems. Some of them are standard problems of the
quantization of gauge theories, and some of them are specific
to quantum gravity. The latter problems include, for example, the
lack of perturbative renormalizability of gravity for SEH [28–31],
the apparent unitarity problems for higher derivative gravity a la
Stelle [32–34], and the question whether the integration measure
Dĝ includes a sum over all topologies [35]. The latter question is
also an eminent one in lattice gravity (see, e.g., 36–42). Note in
this context that a general measureDμ(ĝ) can always be absorbed
with a change of the gravity action in 2,

Dμ(ĝ) � Dĝμ] e
−ΔSgrav[̂gμ]], (3)

with a potentially nonlocal action ΔSgrav. In the fRG approach, the
task of a finite definition of 2 and its computation is turned into
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the task of solving a flow equation for the quantum effective
action Γ[g, ϕ]. Here, gμ] is the background or reference metric,
and ϕ are fluctuation fields, the expectation values of the
fluctuation field operators ϕ̂. The latter includes the
fluctuation field ĥμ] of the metric, gμ] � gμ](g, h), and potential
matter fields ϕmat and auxiliary fields such as the ghosts cμ of the
gauge fixing in gravity,

ϕ � 〈ϕ̂〉, ϕ � (hμ], cμ, cμ, ϕmat). (4)

In the case of further gauge fields, one may also use
background fields for the gauge fields, which are suppressed
here for the sake of convenience. A reparameterization
gμ](g, h) seemingly introduces a background-metric
dependence of the formulation. This is common to many
approaches to quantum gravity due to the necessity of
defining metric fluctuations. Accordingly, the question of
background independence of the present approach is an
eminent one and is discussed later. Here, we only want to
mention the most common split between the background
metric and the fluctuation field, the linear split,

gμ] � gμ] + hμ]. (5)

This split also underlies most of the results discussed in
Section 8. Note that from now on the lowering and raising of
indices is done with the background metric g, if not specified
otherwise. Equation 5 emphasizes one specific problem with the
background field approach in quantum gravity: while gμ] and gμ]
are metrics, their difference hμ] � gμ] − gμ] is not. Indeed hμ] has
no geometrical meaning at all. This is discussed in more detail in
Section 3.

2.1 Gauge Fixing
In gauge theories such as gravity with the diffeomorphism
(gauge) group or the simpler case of non-abelian gauge
theories, the practical computation of observables 2 faces the
gauge group redundancy in the path integral measure. While this
redundancy is a finite-dimensional one within discrete lattice
formulations, it is an infinite-dimensional one in functional
approaches based on graviton correlation functions. In
particular, it prohibits the straightforward definition of the
propagator, which is key in most functional approaches.

Therefore, most of the latter approaches require a gauge fixing.
(For a brief discussion of gauge-invariant functional approaches,
see Section 6.3.) Put differently, we have to choose a
parametrization of the theory. Typically, this is done with a
linear gauge fixing for the fluctuation field hμ] that carries the
metric degrees of freedom,

Sgf [g, h] � 1
2α
∫

d4x
�
g
√

gμ]FμF]. (6)

A common gauge fixing condition Fμ is given by

Fμ[g, h] � ∇ ]
hμ] − 1 + β

4
∇ μh

]
], (7)

where ∇ is the covariant derivative with the background metric
gμ]. The gauge fixing 7 is introduced in the path integral with
the Faddeev–Popov trick and the Jacobi determinant of the
respective reparameterization. The Faddeev–Popov
determinant ΔFP can be rewritten in terms of a fermionic
path integral with the ghost fields cμ and cμ. The ghost
action related to 7 reads

Sgh[g, ϕ] � ∫

d4x
�
g
√

cμMμ]c
], (8)

with the Faddeev–Popov operator

Mμ] � ∇ ρ(gμ]∇ρ + gρ]∇μ) − 1 + β

2
gσρ∇ μg]σ∇ρ . (9)

Again, ΔFP is the covariant derivative with the background
metric gμ], while ∇ is that with the full metric gμ]. Note thatMμ] is
linear in the fluctuation field h. The backgroundmetric gμ] cannot
be avoided, and both gauge fixing and ghost action depend on it.
This implies that also the quantum effective action depends on
both metrics, the background metric gμ] and the full metric
gμ](g, h), as we shall see later. Note however that the
correlation functions of diffeomorphism-invariant operators
and the solutions to the quantum equations of motion do not
depend on the gauge fixing. Hence, they are background-
independent as explained below.

2.2 Background Independence
Background independence of the construction is more than a
formal property to aim for. We briefly recollect the standard
arguments for background independence in the background field
approach to quantum gauge field theories. We first restrict
ourselves to pure gravity. Seemingly, background dependence
of the path integral is introduced by gauge fixing such as 6 and the
respective Faddeev–Popov determinant ΔFP. The latter is the
Jacobian of the reparameterization of the path integral in
terms of gauge-fixed fields. We emphasize that the gauge
fixing should be rather understood as a specific choice of field
coordinates in the configuration space that facilitates the
integration. The Faddeev–Popov trick is nothing but a
convenient way to introduce these coordinates. In any case, it
leads us to the expectation values of diffeomorphism-invariant
operators defined in 2 for pure gravity with a path integral with
the gauge-fixed action,

〈O[ĝ]〉 � ∫

Dϕ̂ e

−Sgf[g ,̂h]−Sgh[g ,̂ϕ]O[̂g] e−Sgrav [̂g]∫ 
D̂ϕ e

− Sgf[g ,̂h]− Sgh[g ,̂ϕ]− Sgrav [̂g]
. (10)

Note that integration over the diffeomorphism group (from
the Faddeev–Popov trick) has been factored out in the numerator
and denominator. This relies on the diffeomorphism-invariance
of Sgrav,O[ĝ], andDĝ. The full integration measureDϕ̂ in 10 now
also includes the ghost fields, ϕ̂ � (ĥμ], ĉμ, ĉμ). Naturally, the
right-hand side in 10 is independent of the background field
as the left-hand side trivially is (see 2). This background-metric
independence is captured in the Nielsen or split Ward identity
derived from taking a gμ] derivative of 10. Typically, one also
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subtracts the Dyson–Schwinger equation for 〈O〉, which reads
schematically

∫

Dĥ
δ

δĥ
[e− Sgf− Sgh O e− Sgrav] � 0. (11)

This leads us to the Nielsen identity for general
diffeomorphism-invariant operators O[g] with

〈O[ĝ]( δ

δg
− δ

δĥ
)(Sgh + Sgf)[g, ĥ]〉 � 0. (12)

If solving the path integral within approximations, the check
of the Nielsen identity 12 is crucial as it carries the physical
background independence.

The identity 12 constitutes infinitely many relations for
diffeomorphism-invariant correlation functions and can be
rephrased in terms of derivatives of the effective action.
Correlation functions are conveniently derived from the
generating functional Z[g, J] obtained by adding source terms
for the fluctuation fields to the exponent in the path integral,

Z[g, J] � 1
N∫



Dϕ̂ e
−S−Sgf−Sgh+∫

d4x
�
g

√
Jaϕ̂a , (13)

where J � (Jhμ], Jcμ, Jcμ, Jmat) and the normalization N is the
denominator in 10. Lowering and rising the field indices are
done with the metric cab in field space. (For details, see
Supplementary Material.)

In 13, the action S � S[g, ϕ̂] is the “classical” action of the
gravity–matter system under consideration. The gauge fixing
action Sgf and the ghost action Sgh of the full gravity–matter
system may include further gauge fixings of gauge fields. Note
that for gravity–matter systems, the “classical” action may not be
based on the Einstein–Hilbert action of general relativity as
discussed before. More generally also, the matter part may not
simply be that of a standard renormalizable QFT in the presence
of a dynamical metric background.

The generating functional Z[g, J], or rather the Schwinger
functional log[g, J], generates connected n-point correlation
functions of the fluctuation field with

δnlogZ[g, J]
δJa1/δJan

� 〈ϕ̂a1
/ϕ̂an

〉
con
, (14)

where the indices ai stand for Lorentz and internal indices as well
as species of fields. The subscript con in 14 indicates the connected
part of the correlation function. We have included a factor of
1/
�
g
√

in the definition of the functional derivative (see
Supplementary Material). This cancels the

�
g
√

factor in the
space-time integral in the source term of 13. If instead, we
had used

�̂
g
√

in the source term, derivatives with respect to
the current J would generate infinite-order correlation functions.

Note that the generating functional 13 can be expressed with

the right-hand side of 10 with the operator O � e∫ 

d4x
�
g

√
Jaϕ̂a .

However, this operator is neither diffeomorphism-invariant nor
background-independent. For that reason, it cannot be mapped
into a manifestly background-independent form such as 10.
For J � 0, we have O � 1 and Z � 1, which is trivially

background-independent. Accordingly, for J ≠ 0, the gauge-
fixed generating functional Z[g, J] is background-dependent, as
is the effective action Γ[g, ϕ],

e−Γ[g,ϕ] � 1
N∫



Dϕ̂ e
−(S+Sgf+Sgh)+∫ 

d4x
�
g

√ (ϕ̂a−ϕa) δΓ
δϕa . (15)

For the relation 15, we have used that the effective action Γ is
the Legendre transformation of the Schwinger functional
W[g, J] � logZ[g, J]. This leads to

Ja[g, ϕ] � (−1)saδΓ[g, ϕ]
δϕa

, (16)

with the fermion number sa � 1 for fermions and sa � 0 for
bosons. Then, background-independence is achieved on the
fluctuation field equations of motion (EoM) for J[g, ϕ] � 0.
The on-shell vanishing of the currents entails that all
diffeomorphism-invariant quantities are background-
independent on-shell, and this independence is carried by 12.

An important consequence of background-independence is
the equivalence of the solutions gEoM[ϕ] to the fluctuation field
EoM and the background field EoM,

δΓ[g flucEoM, ϕ]
δhμ]

� 0 ↔
δΓ[gbackEoM, ϕ]

δgμ]
� 0, (17)

with

g flucEoM � gbackEoM � gEoM. (18)

If the fluctuation EoM holds, the current J is vanishing, and
hence, the background EoM is nothing but the Nielsen identity
12. In turn, if the background EoM holds, the current J necessarily
vanishes.

3 FIELD PARAMETRIZATIONS

So far, we have not specified the relation between the
background metric and the full metric g(g, h), which defines
the role of the fluctuation field h. While most of the
computations are done within the linear split 5, it is worth
discussing the general case. This not only allows us to achieve a
better understanding of the linear split but also allows us to
discuss the challenges for manifestly diffeomorphism-invariant
formulations.

The importance of the different splits for the path integral has
been already mentioned in the context of the path integral
measure (see the introduction of Section 2 around 2). In the
flow equation approach to quantum gravity detailed in the next
section (Section 4), the discussion of the path integral measure
translates into that of the ordering of fluctuations: the fRG
approach to quantum gravity is based on a Wilsonian
successive integrating out of quantum fluctuations. In its form
of a flow equation for the quantum effective action, Γ[g, ϕ] is has a
simple form in terms of the full field-dependent fluctuation field
propagator G[g, ϕ] of the theory (see 30). This is the connected
part of the two-point function of the fluctuation field,
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G[g, ϕ](x, y) � 〈ϕ̂(x)ϕ̂(y)〉 − ϕ(x)ϕ(y) . (19)

The definition 19 requires a gauge fixing (or
reparameterization), as discussed in the previous section.
Moreover, the Wilsonian cutoff regularizes the spectrum of
the propagator. Consequently, the fRG approach crucially
depends on the split of the full metric g into the background
metric g and the fluctuation field h for two reasons:

i. Ordering of fluctuations: The quantum fluctuations of the
fluctuation field h are successively integrated out and are
ordered in terms of the background covariant Laplacian.
Therefore, the meaning of this ordering depends on the
chosen split.

ii. Relevance of higher order correlations: The physics included
with higher order correlation functions crucially depends on
the chosen split. Thus, a different split orders quantum
fluctuations differently. This leads to potentially qualitative
differences for the convergence of a given approximation
scheme.

In this section, we briefly introduce and discuss the different
splits considered so far in the fRG approach to asymptotically safe
quantum gravity.

3.1 Linear Split
We begin with the standard and simplest split, the linear split (see
also 5). It is given by

g � g + h, with Dĝ � Dĥ. (20)

The Jacobian of this transformation is unity, and the path
integral measures agree. As mentioned before, with such a
definition, the fluctuation field h � g − g is not a metric and
has no geometrical meaning in the configuration space of metrics.
Still, it is the natural choice as it facilitates explicit computations
and the implementation of the quantization of the theory for a
given classical action Sgrav on the space of metrics. Still, its lack of
a geometrical interpretation makes it difficult to discuss the
reparameterization invariance of the theory and the
consequences of background independence. (For more details,
see Section 6.) These intricacies have led to more elaborated splits
based on the fiber bundle structure of the configuration space of
metrics.

3.2 Exponential Split
In recent years, the exponential split has attracted some attention
[43–59]. It is given by

g � gexp h, with Dĝ � JexpDĥ. (21)

The full metric is proportional to the exponential of the
fluctuation field h indicating a Lie algebra nature of the
fluctuation field h. Note that the parametrization 21 restricts
the metric g, and in particular it does not allow for signature
changes. Therefore, it is potentially not a reparameterization of
the path integral in terms of integration over all metrics but a
definition of another candidate for quantum gravity. Moreover,

the assumption may change the integration. In summary, it is
unclear whether a path integral with the exponential split and the
measure Dĥ describes the same quantum theory as that with the
measure Dĝ. This parametrization is also linked to unimodular
gravity (see, e.g., [60–66]).

3.3 Geometrical Split
We briefly describe the geometrical approach to quantum gravity
pioneered by Vilkovisky and DeWitt (see, e.g., [67–70]). In the
fRG approach to gravity, it has been discussed in 21, 71–75. It is a
general framework, and all parametrizations used in the literature
can be understood as different choices for the geometrical
structure of the configuration space of metrics gμ]. This also
allows for a better understanding of theWilsonian integrating out
of qua ntum fluctuations underlying the different splits.

In the linear split, as discussed in Section 3.1, the fluctuation
field h neither is a metric nor does it have a geometrical
interpretation in the configuration space Φ. In turn, in the
geometrical approach, the fluctuation field is constructed such
that it has a geometrical meaning. The backgroundmetric and the
full metric are linked by geodesics with respect to a given
connection in the configuration space. The Vilkovisky
connection ΓV is a specifically useful one: it is constructed
with the demand of maximal orthogonality between the
diffeomorphism fiber in the configuration space and the base
space. If such disentanglement is achieved, the path integral and
the effective action only depend on the propagating degrees of
freedom and the gauge redundancies are completely removed.
This leads to the following conditions,

ΓAVBC � ΓAg BC , ΓAVBc � 0, ΓAVβc � 0, (22)

where

ΓAg BC � 1
2
gAD(gDB,C + gDC,B + gBC,D), (23)

FIGURE 1 | Illustration of the configuration space of metrics with the
Vilkovisky connection. The background metric g and the full metric g are
connected by geodesics. The fluctuation field ha is a tangent vector of these
geodesics at the background metric. hA is the projection on the base
space, while hα is the projection on the diffeomorphism fiber. The effective
action depends only on hA and not on hα.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 5518485

Pawlowski and Reichert Quantum Gravity: A Fluctuating Point of View

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


is the Riemannian metric on the quotient space Φ/G, where G is
the group of diffeomorphisms. This quotient space is labeled with
capital Latin letters A,B,C, . . . ., while the diffeomorphism fiber is
labeled with Greek letters α, β, c, . . .. The full space is labeled with
small Latin letters a, b, c, . . .. (For further details on the notation
and the setup in the context of RG gravity, see e.g., 72.)

The background metric g and the full metric g are connected
by a geodesic. With the Vilkovisky connection, the fluctuation
field is a tangent vector on this geodesic at the background metric
(Gaußian or geodesic normal coordinates). This is illustrated in
Figure 1 and leads to

g � g + h − 1
2
ΓVh2 +O(h3), with DĝxDĥ. (24)

The relation between g and g is nonpolynomial. Still, the
Jacobian does not depend on the fluctuation field, and we have
dropped it in 24. In this setting, it can be shown that the effective
action Γ only depends on the projection hA of the tangent vector
ha onto the base space of the fiber bundle: Γ � Γ[g, hA]. In turn,
the projection of ha onto the diffeomorphism fiber, hα, drops out.
Hence, the effective action is diffeomorphism-invariant as hA is a
diffeomorphism scalar. Trivially, an infrared (IR) regularization
of the hA-path integral is diffeomorphism-invariant.

We close this section with some remarks on the implications of
such a geometrical setup for “physical” gauge fixings, linear and
exponential splits, and locality. The geometrical construction
comes as close as possible to the definition of the
configuration space of a gauge theory in terms of “physical”
gauge-invariant fields and correlation functions. Such a
parameterization is tantamount to a specific gauge fixing as
already mentioned in Section 2.2. We may call such a gauge
fixing “physical,” having in mind that it removes most of the
redundancies related to the gauge group, in gravity that related to
the diffeomorphism group. Note however that the terminology
“physical gauge fixing” is not well-defined and also used
differently in other contexts. In non-abelian gauge theories,
the projection is unique and singles out the Landau–DeWitt
gauge as the “physical” one. In gravity, one is left with a one-
parameter family of gauges with the gauge fixing parameter β
(see 7).

It is worth emphasizing that a gauge fixing condition for the
geometrical field (or Gaußian normal field) ha is different from
that for the fluctuation field h in the linear split. Only for specific
choices of the latter, the maximal disentanglement of the
geometrical construction is manifestly obtained. We also
remark that the linear split is obtained by using a vanishing
connection, hence entirely ignoring the geometrical structure of
the configuration space. The exponential split simply uses the
Riemannian part Γg of the configuration space, hence ignoring
the diffeomorphism group.

Finally, the geometrical construction with the Vilkovisky
connection is highly nonlocal in configuration space, one of
the ensuing problems being caustics and Gribov copies. This
also raises the question of locality in the configuration space and
that of momentum locality of the correlation functions of the
geometrical fluctuation field h. The latter is discussed in detail in

Section 7.4. Both locality issues highlight the challenges for
manifest gauge- or diffeomorphism-invariant functional
approaches to quantum gravity.

4 FLOW EQUATION FOR GRAVITY

With the quantum field theory approach to quantum gravity
outlined in the last sections, we are now in the position to discuss
the flow equation approach to gravity. (For reviews, see 7–17, and
for generic fRG reviews, see 18–27.) As already mentioned in the
introduction of Section 3, the fRG approach to gravity is based on
a successive integrating out of quantum fluctuations. Typically,
this is done with an ordering of quantum fluctuations in
momentum space: the regulator introduces a suppression of
low-momentum fluctuations below an IR cutoff scale p2(k2,
and one RG step with k→ k − Δk relates to the integration of
momentum modes p2 ≈ k2. In gravity, the implementation of
such a momentum cutoff necessitates the choice of a background
metric g, and the (covariant) momenta are those related to the
covariant Laplacian in the background metric, Δg , with the
spectral values p2g .

Remarkably, the flow equation is insensitive to field
reparameterizations of quantum gravity discussed in the last
section or even physically different formulations: For the
derivation, let us assume that a finite generating functional for
correlation functions of the fluctuation field is given. In terms of a
path integral, this is given by 13 with an assumed
diffeomorphism-invariant regularization and renormalization
procedure. More generally, such a finite generating functional
is given by its defining property 14 under the assumption that
these correlation functions are finite. Then, the flow equation can
be readily derived without the necessity of referring to a specific
representation of Z[g, J] such as the path integral. (For detailed
discussion, see 76.) The correlation functions of h depend on g, as
does the generating functional for J ≠ 0 via the gauge fixing (see
Section 2).

The flow equation for the effective action is derived from the
IR regularized generating functional,

Zk[g, J] � exp(− ∫

d4x
�
g
√ δ

δJa
Rab
k

δ

δJb
)Z[g, J], (25)

with a g-dependent IR regulator Rk. Typically, the background
dependence enters the regulator via a background Laplacian and
background covariant derivatives. In flat space, the eigenvalues of
the Laplacian are just momentum squared, p2. As already
discussed above, the regulator suppresses then IR momentum
modes with p2(k2. In turn, UV momentum modes with p2ak2

propagate freely, and the generating functional includes all
quantum contributions generated by these modes.

It is convenient to write the regulator Rk in terms of the
classical or quantum dispersion of the field at hand,

Rab
k (p) � Tab

k (p) rk(x), with x � p2

k2
, (26)
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where momentum-squared is counted in cutoff units. In these
units, the IR regime is given by x(1 and the UV regime by xa1.
The tensor part Tab

k of the regulator is proportional to the classical
or quantum dispersion of the field. Classically, it is the second
derivative of the action with respect to the fields ϕa and ϕb, that is,
(S(2))ab(p). It carries the kinetic information about the field
whose propagation is regularized. In turn, the dimensionless
shape function rk specifies how the propagation is regularized.
In most cases, the latter part is chosen such that the physical
cutoff scales agree for all fields. This is typically achieved with
identical (e.g., for several scalar or bosonic fields) or related shape
functions (e.g., for scalars and Dirac fermions). It can be shown
that such a choice also improves the convergence of generic
expansion schemes [21, 77]. Moreover, rk has to be chosen such
that the IR suppression of momentum modes and the UV decay
of the regularization are guaranteed. These properties lead to the
following asymptotics of the regulator shape function,

lim
x→ 0

rk(x)→∞, (27a)

lim
x→∞

rk(x) � 0. (27b)

The first limit, 27a, guarantees the IR suppression of
momentum modes. For example, for a scalar field in d
dimensions with a quadratic dispersion ∝ p2, a regulator
shape function rk(x→ 0) � 1/x introduces a low momentum
mass k2 for this field. Indeed this is the common choice for
the IR limit, but more singular choices work as well. Eq. 27a also
entails that for k→∞, all momentum modes are suppressed and
the theory approaches the UV-scaling regime. For asymptotically
free theories, this is the classical theory, and for asymptotically
safe theories, this is the nontrivial quantum UV theory.

The second limit, 27b, guarantees that the UV behavior of the
theory is unchanged by the IR regularization. We shall see below
that the limit in 27b has to be approached sufficiently fast. In our
example of a scalar field in d dimensions, the regulator shape
function has to decay with at least min((1/x)d/21/x) for rendering
the IR flows finite. This is also discussed later in more detail below
39. Note that the latter limit is that of a mass or Callan–Symanzik
cutoff. Then, changing k changes a relevant parameter of the
theory and hence changes the theory at all scales. Accordingly, the
CallanSymanzik cutoff is not a localmomentum cutoff. The limit
27b also has another implication: for k→ 0, the limit 27b holds
for all momenta and the cutoff is removed from the theory. We
remark that it is precisely this property, which is at stake for the
Callan–Symanzik cutoff and similar ones.

Subject to the existence of a finite full generating functional
Z[g, J], the regularized generating functional Zk[g, J] is also finite
(and smaller than Z[g, J]). The flow equation for the Schwinger
functional Wk[g, J] � log Zk[g, J] is derived by taking the
logarithmic k-derivative of 25. Schematically, this leads us to

ztWk[g, J] � − 1
2
Tr(δ2Wk

δJ2
+ δWk

δJ
δWk

δJ
)ztRk, (28)

where the RG-“time” t is defined with t � ln k/Λ, and Λ is some
reference scaleΛ. The trace sums over position space, Lorentz and
internal indices, and species of fields. For the sake of a concise

presentation, we have suppressed all space-time and internal
indices including species of fields. We emphasize that for the
explicit form of 28, the order of derivatives is important as J
contains fermionic currents.

The term in parenthesis in 28 is nothing but the full two-point
correlation functions of the theory: the first term is the connected
part, that is, the scale-dependent propagator Gk[g, ϕ] of the
theory (see 19). The second term is simply ϕ2, the
disconnected part. The scale-dependent effective action
Γk[g, ϕ] is defined as the modified Legendre transformation of
the Schwinger functional,

Γk[g, ϕ] � ∫

d4x
�
g
√

Jaϕa −Wk[g, J] − 1
2
∫

d4x
�
g
√

ϕaR
ab
k ϕb, (29)

where J � J[g, ϕ] is given by 16. The source term in (IV) depends
on

�
g
√

, just as the source term in 13. Otherwise, the Legendre
transform would not be linear in the mean field ϕ. Note also that
the classical action of gravity may be unbounded, for example, in
the case of the Einstein–Hilbert action. Then, the Legendre
transformation is defined on a saddle point.

The flow equation for the effective action [2, 78, 79] follows
straightforwardly from 28. The part proportional to ϕ2 is canceled by
the flow of the last term in (IV), and the flow of Γk[g, ϕ] is given by

ztΓk[g, ϕ] � 1
2
TrGk[g, ϕ] ztRk, (30)

where Gk[g, ϕ] is the full field-dependent propagator δ2Wk/δJ2,
and the trace has been defined below 28. It now contains a relative
minus sign for Graßmann-valued fields. With the definition of
the Legendre transformation in (IV), the full propagator is
given by

Gk[g, ϕ] � 1

Γ(0,2)k [g, ϕ] + Rk

. (31)

The flow equation for the effective action depends on the
second derivative of the effective action with respect to the
fluctuation fields, Γ(0,2)k [g, ϕ]. The flow of the latter is derived
from 30, with two derivatives with respect to the fluctuation field
ϕ. This flow depends on itself and the vertices Γ(0,3)k [g, ϕ] and
Γ(0,4)k [g, ϕ]. This leads to a tower of coupled differential equations
for the n-point vertices Γ(n,m)

k [g, ϕ], which is discussed in more
detail in Section 7.1. We use the following notation for
derivatives,

Γ(n,m)
k [g, ϕ] � δn+mΓk[g, ϕ]

δgnδϕm , (32)

for general functionals of g and ϕ. The functional derivative in 32
includes a factor of 1/

�
g
√

(see Supplementary Material).
The different parameterizations of the metric field, discussed

in Section 3, do not influence the flow equation for the effective
action 31, and they only differ by their corresponding expansion
schemes induced by the relations betweenmetric and fluctuations
(20, 21, 24). Still, from the viewpoint of diffeomorphism-
invariance, the different parameterizations differ qualitatively.
While the geometrical approach with the fluctuation field 24 by
construction leads to a diffeomorphism-invariant effective action
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at all cutoff scales, diffeomorphism-invariance is broken in the
linear split (20) and the exponential split 21 at a finite cutoff scale.

For all field parameterizations, a diffeomorphism-invariant
effective action with one metric g is obtained at vanishing
fluctuation graviton field h � 0,

Γk[g,φ] � Γk[g,φ] h�0, with φ � ϕ(h � 0),∣∣∣∣ (33)

the background effective action. Its flow equation is given by 30,
evaluated at vanishing fluctuation field h � 0,

ztΓk[g,φ] � 1
2
TrGk[g,φ] ztRk. (34)

Importantly 34 is not closed: the right-hand side depends on
Γ(0,2)k , the two-point function of the fluctuation fields including
the fluctuation graviton field h, while the left-hand side knows
nothing about h. Hence, the information about δ2Γk/δh2 has to be
obtained separately.

5 BACKGROUND FIELD APPROXIMATION

The background field approximation, introduced in [3, 80] for
YangMills theory and gravity, respectively, is the most commonly
used approximation in the fRG approach to quantum gravity (see
the reviews 7–16). It elevates the diffeomorphism-invariance of
the background effective action to that of the full effective action.
To that end, we write the full effective action in an expansion
about the background effective action in 33,

Γk[g, ϕ] � Γk[g,φ] + Sgf[g, h] + ΔΓk[g, ϕ]. (35a)

The gauge fixing term Sgf is defined in 6 and ΔΓk[g, ϕ � 0] � 0.
In the background field approximation, the last term in 35a is
assumed to be negligible,

ΔΓk[g, ϕ] ≈ 0. (35b)

The underlying assumption is that the dynamics of a gauge
theory is carried by gauge-invariant fluctuations, while ΔΓk
carries quantum deformations of the gauge fixing procedure
and should not drive the dynamics. Then, derivatives with
respect to g and h agree in the linear split and are related in a
simple way in the other parameterizations via 21 and 24.

In the approximation 35 and with the linear split 20, the
second derivatives of the effective action with respect to the
background metric and the fluctuation field agree at ϕ � 0 up
to the gauge fixing term:

Γ(0,2)k [g,φ] � Γ(2,0)k [g,φ] + S(0,2)gf [g, 0]. (36)

Inserting 35 into 30 leads us to a closed and diffeomorphism-
invariant flow for the background effective action Γk[g,φ].

5.1 Properties of the Background
Approximation
It is the simple relation 36 and the manifest diffeomorphism-
invariance of the approximation at all cutoff scales that make the

background field approximation so attractive. A large amount of
the results in asymptotically safe quantum gravity has been
obtained in this approximation, and it is still the commonly
used approximation in the field. This asks for independent checks
of these results and its embedding in systematic expansion
schemes that go beyond it. In the present work, we review
the fluctuation approach (see Section 7), which includes the
correlation functions of the fluctuation graviton field h. The
results in the background field approximation are qualitatively
in line with the results in the fluctuation approach discussed in
Section 8. This confirms—in most cases—the underlying
assumption 35b. Nonetheless, some words of caution are needed.

Despite its seeming manifest diffeomorphism-invariance, the
background field approximation is at odds with diffeomorphism-
invariance and background independence. To understand this
counterintuitive remark, we recall some features of the
background field formalism to standard quantum field
theories, for example, the SM and QCD. The introduction of
the background field to the gauge fixing allows defining a gauge-
invariant background effective action. It is evident from its
introduction that it is an auxiliary symmetry. The background
field can even generate gauge-invariant background effective
actions in theories that explicitly break gauge-invariance. This
is clear from the construction of diffeomorphism-invariant
background effective actions in gravity in the presence of a
background-covariant momentum regulator. In a gauge-
invariant theory without a cutoff, it can be shown that the
physical gauge-invariance of the theory is carried by the
fluctuation field in terms of nontrivial Ward– or
Slavnov–Taylor identities. The underlying transformations are
called quantum gauge/diffeomorphism transformations. This
physical symmetry carries over to the auxiliary background
gauge invariance via nontrivial Nielsen or split Ward
identities. The latter encodes background independence of the
theory and is introduced in Section 2.2. The Slavnov–Taylor and
Nielsen identities for gravity are discussed in detail in Section 6.

In summary, only if the fluctuation correlation functions
satisfy the nontrivial symmetry relations and the Nielsen
identities, the auxiliary background gauge-invariance is
physical. Then, it carries the underlying symmetry, and we
have background independence.

5.2 Regulator Dependence of the
Background Effective Action
In this section, we first argue that regulator choices within the
general class defined with 26 and 27 can be used within the
background field approximation to even change the (non-)
existence or the nature of an asymptotically safe UV fixed
point. This seems to casts some doubts on the reliability of
results obtained in the background field approximation.
However, we then show that the comparison with fluctuation
results and the proper use of Nielsen identities (see Section 6)
suffices to further restrict the general class of regulators such that
it is adapted to the background field approximation.

The regulator term is the origin of the reliability problems of a
naive use of the background field approximation within the fRG
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approach: it generates additional terms in ΔΓk[g, h] in 35a via
the background-metric dependence of the regulator. In the
background field approximation 35b, this background-metric
dependence is elevated to a dynamical one: in the
approximation 36, the fluctuation two-point function Γ(0,2)k is
computed from background-metric derivatives of the
(integrated) flow with the exception of the gauge fixing term.
These derivatives also hit the regulator. Accordingly, we have
added dynamics via the choice of the regulator, and it remains to
be proven in each application that this does not change the
results qualitatively.

This has been discussed early on at the example of scalar
theories and Yang–Mills theory in [81, 82]. In particular, it has
been shown that the one-loop β-function in Yang–Mills
theory can be changed from its universal result with
regulator choices in the background field approximation.
More precisely, it has been shown that for regulators,
Rk(Δs) with spin s � 1 and spin s � 0 covariant Laplacians Δs �
Δs(A) the coefficient ZF of the trF2-term in the effective action
runs at one loop as

ztZF

ZF 1−loop
� n βαs ,1−loop , forRk(x→ 0) ∝

1
xn−1

.
∣∣∣∣∣∣∣ (37)

(For details, refer to 82.) This spoils the universality of the one-
loop β-function in the Yang–Mills theory. If one does not resort
to the background field approximation, the correct one-loop
β-function is obtained.

We now discuss the origin of this peculiar behavior. We follow
the argument in [83] and for the general case including gravity
(refer to [21, 72, 73, 83]). Simply put, we would like to show that
the background effective action at a finite cutoff scale k and in
particular in the limit k→∞ carries no physics without further
restrictions of the regulator. We parameterize the regulator with

Rk � Γ(0,2)k rk(∇ ) (38)

(see also 26). Note that in 38, we have introduced a ∇ -dependent
shape function, which is more general than the
x � Δ/k2-dependent one (defined in 26). Still we use x in a
slight abuse of notation for identifying the UV and IR limits.
As already explained around 26, the shape function rk is a free
function of the covariant derivative with the limits 27. In
particular it has to decay in UV. With the parameterization
38, the flow equation 34 for the background effective action
with g � g reads

ztΓk � 1
2
Tr

1
1 + rk

ztrk + 1
2
Tr

1

Γ(0,2)k

ztΓ(0,2)k

1
1 + rk

rk. (39)

From the first term on the right-hand side of the flow 39, we
deduce that the UV limit of the shape function is constrained:
rk(x→∞)≤ 1/xd+ϵ with x � Δ/k2, as discussed below 27. In turn,
the IR limit x→ 0 of rk can be singular without spoiling the
finiteness of 39. In order to obtain a general background effective
action, we simply demand that rk solves the differential equation,

ztrk � −rk 1

Γ(0,2)k

ztΓ(0,2)k + 2ztYk. (40)

This is a simple differential equation that admits a solution at
least locally (in the flow time t). Note that the UV decay of rk also
constrains the UV limit of Yk with ztYk(x→∞)≤ 1/xd+ϵ.
Inserting a shape function rk of 40 into 39, we arrive at

ztΓk � Tr ztYk(∇). (41)

Equation 41 constrains the IR limit of the function Yk: its flow
ztYk has to be trace class for rendering the flow of the background
effective action finite. If we also assume the trace-class property
for Yk, the order of t-derivative and trace can be swapped.

Apart from these trivial constraints, the choice of Yk(∇) is at
our disposal. Integrating the flow 41 from some scale Λ< k, and
taking the UV limit with k→∞ we arrive at

lim
k→∞

Γk[g,φ] � [ΓΛ − TrYΛ] + TrYk(∇)→TrYk(∇). (42)

The term ΓΛ − TrYΛ is k- and Λ-independent, and the latter
property follows from RG-consistency: zΛΓk ≡ 0 for k≠Λ (see,
e.g., 84). In the last relation in 42, we have assumed that the
effective action is dominated by the UV term TrYk. This
assumption underlies most fixed-point analyses.

We emphasize that the result 42 is exact and no approximation
has been applied. Equation 42 implies that without suitable
restrictions on the regulator function rk, the flow of the
background effective action Γk[g,φ] (for large cutoff scales)
has no physics content at all. Even at one- and two-loop order
in perturbatively renormalizable theories, it does not reproduce
universal results without further restrictions on the regulator.

The IR limit with rk→ 0 � 0 puts a severe restriction onto rk,
which constrains the integrated flow together with the RG
consistency at the initial cutoff scale Λ, zΛΓk�0 � 0. However,
in the UV limit, the restriction

rk→∞ →∞, (43)

does effectively not restrict the UV scaling. The latter is
dominated by the UV-relevant operators that satisfy 43 by
definition. Note that so far, we have discussed the flow of the
background effective action Γk[g,φ] without resorting to
approximations.

The above issues are already present for the full flow and
emphasize the auxiliary nature of the background effective action
at k≠ 0. In particular, no conclusion can be drawn from its
regularity or singular behavior in the UV limit with k→∞.
This situation is further complicated by the background field
approximation. Then, the field dependence that originates from
the regulator term is fed back into the flow equation as dynamical
contributions. As we have discussed above, these contributions
are ambiguous in particular in the UV limit. In conclusion, the
background field approximation, while having the appeal of
simplicity and seeming diffeomorphism-invariance, has to be
applied with great care. To that end, we split the problems
discussed above in their physics origin:

(1) Physical diffeomorphism-invariance and background
independence are carried by nontrivial Slavnov–Taylor
and Nielsen identities of the fluctuation field.
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(2) The background field dependence of the regulator term is
potentially dangerous in the UV and has to be separated.

A first step in the resolution of the issues of the background
field dependence is to monitor the field-dependence that
originates in the regulator. The related equation and
discussion in the Yang–Mills theory and gravity can be found
in 21, 72, 73, 82, 83, 85, 86. (For applications to gravity, see also
57, 87–90.) The equation that monitors this dependence is
given by

Tr⎡⎣δ �
g
√

Rk

δgμ]

δ

δRk

⎤⎦Γk[g, ϕ] � 1
2
Tr

δ
�
g
√

Rk

δgμ]
Gk[g, ϕ]. (44)

Equation 44 allows to disentangle the background-metric
dependence stemming from the regulator from the rest. In the
Yang–Mills example from 37, it can be shown that the regulator-
field dependence is responsible for a contribution
(1 − n)βαs ,1−loop. Subtracting the contribution from the
regulator-field dependence, the universal result is obtained.
Indeed, even without an explicit computation, we can already
infer from 44 that the universal 1-loop β-function of the
dimensionless Yang–Mills coupling is achieved for IR regular
regulators: the projection of the right-hand side of 44 on the
dimensionless term proportional to trF2

μ] can only depend on the
cutoff scale k in the presence of an additional scale. For IR-regular
regulators, such a scale is absent and the k-derivative of 44
vanishes. In turn, IR-singular regulators implicitly introduce a
further IR scale, and the k-derivative of 44 does not vanish. This
explains the structure of the result in 37. We emphasize that the
modification of the dynamics in the background field
approximation via the regulator term is not restricted to IR-
singular regulators. The latter fact is a peculiarity of the universal
one-loop running of the dimensionless Yang–Mills coupling. In
particular, we emphasize that for nonuniversal couplings and
theories with dimensionful couplings such as gravity, the flow of
44 does not vanish for IR-regular regulators.

Based on this analysis it has been suggested in 81, 82, that
within the background field approximation, the corresponding
field-dependence should be subtracted before applying the
approximation Γ(0,2)k xΓ(2,0)k for the right-hand side of the
flow. This idea has been picked up by 91–93 for scalar
theories, f (R) gravity and gravity matter systems. (For more
details, see Section 6.) These works are based on the relation 44,
where one derivative with respect to the background is taken. To
fully resolve ΔΓk in 35a, a further field derivative of 44 is needed.
Furthermore 44 does not comprise the full difference between h
and g derivatives. While the background field correlation
functions are diffeomorphism-covariant due to background
diffeomorphism invariance, the fluctuation correlation
functions satisfy difficult Slavnov–Taylor identities. This is
well-known and well-studied (though not fully conclusively) in
non-abelian gauge theories where one also has access to
respective lattice results, for a recent review and related
references [27]. In turn, the related analysis, while in high
demand, is less advanced in quantum gravity (see also 16, 27).
This is detailed in the next section.

6 SYMMETRY IDENTITIES

Physical observables are diffeomorphism-invariant and
background-independent. The underlying symmetry is
dynamical and is solely carried by the dynamical fluctuation
fields. It is called quantum diffeomorphism invariance and reads

hμ] → hμ] + Lω(gμ] + hμ]), gμ] → gμ]. (45)

The background metric triggers an a priori auxiliary
symmetry, the background diffeomorphism invariance. It is
given by the transformation

hμ] → hμ] + Lωhμ], gμ] → gμ] + Lωgμ]. (46)

Here, Lω is the Lie derivative with respect to some vector field
ωμ, which reads for a rank-two tensor

LωTμ] � ωρ∇
ρ
Tμ] + Tμρ∇

ρ
ω] + T]ρ∇

ρ
ωμ. (47)

Both tranformations, 45 and 46, generated diffeomorphism
transformations on the full metric gμ], so they do not differ on the
functional of gμ]. Moreover, while 46 is an auxiliary symmetry, it
still comprises the information of the dynamical quantum
diffeomorphism symmetry 45 via the Nielsen identities. The
latter carry the background independence of the theory.

Any fRG computation needs to introduce a gauge fixing and a
regularization, which both apparently break diffeomorphism
invariance and (on-shell) background independence. Thus, it
is an important issue in the fRG approach to quantum gravity
to discuss how these properties can be preserved in a
nonperturbative computation. For each symmetry broken by
the cutoff term, we can formulate a nontrivial modified
symmetry identity, which captures the cutoff deformation of
the underlying symmetry and smoothly approaches the
unbroken symmetry identity at vanishing cutoff scale, k � 0.
We now first discuss how the Nielsen identities take care of
background independence and afterward discuss quantum
diffeomorphism invariance due to the Slavnov–Taylor
identities. Note that also in discrete gravity models, the Ward
identities play a crucial role (see 94) for a review of tensor models.

6.1 Background Independence
As discussed in Section 2.1, we always need to split the full metric
into a background metric g and a fluctuation field h. This split
introduces an additional symmetry given by all transformations
of the background metric and of the fluctuation field that leave
the full metric invariant.

g(g, h)→ g(g + δg, h + δh) � g(g, h). (48)

For example, in the linear split 20, we have δg � −δh. This
symmetry is guaranteeing background independence since we
can always find a transformation that changes the background
according to our choice. This symmetry is broken off-shell by the
gauge fixing and ghost action and further broken by the
regularization on- and off-shell. The breaking of the symmetry
is described by the Nielsen (or split Ward) identities [95, 96].
They encode the background independence of the physical
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observables and allow us to restore the symmetry at vanishing
cutoff.

Let us first discuss the Nielsen identities without the regulator.
The Ward identity for the effective action for any symmetry
transformation G is given by

W � GΓ − 〈G(Sgf + Sgh)〉 � 0, (49)

where Sgf and Sgh are defined as in 6 and 8. We apply this to the
transformation of the metric split 48 and obtain the Nielsen
identity NI � 0, with

NI � δΓ
δgμ]

− ∫  〈 δĥ
δgμ]

〉 · δΓδh − 〈⎡⎣ δ

δgμ]
− ∫  δĥ

δgμ]
· δ
δĥ
⎤⎦(Sgf + Sgh)〉, (50)

where hμ] � 〈ĥμ]〉, and the fluctuation field is understood as
function of the full metric and the background metric ĥ(g, g).
For the linear split 20, we have δĥρσ(x)/δgμ](y) � 1/

�
g
√

δ(x − y)
1/2(δμρδ]σ + δμσδ

]
ρ) (see Supplementary Material), and thus,

NIlin � δΓlin
δgμ]

− δΓlin
δhμ]

− 〈⎡⎣ δ

δgμ]
− δ

δĥμ]
⎤⎦(Sgf + Sgh)〉. (51)

The Nielsen identity for the exponential split 21 resembles 51:
there is a nontrivial difference between the background-metric
and fluctuation-field derivatives due to the gauge fixing and ghost
terms. In 17, we have pointed out that at k � 0, a solution of the
background EoM is also a solution of the quantum EoM and vice
versa. This implies together with 51 that the expectation value
〈[δg − δ

ĥ
](Sgf + Sgh)〉 needs to vanish on-shell. This is indeed

nontrivial and does not happen off-shell.
In comparison, for the fully diffeomorphism-invariant

Vilkovisky–DeWitt or geometrical effective action with the split
given by 22, the dependence on the gauge fixing action and the
ghost action is vanishing, and thus, the Nielsen identity reads

NIgeo � δΓgeo
δgμ]

− ∫〈 δĥ
δgμ]

〉 · δΓgeoδh
. (52)

In contradistinction to the linear and exponential split, the g
and h derivatives are directly related.

The Nielsen identities entail that for all metric splits, the
effective action is not a function of the full metric g but
depends separately on the background metric g and the
fluctuation field h. Consequently, the effective action has no
simple expansion in terms of diffeomorphism-invariant
quantities in gμ]. Still, the Nielsen identities relate g and h
derivatives such that on the solution of the Nielsen identities,
the effective action carries background independence and only
depends on one field.

So far, the analysis has been performed in the absence of the
cutoff term, that is, at k � 0. At finite k, the regulator term
introduces a further breaking of the split symmetry 48. The
Nielsen identities turn into modified Nielsen identities,
mNI � 0, that read for a general split

mNI � NI − 1
2
Tr

δ
�
g
√

Rk�
g
√

δgμ]
Gk − TrRkGk

⎡⎣ δ
δϕ 〈 δϕ̂

δgμ]
〉⎤⎦. (53)

Note that in the last term in 53, only the metric fluctuation
h contributes as the other fluctuation fields do not depend on
the background metric. Furthermore, in the linear split, the
last term is vanishing, and consequently, the mNI
simplifies to

mNIlin � NIlin − 1
2
Tr

δ
�
g
√

Rk�
g
√

δgμ]
Gk. (54)

While some of the properties and consequences of the mNI are
theory-dependent, most of them are generic, and much can be
learned about applications in gravity from investigations in
general theories: mNIs have been discussed in detail gravity,
gauge theories, in scalar theories [3, 15, 21, 57, 72, 73, 81, 82,
87–93, 98–106].

There is an important qualitative difference between the
breaking of the metric split symmetry 48 at finite k and at
k � 0. We have already discussed in Section 2.2 that the
Nielsen identity at vanishing cutoff scale, k � 0, encodes
background independence, manifested in the equivalence of
the solutions of the background and fluctuation EoMs, 17. At
finite cutoff scale, k≠ 0, we necessarily have background
dependence, as the quantum fluctuations have to be ordered
in a specific background. This is also manifest in the missing
equivalence of the background and fluctuation EoMs, the
respective solutions do not agree,

δΓk[g flucEoM, 0]
δhμ]

� 0 � δΓk[gbackEoM, 0]
δgμ]

, g flucEoM ≠ gbackEoM. (55)

(For a detailed discussion, see 97, 106, 107). The difference
between the solutions can be parameterized by a term
proportional to the regulator Rk, which is most easily seen in
the modified Nielsen identity in the geometric approach, 52
and 53.

The difference between g flucEoM and gbackEoM was explicitly
computed in 97, 107 for backgrounds with constant curvature.
The ansatz for the background effective action is

Γk[g] � ∫ 

d4x
�
g
√

k4f (r) � V~f (r), (56)

where V is the space-time volume and r � R/k2 is the
dimensionless background curvature. Thus, the background
EoM becomes

Γ(g)k [g, 0] ∼ rf ′(r) − 2f (r) � 0, (57)

which is displayed in the right panel of Figure 2 at the UV fixed
point for different numbers of scalar fields Ns. The ansatz for the
fluctuation one-point function reads

Γ(htr)k [g, 0] � ∫

d4x
�
g
√

k3f1(r) � V
k
f1(r), (58)

and thus, the quantum EoM is simply
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Γ(htr)k [g, 0] ∼ f1(r) � 0. (59)

This is shown in the left panel of Figure 2 at the UV fixed point
for different numbers of scalar fields Ns.

The background EoM does not display a solution in the
whole investigated region, while the quantum EoM has two
solutions, a minimum at negative curvature and a maximum at
positive curvature. For a larger number of scalar fields, these two
solutions merge. However, in this regime, the approximation
lacks reliability due to large values of the graviton anomalous
dimension. Importantly, Figure 2 manifests in explicit
computation the difference between the background and
quantum EoM, 55. The background EoM was also
extensively investigated in the background field
approximation with different choices of regulator and
parameterization. For example, in 108, the linear split was
used and a solution at large negative curvature was found.
However, in 109, 110, two further solutions at positive
curvature were found due to a different choice of the
regulator. A solution at positive curvature was also found in
111 and with the exponential parameterization in 51.

In 106, a modification of the fRG equation was proposed.
There, the effective action was defined as the Legendre transform
of a normalized Schwinger functional,
Ŵk[g, J] � log(Zk[g, J]/Zk[g, 0]). This modification implies
that the solutions to the quantum and background EoMs
agree even at a finite cutoff scale. This does not imply that the
modified effective action is background-independent at finite k
since there are differences in the higher order correlation
function. However, it allows for constructing improved
background field approximations, which might allow resolving
some tensions between background and fluctuation results.

6.2 From BRST to Diffeomorphism
Invariance
While the auxiliary background diffeomorphism invariance 46
remains unbroken, the physical quantum diffeomorphism

invariance 45 turns into a BRST symmetry due to the gauge
fixing, which is then further broken by the regulator. The related
symmetry identities are called (modified) Slavnov–Taylor
identities [(m)STI] [112, 113]. They encode physical
diffeomorphism invariance. We sketch the main ideas of the
derivation and apply them to gravity.

In case of the linear gauge fixing condition 7, the generator of
BRST transformation (or BRST operator) denoted by s, including
the Nakanishi–Lautrup field λμ, is given by

s(gμ], hμ], cμ, cμ, λμ, ϕmat) � (0,Lc(gμ] + hμ]), cρ∇ ρ
cμ, λμ, 0, sϕmat).

(60)

In (B), the vector field ωμ in the Lie derivative 47 is given by
the ghost field, ωμ � cμ. (For more details on the setup and the
condensed notation used below, see 21). The Nakanishi–Lautrup
field λμ transforms trivially under the BRST transformation,
sλμ � 0. The classical gauge-fixed action including the gauge
fixing and the ghost action is invariant under this transformation,
s(Sgrav + Sgf + Sgh) � 0. Furthermore, s is a nilpotent operator
with s2 � 0.

For the derivation of the STI, we include a source term Qasϕ̂a
for the BRST variations of the fields in the generating functional.
The Schwinger functional now reads

eW[g,ϕ,J ,Q] � ∫

Dϕ̂ e
−Stot+∫ 

d4x
�
g

√ (Ja ϕ̂a+Qasϕ̂a), (61)

where Stot � Sgrav + Sgf + Sgh. The STI follows from the BRST-
invariance of generating functional,

∫

s(Dϕ̂ e
−Stot+∫ 

d4x
�
g

√ (Jaϕ̂a+Qasϕ̂a)) � 0. (62)

The source term Jaϕ̂a is the only BRST-variant term. The
BRST operator s commutes with bosonic sources and anti-
commutes with fermionic sources. This leads us to
sJaϕ̂a � Jacbasϕ̂b, where the metric cba carries the minus sign
for the fermionic terms (see Supplementary Material).

FIGURE 2 | Displayed are the potential of the one-point function and the derivate of the background potential for different numbers of scalar fields at the fixed point,
as defined in 57 and 59. A zero in these functions indicates a solution to the quantum and background EoM, respectively. While the former always has two solutions, a
minimum at negative curvature and a maximum at positive curvature, the latter shows no solution at all. The figures are taken from 97.
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With these properties, we obtain the STI for the Schwinger
functional,

∫

Dϕ̂∫

d4x
�
g
√

Jacba(sϕ̂b) e−Stot+∫ 
d4x
�
g

√ (Ja ϕ̂a+Qasϕ̂a)

� ∫

d4x
�
g
√

Jacba
δ

δQb
eW[g,ϕ,J,Q] � 0. (63)

This identity can be re-expressed in terms of the effective
action. (See 21 for details.) Here, we just state the result for the STI
in the absence of the cutoff term,

STI � ∫

d4x
�
g
√ δΓ

δϕa

δΓ
δQa

� 0. (64)

This equation is known as the quantum-master equation. The
BRST variation of the effective action is given by
δΓ/δQa � 〈sϕ̂a〉. These variations can be interpreted as
generalized vertices of the theory.

Equation 64 encodes diffeomorphism invariance at k � 0
where the regulator vanishes. At finite cutoff scale, an
additional regulator contribution has to be taken into account,
and we are led to the mSTI,

mSTI � STI − TrRk
δ2Γk
δQδϕ

Gk � 0. (65)

Some of the properties of the mSTI are theory-dependent, but
most of them are generic: mSTIs in the presence and absence of
background fields in gravity and gauge theories have been
discussed in detail in [3, 15, 21, 22, 57, 72, 73, 81, 82, 87–93,
98–106, 114‒132].

In summary, we have three symmetries:

(1) The auxiliary background diffeomorphism invariance 46,
which remains unbroken.

(2) The quantum diffeomorphism invariance 45, which
describes physical diffeomorphism invariance. It is broken
and encoded in the mSTI 65.

(3) The split symmetry 48, which guarantees background
independence. It is broken as well and encoded in themNI 53.

The relations between background and fluctuation correlation
functions are summarized in Figure 3. The relation between two
fluctuation correlation functions can be expressed either with an
mSTI or with a combination of mNI and background
diffeomorphism invariance. However, it should be noted that
in a truncated nonperturbative computation these two
possibilities of relating fluctuation correlation function do not
agree with each other. Nonetheless, it can be used to check the
error of the truncation. (See Section 7.1 for more details.)

Last but not least, the flow of mNI and the mSTI is
proportional to itself, respectively. This is conveniently
expressed in terms of the flow equation for composite
operators, derived in [21, 128, 133]. Schematically, it reads

ztOk[g, ϕ] � −1
2
TrGk ztRk Gk O(0,2)

k [g, ϕ]. (66)

The operator O(0,2)
k is contracted with Gk ztRk Gk in the trace.

The set of composite operatorsOk[g, ϕ] with the flow 66 includes
general correlation functions Z(0,n)[g, J[g, ϕ]] with their
disconnected parts as well as more general functions of the
field-dependent source such as J[g, ϕ] � Γ(0,1)k [g, ϕ]. In the
most general case of a functional with an explicit cutoff
dependence, further terms enter 66 (see 21). An educative
example is Γ(0,1)k : inserting it into 66 leads to the fluctuation
field derivative of the flow equation 30. An instructive example
for the case of general correlation functions, and the necessity of
including the disconnected terms is the full two-point function
Gϕ1ϕ2 + ϕ1ϕ2. Equation 66 has been used in Yang–Mills theories
for the traced Polyakov loop observables [134] and in gravity for
the study of the renormalization and scaling of composite
operators [135–138].Importantly, the set of composite
operators {Ok} includes modified symmetry identities, that is,
Symk � mSTI,mNI, . . . (see 21 and also 82, 118, 119, 139).
Hence, the flow of the symmetry identities reads schematically

ztSymk[g, ϕ] � −1
2
TrGk ztRk Gk Sym

(0,2)
k [g, ϕ]. (67)

Equation 67 implies that once we have solved these identities
at a scale k, then the identities are satisfied at all scales. However,

FIGURE 3 | Displayed are the relations between background and fluctuation correlation functions in terms of symmetry identities. The background diffeomorphism
symmetry 46 remains unbroken and trivially connects background correlation functions. The split symmetry (48) is encoded in the modified Nielsen identity (mNI) (53) and
relates background correlation functions with fluctuation ones. The quantum diffeomorphism symmetry (45) is described by the modified Slavnov–Taylor identity (mSTI)
65 and relates fluctuation correlation functions. For the purpose of illustration, we have assumed that Γk � Γk[g, h,φ] depends on the background metric g, the
metric fluctuation h, and a scalar field φ. The notation Γ(n1 ,n2 ,n3 )k is then defined as in 32.
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this only holds for untruncated flows or truncations that are
compatible with 67. (More details can be found in Section 7.1.)

6.3 Challenges for
Diffeomorphism-Invariant Flows
Gauge-invariant approaches to quantum field theories have
received much attention over the decades both in perturbation
theory and beyond. Such formulations also have met considerable
challenges, except for lattice gauge theories that are based on link
variables formulated in the gauge group. In turn, perturbation
theory and nonperturbative functional approaches are based on
correlation functions and in particular on the propagator of the
algebra-valued gauge field. (For reviews on lattice approaches to
quantum gravity see, e.g., 140–144).

Gauge-invariant functional formulations are based either on
gauge-invariant or gauge-covariant variables such as the geometrical
formulation, the field strength formulation, or Wilson line
formulations similar to lattice gauge theories. Implementations in
the flow equation approach range from generalized Polchinski
equations with gauge-covariant kernels for the Wilson effective
action [145–156] and its recent manifestations [157–159], over
the geometrical or Vilkovisky–DeWitt flows for the effective
action [21, 71–74], to a recent suggestion for a gauge-invariant
flow for the effective action [160–164].

Most of these approaches rely explicitly or implicitly on the
definition of projection operators on the subspace of the dynamical
degrees of freedom. Typically, this is achieved by a gauge fixing, but
the notation of a projection is far more versatile. The appropriate
definition of this projection and the respective geometrical
structure of the configuration space is at the root of the
geometrical construction. This has been discussed in Sections
3.3, 6.2, and 6.3, and we refer to the discussions there. The
notable nonlocality of the projections both in field space as well
as momentum space is an inherent property of the construction of
gauge-invariant subspaces. Consequently, it should be considered
an inherent feature of such a construction. This inherent
nonlocality may be buried in functional self-consistency
relations, but it is present explicitly or implicitly without any doubt.

In any case, the situation calls for self-consistency checks of the
final formulations of gauge-invariant or diffeomorphism-invariant
flows. This necessity has been discussed already in 165: there the
terminology of complete and consistent flows was introduced. The
former flows generate all quantum fluctuations from a given classical
action, while the latter flows generate a well-defined subset of
quantum fluctuations from a given—partial—effective action. A
well-known example for the latter is thermal flows, which only
generate thermal fluctuations from the full quantum effective
action at vanishing temperature. In 165, 166, an important and
simple consistency check for flow equations has been suggested: any
complete flow equation must generate the complete perturbation
theory upon iteration from the given classical action. While one-loop
perturbation theory in the fluctuation field is trivially achieved within
one-loop exact flow equations, two-loop perturbation theory provides
a nontrivial necessary, while not sufficient, consistency check.

These checks for diffeomorphism-invariant fRG approaches
have been passed for the Wilsonian approach [145–156] or are

trivial for the geometrical effective action approach [21, 71–74].
It is a highly relevant and interesting question how the more
recent proposals [158–164] fare in such a self-consistency check.
Respective investigations either confirm the completeness of the
approaches or may show their consistency, that is, they may
integrate out a well-defined subset of quantum fluctuations.
Finally, for potentially consistent flows, such an investigation
may enable the construction of nontrivial two-loop consistent
extensions. We emphasize that such an extension does not
simply pass a two-loop test but more importantly allows for
two-loop resummed nonperturbative approximations. The
latter set of approximations certainly live up to the self-
consistency of other state-of-the-art computations in
asymptotically safe quantum gravity, while having the benefit
of inherent diffeomorphism invariance.

7 FLUCTUATION APPROACH

In the last sections, we have detailed the need for an fRG approach
to quantum gravity that goes beyond the background field
approximation and that allows satisfying the nontrivial
symmetry identities, the mSTI 65 and the mNI 53. For
general metrics gμ], this requires to solve the flow equation 30
for the two-field action Γk[g, h]. It is already a formidable task for
the one-field flow in the background field approximation
discussed in Section 5. Indeed, already in scalar theories, one
has to resort to approximations such as the derivative expansion
or the vertex expansion, and this is no different in gravity. As
already discussed, while the quantum dynamics of asymptotically
safe gravity is generated and carried by the fluctuation correlation
functions, it is the diffeomorphism-invariant background
effective action Γ[g] that allows for a more direct physics
interpretation. The latter is extracted from the flow 34 that
solely depends on the fluctuation two-point function
Γ(0,2)[g, 0]. The flow of the latter depends on higher order
fluctuation correlation functions (see Section 7.1).

This suggests the expansion of the effective action Γk[g, h] in a
vertex expansion of the fluctuation field h. Importantly, the vertex
expansion in the fluctuation approach is a systematic
approximation scheme, the strength and convergence of which
have been shown in many nonperturbative approaches, and most
notably in the fRG approach to QCD [167–171]. In the spirit of
“toy” theories that can teach us something about technical
properties and convergence, we consider non-abelian gauge
theories as one of those standard quantum field theories that
are as close as it gets to gravity. The vertex expansions fully
disentangles the contributions from the background metric g and
the fluctuation field h and reads for the effective action,

Γk[g, ϕ] �∑
n�0

∞ 1
n!
∫

Γ(0,ϕa1 ...ϕan)k [g, 0] · ϕa1
. . . ϕan

. (68)

Evidently, if the expansion coefficients Γ(0,ϕa1...ϕan)k are
evaluated for general g, we have a simple access to the full
effective action. For example, if we choose g � g flucEoM, the
solution of the fluctuation EoM in 55, we have chosen an on-
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shell expansion point. Accordingly, if we are interested in on-shell
physics, only small fluctuations h should be relevant. In turn, if we
choose another expansion point, for example, for technical
reasons, it is very important to assess whether on-shell physics
is in the radius of convergence of the expansion. This will be
discussed in more detail in Section 7.2.

7.1 Hierarchy of Flow Equations
The background field approach leads to an extended hierarchy of
flow equations. We first note that the background flow equation
ztΓk[g] (34) depends on the fluctuation two-point function

Γ(0,2)k [g, 0] in a general background. The knowledge of the
latter allows us to determine Γ[g] and is tantamount to the
determination of the full propagator of the theory in a general
background. However, the flow of the two-point function

ztΓ(0,2)k [g, 0] depends on Γ(0,m)
k [g, 0] with m � 2, 3, 4. This

continues for higher n-point functions and leads to an infinite
tower of coupled equations,

Γ(0,m)
k [g, 0] � fRG0,m[g, {Γ(0, 2≤ j≤m+2)

k [g, 0]}]. (69)

In other words, we need Γ(0,2)k [g, ϕ] for general fluctuation
fields for solving the flow equation of the background effective
action. For most interacting quantum field theories, the task of
resolving the full field dependence of the effective action is
beyond reach. Already in scalar theories, one typically resorts
to the computation of the full effective potential as well as
additional vertices or momentum dependencies. In gravity, the
full potential of the background curvature R has been
investigated: f (R) as well as potentials of tensor invariants [49,
51, 54, 59, 97, 107–111, 172–183]. Apart from this, as in other
theories, explicitly or implicitly, a vertex expansion has been used.
This entails a further expansion of 69 in powers of the
background field and leads us to the hierarchy

Γ(n,m)
k [g, 0] � fRGn,m[g, {Γ(i≤ n, 2≤ j≤m+2)

k [g, 0]}]. (70)

Equation 70 is the full hierarchy of integrated flow equations
to solve for quantum gravity. While its solution in terms of the
vertex expansion has been baptized the fluctuation approach, it
simply is the full problem at hand.

Apparently, 70 constitutes a system of equations for a two-
field effective action. However, as discussed in Section 6,
background independence at vanishing cutoff, k � 0, encoded
in the Nielsen identities and carried over to the mNIs at finite
cutoff scale k turns the effective action into a one-field effective
action. In terms of the vertex expansion, this information is given
by the mNI (53) for (n,m)-point functions,
Γ(n,m)
k [g, h] � Γ(n−1,m+1)

k [g, h] +mNIn,m[g, {Γ(i≤ n−1,j≤m+1)[g, h]}].
(71)

This leaves us with two towers of functional relations. While
the first one (70) describes the full set of correlation functions, the
second one (71) can be used to iteratively solve the tower of mixed
fluctuation background correlations on the basis of the

fluctuating correlation functions {Γ(0,m)}. In both cases, we can
solve the system for the higher order correlations of the
background on the basis of the lower order correlations. If we
use 71 with an iteration starting with the results from the flow
equation for {Γ(0,m)[gsp, h]} for a specific background gsp, this
closure of the system automatically satisfies the NI. Accordingly,
any set of fluctuation correlation functions {Γ(0,m)[gsp, h]} can be
iteratively extended to a full set of fluctuation background
correlation functions in an iterative procedure.

An important feature of the fRG equations is that in the
Landau limit of the gauge parameter α→ 0 in 6, the flow
equations for the transverse vertices Γ(0,n)k,⊥ are closed: the
external legs of the vertices in the flow are transverse due to
the transverse projection of the flow, the internal legs are
transverse as they are contracted with the transverse
propagator. Schematically, this reads for the integrated flows 70,

Γ(0,n)k,⊥ � fRG(0,n)
⊥ [{Γ(0,m)

k,⊥ }]. (72)

In other words, the flow equation system of transverse
fluctuation correlation functions is closed and determines the

FIGURE 4 | Diagrammatic representation of the flow equations of the
fluctuation n-point functions up to n � 4. Graviton propagators are depicted
with a blue double line and ghosts with a red dotted line. The crossed circle
represents a regulator insertion. The flows can be augmented
straightforwardly with contributions from matter fields. The figure is taken
from 184.
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dynamics of the system. In the fluctuation approach, the
transverse system of graviton correlation function has been
solved up to the four-graviton vertex [184]. A diagrammatic
depiction of the system of flow equations is given in Figure 4, and
a description of the respective results can be found in Section 8.

In turn, the flow equation system for longitudinal fluctuation
correlation functions is not closed, and the transverse correlation
functions Γ(0,n)k,⊥ feed into it,

Γ(0,n)k,L � fRG(0,n)
L [{Γ(0,m)

k,⊥ }, {Γ(0,m)
k,L }]. (73)

Note that {Γ(0,n)k,L } is the complement of the set of purely
transverse correlation functions, so it consists of correlation
functions with at least one longitudinal leg. On the other hand,
the mSTIs are also nontrivial relations for the longitudinal
correlation functions in terms of transverse vertices and
longitudinal ones. This leads us to the schematic relation,

Γ(0,n)k,L � mSTI(0,n)[{Γ(0,m)
k,⊥ }, {Γ(0,m)

k,L }]. (74)

(See 185 for non-abelian gauge theories.) In consequence, the
mSTIs provide no direct information about the transverse
correlation functions without further constraint. In the
perturbative regime at large momenta, this additional
constraint is given by the uniformity of the vertices. In turn,
in strongly correlated regimes such a general constraint is absent.
Indeed, one can show that the confinement property in a
Yang–Mills theory in a covariant gauge necessitates the
absence of uniformity of the vertices at low momenta. (For a
detailed discussion in non-abelian gauge theories, see 168.)

Instead, we can simply use 74 for a given set of transverse
correlation functions for constructing a BRST-invariant solution,
which signals diffeomorphism invariance. For a given finite set of
transverse correlation functions, generically such a solution can
be found by integrating the flow (67). However, it may be
nonlocal. The existence of BRST-invariant solutions for a
general transverse input emphasizes the fact that the
derivation of diffeomorphism-consistent solutions is not
necessarily the hallmark of a good truncation. However, the
comparison of 74 and 73 is a further nontrivial constraint on
longitudinal correlation functions. Its evaluation is complicated
by the fact that the solutions of two different functional relations
for the same set of correlation functions do not agree in general in
nontrivial truncations. Furthermore, it is very difficult to provide
a measure for the closeness of the solutions. (For a related
discussion in non-abelian gauge theories, see the recent review
[27] and references therein.)

In summary, the evaluation of diffeomorphism invariance and
self-consistency constitutes an intricate challenge. One has to
utilize all the properties and relations discussed above. This holds
for all fRG approaches to quantum gravity and not only to the
fluctuation approach: only local BRST-invariant solutions should
be considered physical, and the evaluation of locality and BRST
invariance or their absence is intricate.

7.2 Flat Expansion Is a Curvature Expansion
As briefly mentioned in the introduction of this section, the choice
of the background metric is important for the convergence of the

vertex expansion. However, an evaluation of the flow equations for
Γ(0,n)k [g, 0] for generic metrics is yet an unresolved technical
challenge. Even flows for spherically symmetric backgrounds
already pose a formidable technical challenge that has only
been solved recently within further approximations that hold
for small curvatures [97, 107]. Therefore in most applications,
one resorts to a curvature expansion in powers of the curvature.
Such an expansion is tantamount to an expansion about the flat
background with vanishing curvature,

g � 1, (75)

the Euclidean analog of the Minkowski metric. This has been
baptized the flat expansion. With the flat background (75),
Fourier transformations can be performed, and we are led to
correlation functions Γ(n,m)

k (p1, . . . , pn, pn+1 . . . , pn+m) in
momentum space. This gives access to the powerful
techniques of standard quantum field theory that allows
solving the flow equations for general vertex functions in
momentum space.

This expansion encompasses the standard curvature
expansion with the additional benefit that generic covariant
momentum dependences are systematically accessible. (For a
respective brief discussion, see 184.) To understand this
statement, we sketch the curvature expansion of the
background field approximation with standard heat kernel
techniques and the flat expansion in momentum space. We
shall see that both lead to the same flow equations for the
expansion coefficients of diffeomorphism-invariant operators.
We expand the full one-field effective action in local curvature
invariants and covariant derivatives

Γk[gμ]] � 1
16πGk

∫ 

d4x
�
g

√ (2Λk − R) + O(R2
μ]ρσ ,∇

2). (76)

In 76, the first term on the right-hand side is the
Einstein–Hilbert action with a scale-dependent cosmological
constant and Newton coupling. The second term includes all
other curvature invariants starting with R2, . . .. Covariant-
derivative terms, schematically given by ∫ �g√

R∇2R and terms
with higher-orders in covariant derivatives ∇, kick in at the next
order and beyond. Note that the scale-dependent
Einstein–Hilbert action without higher order terms is still a
common approximation for the pure gravity sector in
particular in many applications to gravity–matter systems.
(For gravity–matter systems beyond the Einstein–Hilbert
truncation see, e.g., 58, 65, 186–188.)

Similarly to 76, the flow of the background effective action can
also be expanded in terms of local curvature invariants and
covariant derivatives. This leads us to

1
2
TrGkztRk [gμ]] � 1

16π
∫ 

d4x
�
g

√ (2a1,k − aR,kR)
+O(R2

μ]ρσ ,∇
2), (77)

with expansion coefficients aO,k of a given operator O. In
particular, we have a1,k � aR0 ,k. By comparing 76 and 77, we
arrive at the flow equations
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zt
1
Gk

� aR,k, zt
Λk

Gk
� a1,k. (78)

Evidently, any complete projection procedure produces the
complete set of flow equations of all expansion coefficients aO,k.
We emphasize that if the operator basis is overlapping, the flow of
the effective action is unique, while the flow of the set of aO,k

is not.
The standard procedure for projecting onto the flow of the

cosmological constant and the Newton coupling, as well as that
of higher order invariants, is by heat kernel techniques or
explicit summation over the spectrum of the covariant
Laplacians, in conjunction with the Euler–Maclaurin formula
(see the reviews [7–16]). As no other local diffeomorphism-
invariant operators are present at this order, the flow of Gk and
Λk depends only on the given approximation of Γ(0,2)k on the
right-hand side of the flow. As already indicated, at higher
orders of the curvature expansion, more and more invariants are
present, and the projections on one single invariant only give
unambiguous results if a complete basis of invariants is chosen.
In fermionic systems, this is the well-known Fierz ambiguity.
(See the review [26] for an extended discussion.) Consequently,
at higher orders of the expansion, one typically has to deal with
two truncation artifacts: first, we always have to deal with the
truncation of Γ(0,2)k , and second, we have to deal with incomplete
bases. We note that only very recently the second order has been
mapped out (see 189). This emphasizes that we have to deal with
an intricate technical challenge.

Now, we derive the flows in 78 within the flat expansion
scheme. To that end, we note that the only local diffeomorphism-
invariant term with no derivatives is the volume term V � ∫

x

�
g

√
.

Moreover, the only local diffeomorphism-invariant term with
two derivatives is the curvature scalar term. This implies that we
have a unique projection at the flat expansion point 75,
schematically written as

− 8π
V ztΓk[g]|g→ 1

� zt
Λk

Gk
� a1,k,

16πzp2ztΓ(2)k,TT[g]|g→ 1
� zt

1
Gk

� aR,k,

(79)

where the subscript TT refers to the projection and normalization
on the traceless-transverse part. (More details can be found, e.g.,
in 184.) Equation 79 simply is 78, as the flat expansion scheme is
a consistent projection scheme.

This procedure can be extended beyond the set of local
diffeomorphism-invariant operators:

(1) Take general derivatives with respect to hμ](p).
(2) Contract with all possible Lorentz tensor structures.
(3) Take derivatives with respect to momenta.

In particular, apart from all local diffeomorphism-invariant
term, the expansion captures general covariant momentum
dependences including potential IR-singular terms and
topological terms. A diffeomorphism-invariant example for the
former is the Polyakov action in two dimensions,

− 1
96π
∫

d2x
�
g

√
R
1
ΔR (80)

(see, e.g., 190, 191). IR-singular terms are naturally covered by
taking into account full momentum dependences of full vertices
or momentum channels of specific tensor structures. This has
been used extensively in gauge theories such as QCD not only
within the fRG approach but also in other functional approaches
based on Dyson–Schwinger equations or n-particle irreducible
hierarchies.

A relevant example for a topological term in gravity is the
Gauß–Bonnet term with the density

E[g] � 1
32π2

(R2 − 4Rμ]Rμ] + Rμ]ρσRμ]ρσ). (81)

Metric variations of the local density E[g] are nonvanishing to
all order of metric derivatives. In turn, its space-time integral
χ[g] � ∫ d4x �

g
√

E[g] is the Euler characteristic of the manifoldM
with χ[g] ∈ Z. Consequently, smooth metric variations of χ[g]
(no change of the geometry) are vanishing. Note however that
functional derivatives are distributional and do not fall into the
class of smooth variations. Moreover, only the combination of the
different curvature-squared invariants in 81 add up to the Euler
characteristic χ[g]. The single terms have a generic metric
dependence, and with appropriate projections, we can capture
their running coefficients. This is the manifestation of a more
generic feature, which is already used in the extraction of
anomalies in perturbation theory and anomalous as well as
topological terms beyond perturbation theory (see, e.g.,
[192, 193]).

Below, we outline a cautious approach guided by the works
192, 193 in gauge theories. There, a simple example for a
topological invariant is the Pontryagin index in a U(1) theory
with the density 1/(32π2)Fμ]~Fμ]

, where ~F
μ]

is the dual field
strength. This density is quadratic in the field and is discussed
in Supplementary Material. Analogously to this example, we
introduce the Gauß–Bonnet term with a local auxiliary field θ(x),

χ[g, θ] � ∫ d4x �
g

√
θ(x)E[g], χ[g, 1] ∈ Z. (82)

The auxiliary field θ(x) � θtop + Δθ(x) can be seen as the local
coupling of the Gauß–Bonnet density. Its constant part θtop with
∇θtop � 0 is the topological coupling, while its space-
time–dependent part Δθ(x) is part of the couplings of the
local diffeomorphism-invariants quadratic in the curvature.
Applying two derivatives with respect to the metric field in
momentum space leads us to

δ2χ[g, θ]
δgμ](p)δgρσ(q) g�δ � 1

16π2
T μ]ρσ(p, q)θ(l)δ(l + p + q).∣∣∣∣∣∣∣ (83)

The tensor structure T is given by

T μ]ρσ � Π0(δμ]δρσ − δμ(σδρ)) + Πμ]ρσ
2 (84)

+ δμ]Πρσ
1 + δρσΠμ]

1 − δμ(ρΠσ)
1 − δ](ρΠσ)

1
μ,

where we have defined
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Π0 � p2q2 − (p · q)2,
Παβ

1 � 2(p · q)p(αqβ) − pαpβq2 − qαqβp2,

Παβcδ
2 � pαpβqcqδ + pcpδqαqβ − pαp(cqδ)qβ − pβp(cqδ)qα.

(85)

The (local) total derivative property of the Gauß–Bonnet
density is reflected in the fact that all Πi are vanishing for l � 0
when momentum conservation implies p � −q. Accordingly,
with θ(x) � θtop and θ(l) � θtop(2π)4δ(l), the right-hand side
of 83 vanishes. However, by collecting the θ terms on the left-
hand and right-hand side of the flow, one can simply project
the flow on the running of the coefficient of the topological
term. We emphasize that the vanishing of the flow for
constant θ is analogous to the vanishing of the flow p2ztZϕ

for p2 � 0. In conclusion, the present expansion scheme is
well-capable and well-suited for describing IR divergent and
topological terms.

In summary, the flat expansion allows projecting the flow
equation on the flow of all coefficients aO,k for diffeomorphism-
invariant operators of the form

O � ∫
x

�
g

√
fμ1/μ4n(∇1, . . . ,∇n)∏

i�1

n

Rμi1/μi4
. (86)

Here, ∇i acts only on the ith Riemann tensor. In the case of the
fluctuation correlation functions Γ(0,n)k [g], no expansion in
curvature invariants is possible, but an expansion in covariant
tensor structures is possible, though being even more intricate. In
case of the flat expansion, this is done with considering all tensor
structures of Γ(0,n)k (p1, . . . , pn). How this can be done has been
worked out in QCD (see, e.g., 167–171), and respective
computational tools are provided e.g., by [169, 194, 195] or
are in preparation.

The findings of the present section can be summarized as
follows:

(1) The flat expansion encompassed the curvature expansion.
There is no conceptual difference, and both expansions are
expansions about the flat background g � 1.

(2) The expansion point of the curvature or flat expansion is not
the solution of the EoM, g flucEoM, and checks of the convergence
of the expansion are in high demand.

(3) The fluctuation approach within the flat vertex expansion
resolves the difference between fluctuation and background
field. As such it simply improves upon the background field
approximation within the curvature expansion without
introducing other approximations: fluctuation approach
results benchmark that in the background field
approximation and provide nontrivial reliability checks for
the latter.

There are an increasing number of computations that do
not rely on the curvature expansion, for example, 49, 51, 54,
109–111, 175–182 in the background field approximation and
97, 107 in the fluctuation approach. This concludes our
discussion of the formal properties of the fluctuation
approach.

7.3 Tensor Structure and Momentum
Dependence of Vertices
In the flat expansion, the vertices Γ(n) � Γ(0,n) are typically
rescaled with the wave function renormalizations Zϕa to obtain
the RG-invariant vertices Γ(n) � Γ(0,n)

Γ(ϕa1 ...ϕan)k (p) � ⎛⎝∏
i�1

n

Z
1
2
ϕai
(p2i )⎞⎠Γ(ϕa1 ...ϕan)k (p), (87)

where, p � (p1, . . . , pn). The wave function renormalizations can
be fully absorbed by a redefinition of the fields ϕa �

���
Zϕa

√
ϕa. The

wave function renormalization enter the flow equations only via
the anomalous dimensions ηϕa defined by

ηϕa(p2) � −zt lnZϕa(p2), (88)

which describes the running of the rescaled fields ztϕa ∝ ηϕaϕa.
The RG-invariant vertices Γ(n)k are then parameterized with a
complete set of tensor structures T j and respective RG-invariant
dressings Ak,j

Γ(ϕa1 ...ϕan)k (p) � A(ϕa1 ...ϕan)k,j (p)T (ϕa1 ...ϕan)j (p; couplings), (89)

where the sum over j is implied. The size of the complete set of
tensor structures increases rapidly for higher order vertices. The
cutoff-dependent dressings Ak,j capture the overall coupling
strength of the respective tensor structure and its momentum
dependence.

In most applications to gravity, only the Einstein–Hilbert
tensor structures deduced from the curvature scalar and the
volume term are taken into account. This leads us to

A(n)
k (p) � G

n
2−1
n (p2),

T (ϕa1 ...ϕan) � GN S
(ϕa1 ...ϕan)
EH (p;Λn), (90)

with the Einstein–Hilbert action 1 and the momentum-
dependent global dressing A(n)

k of the Einstein–Hilbert tensor
structure. The prefactor GN in the definition of the tensor
structure leaves the latter independent of GN. The couplings
Gn and Λn resemble the Newton coupling and the
cosmological constant, respectively, for each n-point function.
They are called avatars of the respective coupling. In C, we have
already simplified the momentum dependence of the couplings
Gn: they only depend on the average momentum
p2 � (p21 +/ + p2n)/n. The couplings Gn are extracted from the
flow of the n-point functions at a momentum symmetric point.
This definition mimics the definition of momentum-dependent
couplings in gauge theories. The dimensionless counterparts of
Gn and Λn are denoted by gn � Gn k2 and λn � Λn/k2.

For n � 0, 1, we have Γ(0,n) � 0 for a flat background. For
n � 2, we have Gn/2−1

n � G0
2 � 1, and hence, there is no Newton

coupling G2 for the two-point function. Instead, Γ(0,2)k depends on
the graviton mass parameter μ � −2λ2 and the dimensionless
wave function renormalization Zh(p) of the fluctuation graviton.
We emphasize that the graviton mass parameter µ should not be
understood as a physical mass. Moreover, the graviton is not
directly related to an asymptotic state. (For a recent discussion,
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see 196 and also the review 16.) All dimensionless couplings are
shown in Figure 7 as a function of the cutoff scale on one
exemplary UV-IR trajectory.

7.4 Momentum Locality
An important property of a physical coarse-graining procedure is
momentum locality: it ensures that a coarse-graining step at a
given cutoff scale k does not influence the physics at momentum
scales p≫ k. In 197, it was defined by

lim
p2
i
k2
→∞

∣∣∣∣ztΓ(n,m)
k (p)∣∣∣∣∣∣∣∣Γ(n,m)

k (p)∣∣∣∣ � 0, with p � (p1, . . . , pn+m), (91)

In this definition, all momenta pi of the correlation function
Γ(n,m)
k (p) need to be sent to infinity such that there are no trivial
cancellations for the momenta of internal propagators. This is, for
example, achieved with a symmetric momentum configuration.
The norm of the n-point function refers to a normalized tensor
projection.

The condition 91 is satisfied by all perturbatively
renormalizable local quantum field theories of scalars,
fermions, and vector fields (including gauge fields in linear
gauges with linear momentum dependences) by trivial
counting of the momenta. In turn, nonrenormalizable theories
with nontrivial momentum dependences of vertices are easily
nonlocal. For example, the scalar field theory with an interaction
term of the type ∫

x

ϕ2(zϕ)2 does not fulfill 91. Note that this theory
has the power counting of Einstein–Hilbert gravity.

Thus, a naïve momentum counting in gravity leads to the
conclusion that the coarse graining is not momentum local,
neither in Einstein–Hilbert gravity nor in a higher derivative
theory of gravity. One needs nontrivial cancellations between
diagrams. In 198, such a cancellation was observed for the first
time in the transverse traceless part of the graviton two-point
function with Einstein–Hilbert vertices. In 197, this was extended

to the transverse traceless part of the graviton three-point
function. Both cases are displayed in Figure 5. There are three
diagrams (plus one ghost diagram) contributing to the flow of the
graviton three-point function (Figure 4). The cancellation takes
places between all diagrams and holds for all gauge fixing
parameters and all momentum configurations of the three-
point function, as long as all external and internal momenta
are sent to infinity.

We close this section with the remark that the results in 197,
while highly nontrivial, should be considered to be the first step in
a fully conclusive analysis. Most notably, the observed locality
does not hold for all tensor structures of the n-point functions
considered there. In our opinion, this may hint at persistent
nonlocalities introduced by the gauge fixing. If this can be
solidified in further investigations, this should allow for
selecting gauge fixings that make the coarse graining
procedure for a given regularization procedure momentum
local. Note that while momentum locality of a coarse graining
procedure is not a necessary property, it certainly improves the
convergence of standard approximation schemes which are
typically momentum local. Moreover, if no momentum local
coarse graining procedure can be found for a given theory, this
casts serious doubts on the interpretation of such a theory as a
local quantum field theory.

8 STATE OF THE ART

We are now ready to review the state of the art of asymptotically
safe quantum gravity within the fluctuation approach. To
facilitate accessing the relevance of the different results for the
self-consistency of the approach, we start with a brief overview:

UV Fixed Point (Section 8.1): The existence of a UV fixed
point with a finite-dimensional critical hypersurface ensures the
UV finiteness and predictivity of the theory. With the fluctuation
approach, this has been investigated for pure gravity in 73, 93, 97,
107, 184, 197–206. The UV fixed point is comparable with results
in the background field approximation and thus consolidates
these results. Three UV-attractive directions are found associated
with

�
g

√
,
�
g

√
R, and

�
g

√
R2. First signs for apparent convergence

within the vertex expansion were found [184].
UV-IR Trajectory (Section 8.2): A UV-IR trajectory allows us

to connect to a classical GR regime and IR-SM physics if matter
couplings are included. Classical GR regimes are accessed for
μ→ 0 (Gaußian fixed point), μ→∞, and μ→ −1, where μ �
−2λ2 is introduced below (Section 8.3). The case μ→ −1 was
investigated in 73, 184, 198, 199. In the classical regime, the
modified STIs and modified NIs reduce to standard STIs and NIs,
which can be solved for small k.

Momentum Dependence and Unitarity (Section 8.3): The full
momentum dependence, in particular of the propagator, opens a
path toward a first investigation of unitarity via spectral
reconstructions. The truncations already include the
momentum dependence of the graviton two-, three-, and four-
point functions at the momentum symmetric point [184, 197,
198] as well as the momentum dependence of the graviton-matter
three-point vertices [93, 202–204]. The momentum dependence

FIGURE 5 | Displayed are the flows of the traceless transverse parts of
the graviton two- and three-point functions,

∣∣∣∣∣ztΓ(2)k

∣∣∣∣∣ and ∣∣∣∣∣ztΓ(3)k

∣∣∣∣∣, as a function
of dimensionless momentum. The flows approach constants for large
momenta, and they do not grow with p2 as expected from a naive
counting of momenta. The flows are normalized by the respective n-point
functions,

∣∣∣∣∣ztΓ(2)k

∣∣∣∣∣/∣∣∣∣∣Γ(2)k

∣∣∣∣∣ and ∣∣∣∣∣ztΓ(3)k

∣∣∣∣∣/∣∣∣∣∣Γ(3)k

∣∣∣∣∣. These ratios tend toward zero for
largemomenta which signals momentum locality. The figure is taken from 197.
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has been also used to show the absence of IR divergences in the IR
regime [198, 199] and to show the absence of R2

μ] contributions at
the UV fixed point [184].

Curvature Dependence (Section 8.4): The curvature
dependence of the correlation functions allows extending the
results from a flat background to a generic background. The full
curvature dependence of the fluctuation correlation functions
contains the information of the diffeomorphism-invariant
effective action (Section 7.1). The first steps in this direction
in pure gravity and scalar gravity systems have been done in 97,
107, 206. In 97, 107, the difference of the background and
quantum EoM due to the mNI was explicitly computed (see
Section 6.1 and Figure 2).

Gravity–Matter Systems (Section 8.5): The aim is to
incorporate the SM degrees of freedom in asymptotically safe
quantum gravity and eventually to retrodict SM parameters and
to constrain beyond the SM physics [207–218]. Minimally and
nonminimally coupled gravity–matter systems have been
investigated with (partial) fluctuation approach techniques in
53, 83, 93, 97, 187, 202, 204, 219–224. A particularly interesting
question is for which matter content the UV fixed point exists.
First bounds were computed in 219; however, a qualitative
difference between the results in the background field
approximation and the fluctuation approach was found [220].
It was shown in 202 that higher order curvature terms are needed
to fully address this question. (For gravity–matter systems with
higher derivative gravity in the background field approximation,
see 58, 183, 186.) The investigation in 97 is a first step toward the
computational confirmation of the existence of an asymptotically
safe fixed point for general gravity matter in the minimally
coupled approximation. This opens a path toward reliable
stability investigations of fully coupled gravity–matter systems.

Effective Universality (Section 8.6): Last, we discuss the
potential close perturbativeness of the UV fixed-point regime
of asymptotically safe gravity. This leads us to the concept of
effective universality: the so-called avatars of the Newton coupling
extracted from different correlation functions may agree up to
differences that can be inferred from the modified STIs that relate
these couplings [93, 203]. If present, effective universality may
have a dynamical origin. The analysis of this intriguing property
is also intricate due to truncation artifacts and RG scheme
dependences. We close this overview by commenting on the
related bimetric approach and hybrids of the background field
approximation and the fluctuation approach.

Hybrid approaches: In hybrid approaches, one substitutes part
of the fluctuation flow equations with background flow equations
[66, 219, 225–232]. In most cases, this concerns the notoriously
difficult pure gravity couplings: the derivation of fluctuation flows
of pure gravity vertices such as the three- and four-point
functions requires a significant computer algebraic effort. In
advanced truncations, this is accompanied with numerical
loop integrations in every flow step and interpolations of
dressing functions with potentially several momentum and
angular dependences. In turn, using the background field
approximation for these vertices reduces this task to
computing the flow of a single background coupling, whose
flow equation is known analytically. This considerable

reduction makes it chiefly important to construct reliable
background field approximation schemes as discussed in
Section 5.2

An alternative to the use of the background field
approximation for the pure gravity couplings is their
identification with matter–gravity couplings. Such an
identification implicitly relies on the concept of effective
universality discussed in more detail in Section 8.6. There it is
discussed that while the full system shows effective universality, it
is only maintained if using the pure gravity couplings for the
matter–gravity couplings. In turn, effective universality, as well as
the compatibility with the full system, is lost if using the
matter–gravity couplings as pure gravity ones. This hints at a
surprisingly complicated interaction structure in gravity–matter
systems whose origin is yet to be understood.

Bimetric approach: The bimetric approach, developed in
100–102, 233, is tantamount to the fluctuation approach
reviewed here, as it rests on the distinction between the
background metric and the fluctuation field. Technically,
fluctuation and background correlation functions are defined
in terms of an expansion of the full metric gμ] � (1 + ϵ)gμ]
with the fluctuation field hμ] � ϵgμ]. This allows one to order
the flow and the effective action in powers of ϵ. The power ϵn of
the effective action is simply the fluctuation n-point function.
This reads schematically

Γk[g, h] �∑
n

ϵn
n!
∫

Γ(0,hμ1]1/hμn]n)
k [g, 0] · gμ1]1/gμn]n, (92)

in analogy to 68. The Γ(0,n)k [g, 0] have been baptized level-n
vertices comprising the respective level-n couplings. The last
and most important step concerns the extraction of the
correlation function Γ(0,n)k [g, 0] from ∫ Γ(0,n)k [g, 0] · gn, as the
computation of the flow requires the knowledge of the
correlation function and not their contractions with metrics.
This computation is either done by i) considering an
expansion about a specific background such as the flat
background, ii) computing the flow of the effective action for
a generic metric g, or iii) assuming a global form of the effective
action and simply computing the flow in this closed form. Option
i) is the fluctuation approach reviewed here. It is not built on the
metric split with ϵ. Option ii) asks for advanced computational
heat kernel techniques even within restrictions. These techniques
have seen rapid development in the past decade, which may open
a path toward their use in ii). Option iii) has been considered so
far for level-one couplings. The level-two correlation functions
that are required for the right-hand side of the flow equation then
have been obtained within a further background field
approximation. In summary, the bimetric approach or rather
the computational options ii) and iii) offer an alternative
approach to compute fluctuation correlation functions that
may provide important cross-checks for the results
discussed here.

8.1 Ultraviolet Fixed Point
The UV fixed point in the fluctuation approach has been
discussed in 73, 93, 97, 107, 184, 197–206. This includes work
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in the vertex expansion about the flat background in pure gravity
[184, 197–200] and gravity–matter systems [93, 201–204] as well
as work including curvature dependence [97, 107, 206], a
fluctuation potential [205] and in the geometrical approach
[73]. In 184, the tower of fluctuation correlation functions was
implemented until the graviton four-point function. All n-point
functions were evaluated at the momentum-symmetric point,
with external transverse traceless projections. A UV fixed point
was found at

(μ*, λ*3, λ*4, g*3, g*4) � ( − 0.45, 0.12, 0.028, 0.83, 0.57), (93)

where gn and λn are the dimensionless Newton coupling and the
momentum independent part of the graviton n-point function,
respectively. (For more details, see 184.) The graviton mass
parameter μ � −2λ2 is the momentum-independent part of the
graviton two-point function. The critical exponents of the fixed
point are given by

θi � (4.7, 2.0 ± 3.1i,−2.9,−8.0), (94)

where a positive sign corresponds to a UV-attractive direction.
The three UV-attractive directions were associated with the
operators

�
g

√
,
�
g

√
R, and

�
g

√
R2. In contrast, the operator�

g
√

R2
μ] is not generated in the present approximation. The

latter property was inferred from the momentum dependence
of the graviton three- and four-point function (see Section 8.3).
Importantly, the first signs of apparent convergence were found
in 184.

In Section 7.2, we have shown that the fluctuation approach in
the flat expansion improves upon the background field
approximation in the curvature expansion (see in particular
the discussion at the summary at the end of Section 7.2).
Accordingly, the fluctuation results for the UV fixed point
detailed above extend and corroborate previous findings in the
background field approximation within the curvature expansion.

In particular, the results confirm that the latter captures the most
important features in pure gravity. For example, the fixed-point
value of the cosmological constant in the background field
approximation is typically positive, which is comparable with
the negative fixed-point value of µ in 93 (μ � −2λ2). Also, mostly
three relevant directions are found in the background field
approximation (see the reviews 7–16 and the very recent
paper 189.)

A further extension, within the exponential split, has been
investigated in 205. There, the dimensionless fluctuation
potential V was approximated with V � V1(h)+ Tr(h2TL)V2(h),
where h is the trace part and hTL is the traceless part of the
fluctuation graviton. The other graviton modes have been
dropped. The results for the potentials V1 and V2 are
displayed in Figure 6.

8.2 Ultraviolet–Infrared Trajectories
UV-IR trajectories in the fluctuation approach and hence the
phase structure of quantum gravity have been discussed in 73,
184, 198, 199. In Figure 7, we display a trajectory from the UV
fixed point (93) to the IR where all couplings run classically. In the
displayed example, the graviton mass parameter runs to infinity,
μ→∞. In classical gravity and μ> 0, the NIs entail that the
cosmological constant is indeed given by Λ � Λ � −2μk2 in the
limit k→ 0 and can take any negative value. This follows from

δΓk[g, h]
δg

� δΓk[g, h]
δh

, for lim
k→ 0

μ→∞. (95)

Moreover, the background Newton coupling and (all) the
fluctuation Newton coupling agree. This can be seen for the
dimensionless versions λ, λ2 and g, g3 in Figure 7. Solving the NIs
for the higher couplings corresponds to a fine-tuning problem in
terms of choosing an appropriate trajectory. However, a fully
diffeomorphism-invariant solution including the higher order

FIGURE 6 | Dimensionless fixed-point fluctuation potentials defined via
V � V1(h) + Tr(h2TL)V2(h), where h is the trace part and hTL is the traceless
part of the fluctuation graviton. Note that we rescaled and shifted V2, that is, V2

is small compared to V1 and always negative. The results are taken
from 205.

FIGURE 7 | Scale dependence of different fluctuation couplings along a
trajectory from the UV fixed point 93 to the IR. In the IR, the couplings flow
according to their canonical running. For small k, g and g3 as well as λ and µ
are related via the simplified NI (95). The inset shows the complete set of
couplings. The results are taken from 184.
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avatars of the couplings has not been fine-tuned yet (see the inlay
in Figure 7).

UV-IR trajectories with μ→ − 1 in the IR have also been
investigated in 73, 184, 198, 199. Those trajectories are technically
challenging since μ � −1 corresponds to a pole in the propagator.
We emphasize that the NIs and STIs are in this case nontrivial
even for classical gravity: the classical effective action is the
convex hull of the classical action, the latter not being convex
for μ< 0. This entails that λ2 � −2μ cannot be identified with the
cosmological constant λ � λ even though the sign of the latter
must be also positive. Note also that any positive cosmological
constant Λ can be obtained. The truncation triggered restriction
to Λ � 0 at k � 0 in the background field approximation is lifted.
From the physics point of view, these trajectories are appealing
since they correspond to a positive cosmological constant in
the IR.

8.3 Momentum Dependence and Unitarity
The momentum dependence of correlation functions have been
discussed in 93, 184, 197–199, 202–204. This momentum
dependence encodes the dynamics of the theory and is crucial
for the question of unitarity. One of the advantages of the
fluctuation approach in the flat vertex expansion is its easy
access to the full momentum dependence of fluctuation
correlation functions Γ(0,n)k for all cutoff scales k. These
momentum dependences carry the full dynamics of the
underlying theory: all other quantities, ranging from the
background correlation functions to diffeomorphism-invariant
observables O[g], are built from the correlation functions. The
latter observables are defined as expectation values O[g] �
O[g, h � 0] of diffeomorphism-invariant operators Ô[ĝ] with
O[g, ϕ] � 〈Ô〉. The O[g, ϕ] satisfy the flow equation for the
expectation values of composite operators derived in 21,

ztOk[g] � −1
2
Tr[Gk ztRk GkO(0,2)

k ][g], (96)

at vanishing fluctuation field h � 0. Evidently, the flow 96 solely
depends on the fluctuation field propagators and O[g, ϕ]. (For
applications and further investigations of 96, see 21, 128,
133–135, 137, 138.)

Equation 96 entails in particular that any observable inherits
its dynamics from that of the full field and momentum
dependence of the fluctuation two-point function, or rather
from the momentum dependence of the fluctuation correlation
functions Γ(0,n)k at a given field expansion point. It is in this sense
that the momentum-dependent and RG-invariant vertex
dressings A(ϕ1/ϕn)(p) encode the dynamics of the theory. In
particular, the symmetric point dressings Gn(p) carry the
meaning of momentum-dependent running couplings similar
to those in standard quantum gauge theories and most
notably in QCD. (For a detailed discussion in the latter case,
see in particular 168, 170.) We emphasize that while in both cases
these couplings are neither observables themselves nor even
gauge- or diffeomorphism-invariant, they directly encode the
dynamics of the theory, and in particular the dominance and/or
decoupling of degrees of freedom. If done carefully, they can be
also compared to scattering processes related to the respective

vertices. (For the SM, see the comparison of the QCD running
(vertex) coupling to scattering experiments at accelerators [234].)

Moreover, the resolution of the momentum dependences of
n-point functions gives at least indirect access to the question of
unitarity of asymptotically safe gravity: From the Euclidean data,
one can reconstruct Minkowski correlation functions and in
particular the graviton spectral functions, both that of the
fluctuation graviton and that of the background graviton (more
details will be given in 235). Here, we simply comment on the
physics content of the graviton spectral functions (see also 236). In
this context, we will also use the analogy to the gluon in a non-
abelian gauge theory as discussed in 237. (For a recent discussion of
the challenges for unitarity in asymptotically safe gravity, see 16.)

To begin with, both the fluctuation graviton and the
background graviton two-point functions are not
diffeomorphism-invariant. Accordingly, they are not directly
related to asymptotic states; even at low energies, gravity is
weakly coupled and the theory exhibits a classical momentum
and scale dependence (see Figure 7). The latter property suggests
that if a Källén–Lehmann spectral representation of the graviton
propagators exists, the graviton spectral functions may exhibit a
particle-like spectrum for low spectral values. In turn, for large
spectral values, we enter the UV fixed point regime, and the
physics content of the spectral functions is unclear.

Note however that the same line of arguments would suggest
that the gluon spectral function exhibits a particle-type spectral
dependence in its perturbative regime for large spectral values.
Instead, it can be shown that if a Källén–Lehmann spectral
representation exists, the gluon spectral function is negative
for large spectral values, and its spectral sum vanishes
(Oehme–Zimmermann superconvergence relation). Moreover,
it is also negative for small spectral values (see 237). These
properties hold for both the fluctuation and the background
gluon. Since these properties follow directly from the momentum
dependence of the Euclidean correlation functions, we expect
similar results for asymptotically safe gravity [235].

In summary, the spectral properties of diffeomorphism- or
gauge-variant correlation functions only indirectly mirror the
unitarity of the theory. This situation prohibits any direct
conclusion of a lack of unitarity from the occurrence of
negative parts of spectral functions including negative poles
(ghost states). We also emphasize that the latter statement
should not be taken as its converse. Of course, the occurrence
of negative parts of spectral function requires a thorough
investigation of the physics implications and may well be
related to the lack of unitarity of the underlying theory. The
example of the non-abelian theory simply indicates that this is not
necessarily the case. Such an investigation requires the analysis of
the spectral properties of diffeomorphism-invariant states. (For a
recent discussion of such a setup, see 196.)

The discussion in this section so far emphasizes the
importance of the computation of the momentum dependence
of correlation functions both for the dynamics of observables and
the intricate problem of unitarity. One of the advantages of the
fluctuation approach is the direct access to momentum-
dependent correlation functions with standard quantum field
theory methods:
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In 198, 199, the full momentum dependence of the graviton
and ghost propagator was included via the anomalous
dimensions. The computation of the momentum dependence
was extended to the graviton three- [197] and four-point function
[184] as well as to the scalar–graviton [93], the fermion–graviton
[204], the gluon–graviton vertex [202], and the ghost–graviton
vertex [203]. While only the momenta 0≤ p2(k2 contribute to
the flow, in all these works, the vertices have been computed at the
symmetric point for the full momentum range 0≤ p2 <∞. This
approximation ignores, in particular, the angular dependence of
the vertex dressings. While the angular dependence is important
for the discussion of the whole phase space of scattering
experiments, it is averaged in the flow diagrams due to the
angular loop integrations. The reliability of this approximation
has been studied at length in QCD. (See 167–171 for detail.)
There, it was shown that the above approximation is very accurate
in the absence of resonant interaction channels, and so far, no
indications have been found for such resonant channels. In
conclusion, this analysis provides a nontrivial reliability
argument for the approximation described above. Still, for a
full reliability check, one has to study extended truncations.

In 184, 200, the momentum dependence was used to
disentangle contributions from the couplings of the R2 and
R2
μ] tensor structures. This was done in 200 with derivatives at

vanishing momentum, while in 184, the momentum range
0≤ p2 ≤ k2 was considered. Importantly, the transverse traceless
graviton three-point function has overlap with R2

μ] tensor
structures and not with R2 tensor structures, while the
graviton four-point function has overlap with R2

μ] and R2

tensor structures. The momentum dependence of the
couplings is obtained by normalizing the vertex flows with
(−(n/2)ηh(p2) − n + 2). This is displayed in Figure 8. The
three-point coupling is well described with a p2 behavior.
Thus, the R2

μ] tensor structure is nontrivially suppressed. The
four-point coupling shows a significant p4 behavior. Due to the
absence of a p4 behavior in the three-point coupling, this suggests
that they are related to R2 tensor structures.

Recently, impressive progress has been made toward
momentum-dependent computations in the background field

approximation [238–242]. There, the momentum dependence
is captured via form factors Wi

k, for example, ∫
x
RWR

k (Δ)R and∫
x
Cμ]ρσWC

k (Δ)Cμ]ρσ . This opens a path toward the comparison of
the result of these two approaches. This will allow us to quantify
the difference between a background field approximation and a
fluctuation computation.

8.4 Curvature Dependence
The curvature dependence of correlation functions in the
fluctuation approach has been discussed in 97, 107, 206. Most
results in the fluctuation approach were computed on a flat
background g � 1. Results for generic backgrounds can be
obtained from an expansion about the flat background. In 206,
this was done with covariant heat kernel methods up to the first-
order curvature couplings. Fixed-point values of all first-order
curvature couplings were found and their gauge dependence
investigated.

A different approach within the fluctuation approach was
taken in 97, 107, where the fluctuation correlation functions were
computed directly on a generic background with constant
curvature. The computation reaches up to the graviton three-
point function and also includes Ns scalar fields in 97. It was
found that the curvature dependence of the fluctuation couplings
counterbalances the explicit curvature dependence of the
respective vertex, making the full vertex approximately
curvature independent. This result supports results obtained
on a flat background. Furthermore, it was explicitly shown
that the background EoM differs from the quantum EoM at
the UV fixed point (17). In particular, the background EoM does
not have a solution at the UV fixed point, while the quantum EoM
has two solutions, a minimum at negative curvature and a
maximum at positive curvature, for all Ns that are accessible.
This is displayed in Figure 2.

8.5 Gravity–Matter Systems
A theory of quantum gravity necessarily needs to include matter
degrees of freedom to describe our universe. A central question is
for which matter content, the UV fixed point exists and if certain
types of matter field have a stabilizing or destabilizing effect. Most

FIGURE 8 | Momentum dependence of the transverse traceless graviton three- and four-point couplings obtained by normalizing the vertex flow with(− n
2ηh(p2) − n + 2). The graviton three-point coupling (left panel) is well described with a linear p2 function in the momentum range 0≤p2 ≤ k2. This momentum

dependence stems from the R tensor structure. The absence of a p4 behavior implies that the R2
μ] tensor structure is suppressed. On the other hand, the graviton four-

point coupling (right panel) shows a clear p4 behavior, which is associated with R2 tensor structure. The figures are taken from 184.
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studies have focused on analyzing SM matter fields within the
minimally coupled approximation. In this approximation, the
matter fields are considered without self-interaction and only
couple to gravity via their kinetic term. There are works in the
background field approximation [58, 183, 186, 243–249], in the
hybrid approach [53, 219], and in a full fluctuation computation
[93, 97, 201–204]. (For works beyond the minimally coupled
approximation, see 47, 50, 83, 162, 186, 188, 210, 220–224, 228,
229, 232, 250–260, which also includes scalar–tensor theories and
gravitational corrections to the running of matter couplings.)

A major keystone in the stability analysis of gravity–matter
systems in the minimally coupled approximation was found in
201, 202. There, it was shown that minimally coupled
gravity–matter systems in the Einstein–Hilbert truncation
always show a Reuter fixed point as the system can be
mapped to a pure gravity system at the level of the path
integral. We emphasize that while the explicit computations in
201, 202 are done in the fluctuation approach, the conceptual
investigation is general. (For a detailed discussion we refer to
202.) Here, we simply sketch the important steps: In minimally
coupled gravity–matter systems, the matter part Smat[g, ϕ] of the
full action S � Sgrav + Smat is quadratic (or bilinear) in the matter
fields. To find the Reuter fixed point, it is sufficient to discuss the
UV limit of graviton correlation functions. Consequently, we
consider vanishing matter sources, Jmat ≡ 0. After performing the
Gaußian integration over the matter fluctuation fields ϕ̂mat, the
path integral of a minimally coupled matter–gravity system takes
the schematic form,

Z[J] � ∫

Dϕ̂grav e
−Sgrav,eff[g ,̂ϕgrav]+∫

d4x
�
g

√
Jagrav ϕ̂grav,a . (97)

with

Sgrav,eff[g, ϕ̂grav] � Sgrav[g, ϕ̂grav] + 1
2
TrlogS(2)mat[ĝ]. (98)

Here, the full fluctuation field is split into ϕ � (ϕgrav, ϕmat)
with ϕgrav � (hμ], cμ, cμ), and the hatted field indicate the
integration fields. In slight abuse of notation, we wrote S(2)mat[ĝ]
as the second derivative of the matter action with respect to the
matter fields. Its argument is ĝ � g + ĥ, the full metric that is
integrated over. Hence, S(2)mat is a covariant operator and the Trlog
contribution is diffeomorphism-invariant.

The form of the generating functional in 97 is also obtained for
UV-complete non minimally coupled matter theories such as
Yang–Mills theories. Then, Sgrav,eff [g, ĥ] is not of the form 98 but
carries the full nonperturbative metric-dependent part of the
effective action of Yang–Mills theories. The UV completeness
within this procedure is required as otherwise the matter path
integral cannot be performed. Trivially, minimally coupled
systems are UV-complete. A useful analog for the study of the
UV stability of minimally coupled gravity–matter systems is
many-flavor QCD. There, the role of the graviton is taken by
the gluon, and the quark action is bilinear.

The representation 97 emphasizes an intriguing and useful
property of the fRG approach to quantum gravity (and beyond):
The phase structure and in particular the fixed-point structure of
a generic gravity–matter system can be accessed within pure

gravity. In particular, all fixed points are accessible within this
setup, if a general fixed point effective action Γ*k[g, ϕgrav] is
considered.

This intriguing property also carries an important intricacy of
a generic fixed-point analysis: Seemingly, the parameterization 97
entails that generic gravity–matter systems are UV-stable if the
matter part is UV-complete (with the assumption that the Reuter
fixed point exists for pure gravity). This conclusion would apply
directly to all minimally coupled gravity–matter systems. That
this argument falls short can be seen at the example of many-
flavor QCD. There, an (f)RG analysis reveals that the QCD
β-function changes its sign for a large enough number of
flavors. In the vicinity of this regime, interesting phenomena
such as conformal scaling, instabilities, and the
Caswell–Banks–Zaks fixed point occur (For fRG literature, see,
e.g., 261–264 and references therein.) These findings are backed
up by lattice results. The RG analysis in many-flavor QCD solely
relies on the marginal operator tr F2

μ]. The quantum corrections
from the integrating out of the quark fluctuations are
proportional to

Nf tr F
2
μ] log

F2
μ]

k4
, (99)

where Nf is the number of flavors. The analogous operators in
gravity are the curvature-squared operators R2, R2

μ], and R2
μ]ρσ .

The respective operators including matter quantum
fluctuations are

Nmat
�
g

√
R2 log

R
k2
, (100)

and similar ones for R2
μ], and R

2
μ]ρσ and also covariant derivatives.

Here, Nmat is the weighted sum over all species and flavors of
matter fields.

The logarithmic RG running of the marginal operator tr F2
μ] in

QCD or R2 in gravity necessarily triggers a field dependence of its
coefficient as displayed in 99 and 100, respectively. In conclusion,
the distinctive property of marginal operators is the inherent field
dependence of the quantum corrections. In turn, the coefficients
of (local) relevant and irrelevant operators are only scale-
dependent. While the latter by definition are not important for
a fixed-point analysis, the coefficients of the former ones, if
present, can be readily absorbed in the respective pure gauge
theory (or gravity) couplings. In the present example of many-
flavor QCD, relevant operators are indeed absent. In gravity, this
applies to the terms in the Einstein–Hilbert action, that is, the
curvature term and the cosmological constant term.

In summary, from the perspective of the Yang–Mills system
with the generating functional similar to that in 98, the marginal
operator 99 introduces a new UV marginal (and hence physical)
parameter Nf that cannot be absorbed in the Yang–Mills coupling.
In gravity, this applies to the coefficients of the marginal operators
R2, R2

μ], and R2
μ]ρσ . Thus, also here, the flavor number Nmat of a

given matter field is a physical parameter. However, its relevance
for the fixed-point analysis originates solely from the
Nmat-dependent coefficients of the marginal operators R2, R2

μ],
and R2

μ]ρσ . In contrast, Nmat of the relevant operators in the
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Einstein–Hilbert action is not relevant for the fixed-point analysis.
In particular, it cannot trigger instabilities.

The above properties imply that a fixed-point analysis of a
given system within a truncation of the (f)RG flows that does not
include the flows of the marginal operators should exhibit the
respective fixed-point structure of the pure gravity system in the
same truncation. In particular, this casts some doubt on any
instability findings in the full truncation, if this instability survives
in the absence of the marginal operators.

As an example of this statement, we consider now a minimally
coupled gravity–matter system in the Einstein–Hilbert
truncation. Without truncation, these systems have the path
integral representation 97 with 98. The Einstein–Hilbert
truncation reduces Sgrav,eff in 98 to

Sgrav,eff[g, ϕ̂grav]→ SEH[g] + Sgf[g, ĥ] + Sgh[g, ϕ̂grav]
+ 1
2
TrlogS(2)mat[ĝ] R,Λ,

∣∣∣∣ (101)

where the subscript |R,Λ stands for the reduction of the full one-
loop determinant to its Einstein–Hilbert part with a curvature
term and a cosmological constant term. The respective
coefficients can be absorbed in a redefinition of the Newton
constant and cosmological constant in SEH[g]. (For more details,
see 202. Hence, 101 is equivalent to the Einstein–Hilbert
truncation of the pure gravity system. The latter shows the
Reuter fixed point and so should the minimally coupled
system in this truncation.

The above result for minimally coupled systems has the direct
consequence that the Einstein–Hilbert truncation to
matter–gravity systems should also exhibit the Reuter fixed
point for UV-complete matter systems, as the pure gravity
system does. We add that this does not exclude the emergence
of further fixed points in some Nmat regime.

This concludes our discussion of the fixed-point structure and
stability properties of gravity–matter systems, its truncation
dependence, and reliability requirements for truncations. The
discussion enables us to formulate relevant properties that have
to be considered for a conclusive stability analysis ofmatter–gravity
systems:

(1) The fixed-point analysis necessarily has to involve all
(possibly) relevant operators of the theory under
investigation, that is, 99 in many-flavor QCD and 100 in
gravity–matter systems.

(2) A fixed-point analysis within a given truncation is only
fully reliable if it also reproduces the fixed-points of the
pure gravity system in the same truncation excluding the
marginal operators.

We now discuss the results in gravity–matter systems given the
properties i) and ii): In [201], the first full fluctuation
computation for minimally-coupled systems was put forward.
On the pure gravity side, the flows of the fluctuation graviton two-
and three-point function were included. Importantly, a stabilizing
mechanism for the fermionic contribution was found for general
regulators: the graviton mass parameter is approaching its pole

μ→ −1 and thus enhances the graviton contribution, in short:
gravity rules. This is required from the discussion above.
Technically, this simply means that the fermion contribution
in this setup changes the parameters of the two- and three-point
function within the stability regime of the phase diagram of pure
gravity in the Einstein–Hilbert truncation. This stabilizing
mechanism was also found in an extension of the truncation
[204], making the fermion–gravity system a showcase of the
mechanism described above. In particular, with the existence of
the Reuter fixed point for the minimally coupled system in the
absence of marginal operators in the pure gravity subsystem, the
flow equations of the fermion–gravity system satisfy the
requirement ii). Consequently, a conclusive stability analysis of
general fermion–gravity systems can be performed but requires
the inclusion of the marginal curvature-squared operators.

In the same truncation applied to minimally coupled
scalar–gravity systems, it was found within the fluctuation
approach in 93, 201 that the graviton anomalous dimension
ηh grows with the number of scalars Ns and finally exceeds the
value two beyond a critical flavor number Ns,stab: for
Ns >Ns,stab ≈ 20. For ηh > 2, the overall cutoff scaling of the
graviton regulator goes with negative powers of the cutoff
scales and effectively the—physical—cutoff decreases. For these
large anomalous dimensions, we leave the reliability regime of the
approximation. In short, the reliability bound on the truncation
makes it impossible to see the stability of the system in this
minimally coupled approximation. From the viewpoint of the
pure gravity system, this simply means that the scalar
contribution in this setup eventually moves the parameters of
the two- and three-point function outside the stability regime of
the phase diagram of pure gravity in the Einstein–Hilbert
truncation. Consequently, the setup cannot be used for
stability investigations in scalar–gravity systems. In 97, it was
suggested that an expansion about an on-shell background can
lift this tension. In summary, at present, there is no conclusive
stability analysis for scalar–gravity systems.

Applying the same truncation to minimally coupled
gauge–gravity systems, it has been shown in 202 that
depending on the regulator, the minimally coupled systems
either behave similarly to the fermionic or the scalar system.
This suggests that the truncation has to be improved. In
summary, a stability analysis of gauge–gravity systems can be
performed, but the results have to be taken with a grain of salt. A
fully conclusive stability analysis for gauge–gravity systems
requires an improvement of the truncations used so far in the
literature.

In Figure 9, we display the state-of-the-art dependence of the
fixed-point values on the number of scalar field Ns [93], fermion
field Nf [204], and gauge fields Nv [202]. The truncations include
the flow of the momentum-dependent graviton two- and three-
point functions as well as the respective graviton–matter vertex.
In the scalar case, the Newton couplings are diverging at Ns ≈ 52.
This is an artifact of the truncation, as described in the previous
paragraphs and 202. The fermion direction is stable for allNf : the
graviton mass parameter approaches its pole μ→ − 1 and the
enhanced graviton contribution counterbalances the matter
contribution. In the gauge case, the fixed point is disappearing
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in the complex plane for Nv ≈ 13. In 202, it was demonstrated
that all numbers of gauge fields can be accessed with a different
regulator, as discussed in the last paragraph.

Finally, we speculate on the stability properties of general
gravity–matter systems based on the results obtained so far. To
that end, we assume that there is a setup such that general
minimally coupled gravity–matter systems in the
Einstein–Hilbert truncation show UV stability with a Reuter
fixed point similar to the one seen in the fermion–gravity
system. This property allows for a consistent truncation as it
satisfies ii). Now, we include tensor structures from curvature-
squared terms, R2,R2

μ], and R
2
μ]ρσ . It is convenient to parameterize

this complete set of tensor structures in terms of the Ricci
squared, the Weyl tensor squared, and the topological
Gauß–Bonnet term,

∫

d4x
�
g

√ ( 1
gR2

R2 + 1
gC2

C2
μ]ρσ +

1
gE

E), (102)

with the dimensionless couplings gR2 , gC2 , and gE . The
Gauß–Bonnet density E is defined in 81, and the Weyl tensor
squared is in four dimensions given by

C2
μ]ρσ � R2

μ]ρσ − 2R2
μ] +

1
3
R2. (103)

We concentrate on the Reuter fixed point with the assumption
that it is dominated by the Einstein–Hilbert couplings in
contradistinction to the perturbative R2

fixed point. In 184, it
has been observed that R2

μ] contributions and hence C2

contributions generated by the Einstein–Hilbert tensor
structures at the Reuter fixed point are small. They are
subleading in comparison to the R2 tensor structure. This has
been the topic of Section 8.3 (see Figure 8 and the respective
discussion). With the assumption of the dominance of the
Einstein–Hilbert couplings, it implies 1/gpC2 ≈ 0 and indicates
the irrelevance of this operator at the fixed point.

Moreover, from the quartic term c4 p4 with c4 ≈ − 0.24 in the
running of the momentum-dependent coupling of the four-point
function displayed in Figure 8, we deduce that its contribution

cEH g2R2 to the β-function βgR2 � ztgR2 of the R2 tensor structure is
positive. (For a detailed discussion, see 184.) In turn, it is well-
known that the R2 coupling itself leads to a negative contribution
−cR2(gR2 ), which is one-loop universal. We emphasize that both
coefficients depend on the full fluctuation propagator. In
combination, this leads us to a β-function

ztgR2 � βgR2xcEH g2R2 − cR2(gR2). (104)

Switching off the Einstein–Hilbert contribution leads us to the
standard Gaußian fixed point for R2 gravity. In turn, at the Reuter
fixed point, we assume a small fixed-point value for 1/gR2 that
may also trigger a small, but nonvanishing fixed-point value for
1/gC2 . Combining these estimates for gR2 and gC2 , we arrive at

1
g*R2

,
1
g*C2

≈ 0, and
g*C2

g*R2
≈ 0, (105)

in pure gravity. We add that the relevance analysis in 184 suggests
that the gR2 coupling, while being small, is UV-relevant at the
Reuter fixed point. This finding is corroborated by respective ones
in the background approximation. (For higher derivative gravity
work in the background field approximation, see, e.g., 49, 51, 54,
56, 58, 108–110, 172–174, 176, 183, 186, 189, 219, 265–269].)

We now proceed to the R2 and C2 contributions from matter
fluctuations. Being short of a full fluctuation computation of these
terms, we utilize the Nielsen identities in the presence of the
cutoff (see 54 and 44 in Sections 5.2 and 6). The identity 44
comprises the difference between background-metric and
fluctuation field derivatives, while the Nielsen identities 54
also take into account the difference introduced by the gauge
fixing sector. For the present speculative analysis, it suffices to
discuss 44. For example, we find for the R2 contribution,

[δΓk
δg

− δΓk
δh
]
R2
xTr

δ
�
g
√

Rk�
g
√

δgμ]
Gk R2 � ΔgR2( g→)∫

d4x
�
g
√

R2,
∣∣∣∣∣∣∣

(106)

The right-hand side has a form similar to the flow equation
itself and is UV- and IR-finite. Accordingly, ΔgR2( g→) is a

FIGURE 9 | Fixed-point values of the fluctuation couplings as a function of the number of scalar (left), fermion (middle), and gauge fields (right). All truncations include
the graviton two- and three-point function as well as the respective graviton–matter vertex. In the scalar case, the Newton couplings, g3 and gφ, are diverging atNs ≈ 52.
The fermionic case is stable for all Nf . In the gauge field case, the fixed point is disappearing in the complex plane atNv ≈ 13. It was explained in 202 that the vanishing of
the fixed point is an artifact of the truncation and how it can be lifted in the gauge-field case. In 97, it was suggested that an expansion about a background that is a
solution to the quantum EoM might remove the divergence in the scalar case. The result are taken from 93 (scalar), 204, (fermion), and 202 (gauge).
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dimensionless constant that depends on all couplings taken into
account in the computation, summarized as vector g→. This
includes the R2 and C2 couplings gR2 and gC2 themselves (or
rather avatars thereof), as well as avatars of the dimensionless
Newton coupling and the dimensionless cosmological constant
(see Section 8.1). The scale derivative of 106 vanishes on a fixed
point,

zt[δΓk
δg

− δΓk
δh
]
R2
x
zΔg

R2( g→*)
zgi

βi( g→*) � 0, (107)

where we have used that the dimensionless coefficient ΔgR2( g→*)
cannot have an explicit k-dependence. Hence, at a fixed point, this
result allows us to identify the matter contribution of the flow for
R2 tensor structures of fluctuation field vertices with that of the
background field R2 term. The same reasoning also applies to the
C2 term. In summary, the above arguments imply that the matter
contributions to the curvature-squared couplings should be
independent of the background-metric dependence of the
regulator, as well as of the shape of the regulator. Moreover,
since the ghost contribution to the curvature-squared couplings
also does not depend on other scales than the cutoff scale, it
should also be regulator-independent. The validity of these
general statements can be checked explicitly with the results of
58, 183. There, different types of regulators have been investigated
in f (r) gravity: all couplings, except the R2-coupling, depend on
the Laplacian used in the regulators. The results also confirm a
regulator dependence of the graviton contributions, triggered by
the Nielsen identities. As discussed above, this suggests that the
pure gravity contributions to the flow should rather be computed
within the fluctuation approach.

The above considerations allow us to discuss the generic
structure of gravity matter flows within the fluctuation approach,

βgR2 � βgR2 grav − cR2NR2 g
2
R2 ,

∣∣∣∣
βgC2 � βgC2 grav − cC2NC2 g2C2 ,

∣∣∣∣ (108)

where cR2/C2 are positive coefficients and NR2/C2 are weighted
sums (positive weights) of the numbers of scalars, vectors, and
fermions. All matter contributions have the same sign, which is
the same as that of the gravity–ghost, which is computationally
similar. (For explicit computations in the background field
approximation, see, e.g., 58, 183, 186, 219.)

The quantitative evaluation of 108 depends on the full
fluctuation flows in pure gravity including flow contributions
from curvature-squared invariants. Here, we concentrate on the
structure of the β-function of the R2 coupling, βgR2 . The matter
contributions are subtracted from the positive Einstein–Hilbert
gravity contribution (see cEH in 104). For a critical number of
matter fields, the complete contribution vanishes, and we are left
with a system that resembles the pure gravity curvature-squared
system. This mechanism is very similar, leading to the
Caswell–Banks–Zaks fixed point in QCD discussed before.
Note that in contradistinction to the minimally coupled
system, the matter contribution cannot be absorbed in the
pure gravity contributions, as they are related to

R2log(1 + R/k2) terms. This is visible in the limit of large
curvatures (see, e.g., 183). This qualitative analysis has to be
sustained with a quantitative computation based on pure gravity
flows including higher curvature terms. Such a computation
requires improved truncations with the properties i) and ii).

We close this chapter with a brief overview of investigations of
gravity–matter systems within the background field or hybrid
approximations. In 219, gravity–matter systems in the minimally
coupled approximation were investigated in a hybrid approach:
while most contributions to the flow have been computed in the
background field approximation, the matter parts of the
anomalous dimensions have been computed in a fluctuation
approach setup. Within this approximation, destabilizing
effects for scalars and fermions and stabilizing effects for
gauge fields were found. The destabilizing result for fermions
in 219 is an artifact of the background field approximation, as
discussed in destabilizing result for Section 8.5: the background-
metric dependence of the regulator influences the (de)stabilizing
property of minimally coupled fermions. However, this does not
imply that the background field approximation breaks down for
all gravity couplings. The results of 201, 202 showed that in
particular, the most UV-relevant operators have to be taken from
a fluctuation computation, that is, most importantly the graviton
mass parameter µ. In turn, the background and the fluctuation
Newton coupling behave rather similar under the influence of
minimally coupled matter fields. The sign of leading-order
contribution agrees: the scalar and fermionic contribution to
the beta function of the Newton coupling at O(g2) is positive,
while the gauge contribution is negative.

In summary, the investigations of gravity–matter systems
within the fluctuation approach open a systematic path toward
reliable stability investigations of fully coupled matter systems as
well as that of phenomenological consequences for high energy
physics. Still, fully reliable results require a systematic and
qualitative improvement of the current truncations. This is the
subject of current work in the community.

8.6 Effective Universality
In the vertex expansion 68, we have introduced the couplings gn
for each graviton n-point function as the running couplings of the
Ricci scalar tensor structure ( �

g
√

R)(n) (see Section 8.3). In a
diffeomorphism-invariant approach, these couplings would
agree. In turn, in the present gauge-fixed approach, these are
different avatars of the Newton coupling. While not being
identical, gi ≠ gj, they are related by nontrivial mSTIs (65).

This is similar in non-abelian gauge theories, where different
avatars of the running strong coupling αs � g2/(4π) can be
derived from different correlation functions, both from pure
glue vertices as well as glue–matter vertices. (For a detailed
discussion, see 167, 168, 170 and the recent review 27.) The
β-functions of all the avatars of the strong coupling are two-loop
universal in mass-independent renormalization schemes, or may
also define an RG scheme with the requirement that β-functions
agree to all orders. However, the standard fRG renormalization
scheme is mass-dependent, so even two-loop universality is not
guaranteed. More importantly, identical β-functions do not
necessarily lead to an identical momentum dependence.
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Indeed, in non-abelian gauge theories, the momentum
dependence of different avatars of the running strong coupling
differs already at the universal two-loop order, which can be also
shown from the STIs. Additionally, in the strongly correlated IR
regime of a non-abelian gauge theory, the fRG β-functions and
the momentum dependence of the running couplings differ
significantly. Some of them, that is, the three-gluon coupling,
even switch sign, while others, that is, the ghost–gluon and four-
gluon coupling, stay positive [168].

In gravity, the situation is even more intricate. To begin with,
the Newton coupling is dimensionful, and hence, the β-functions
of the avatars of the Newton coupling are not universal, leaving
aside an identical momentum dependence. Additionally, as
already mentioned in the context of non-abelian gauge
theories, the standard fRG renormalization schemes are
typically mass-dependent, which adds to the differences, as do
truncations.

Effective universality is the concept that in particular at the
fixed point, where gravity is in a scaling regime, and the quantum
theory is dominated by the diffeomorphism invariance of the
underlying theory. If this scenario applies, the β-functions and the
momentum dependence of different avatars of the Newton
coupling should agree or are rather be close to each other on
the asymptotically safe UV fixed point. This concept would apply
to all couplings, and in particular, the λn can be understood as
avatars of the cosmological constant. Additionally to the Newton
couplings from the Ricci scalar tensor structure, we have further
avatars of the Newton coupling stemming from the
gravity–matter correlation functions.

Given the presence of truncations in explicit computations, the
impact of nontrivial mSTIs and the nonperturbative nature of the
UV fixed point, it is left to define a measure for effective
universality. In 93, 203, it was quantified how these avatars
differ at the UV fixed point using the measure

εij(g, μ, λ3) �
∣∣∣∣∣∣∣∣∣∣
Δβgi − Δβgj
Δβgi + Δβgj

∣∣∣∣∣∣∣∣∣∣
gi�gj�g

, (109)

where Δβgi is the anomalous part of the β-function βgi obtained by
subtracting the canonical running

Δβgi � βgi − 2 gi. (110)

In 203, five avatars of the Newton coupling were included
stemming from the three-point functions, Γ(hhh)k , Γ(cch)k , Γ(φφh)k ,
Γ(ψψh)k , and Γ(AAh)k . Thus, the set of gi is given by
i ∈ {h, c,φ,ψ,A}, where gh � g3 in the previous notation. In 109,
the β-functions are identical for εij � 0, and we have full
universality. A small value of εij indicates almost identical
β-functions and thus “effective universality.” In 203, these small
values were estimated to be εij < 0.2. This estimate is based on a
systematic error estimate of the used truncations and the impact of
the mSTIs. In turn, a larger value of εij shows that universality is
strongly broken and that the mSTIs are highly nontrivial.

The universality measures εij are functions of all couplings,
and we display them in Figure 10 for gi � g*h as functions of µ and
λ3. Remarkably, the UV fixed point lies in the green area, which
signals ε< 0.2, and thus, effective universality holds. As discussed
above, this statement is nontrivial since the mSTIs can introduce
large differences between the avatars, in particular, if the fixed
point is highly nonperturbative. In turn, this result gives a strong
hint that the UV fixed point is in the semiperturbative region.
Interestingly, a semiperturbative behavior was also found in
large-order Ricci scalar expansions of the effective action in
the background field approximation [108–110, 172, 173].
There it was found that the critical exponents of the high-
order curvature invariants are close to their canonical values.

We emphasize that the observed effective universality is a
highly nontrivial result. If it can be sustained in further analyses, it
is presumably dynamical. This conjecture is supported by the
following observation: for a marginal universal coupling, one may
simply compute one avatar of the coupling and identify the other
avatars with the computed one. In turn, in a theory like gravity,
where the effective universality is potentially generated
dynamically, this may only work in specific RG schemes. One
may even define a natural RG scheme by ϵij ≡ 0. This entails that
in other RG schemes, only a subset of the couplings will have the
natural β-functions. Note that the latter property is additionally
triggered by the inherent truncations of explicit computations.

In any case, within a given RG scheme, some of the β-functions
may satisfy ϵij ≡ 0, while others may not. The identification of all
avatars of the given coupling with a specific one will only work if the

FIGURE 10 | Effective universality of the different avatars of the Newton coupling as a function of µ and λ3. The regions of effective universality are defined with
εij < 0.2 according to 109. The red cross indicates the UV fixed point, which lies in the region of effective universality. The figure is taken from 203.
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latter coupling is chosen from the natural subset. Such an
identification is an implicit way of enforcing the natural RG
scheme. In turn, if all couplings are identified with an avatar
which is not in the natural subset, the system may be corrupted.
This can even lead to a loss of the fixed point.

In gravity–matter systems, we indeed observe, in given truncations,
such a behavior: if all avatars of the Newton coupling are identified
with the three-graviton coupling gh, that is, gi � gh, the results are
close to the full ones with multiple avatars of the Newton coupling. In
turn, identifying all avatars of the Newton coupling with a
gravity–matter avatar fails. In summary, this hints at a surprisingly
complicated interaction structure in gravity–matter systems. Its origin
is yet to be understood and may give us further valuable insights into
the dynamics of these systems. In short, these investigations of effective
universality indicate a close perturbativeness of the UV fixed-point
regime of asymptotically safe gravity.

9 SUMMARY AND OUTLOOK

In this contribution, we have reviewed the state of the art of the
fluctuation approach to quantum gravity. This approach is based
upon the computation of the correlation functions of the
dynamical graviton fluctuation field hμ] within a systematic
vertex expansion. This can be done within general
parameterizations of the full metric, but most results have
been achieved in the linear split, gμ] � gμ] + hμ]. While the
correlation functions of the fluctuation field are not
observables by themselves and carry a gauge dependence, the
computation of observables in quantum gravity requires the
knowledge of the fluctuation correlation functions, and they
indeed encode the dynamics of quantum gravity.

By now, the fluctuation approach has matured (see the
overview of the results in Section 8). We see signs of apparent

convergence of the results in pure gravity. Moreover, by now, we
can reliably evaluate the stability of general gravity–matter
systems. In combination, the fluctuation approach now allows
for reliable physics predictions for the UV regime of
asymptotically safe gravity including its unitarity. The
approach also allows for reliable physics predictions for the
“IR” particle physics within the asymptotically safe
standard model.
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APPENDIX A NOTATION

Our convention for functional derivatives are given by

δJμ1/μn(x)
δJ]1/]n(y) �

1�
g
√ δ(x − y) δ(]1μ1

/δ]n)μn
, (A1)

where the parenthesis in the superscript of the Kronecker-δ’s
stands for the symmetrisation of the indices including a
normalisation factor 1/n!. For example we have

δhμ1μ2(x)
δh]1]2(y) �

1�
g
√ δ(x − y) 1

2
(δ]1μ1δ]2μ2 + δ]2μ1δ

]1
μ2
) . (A2)

This leads to the correlation functions of the fluctuation fields
as given in Ref. 14.

The metric cab in field space is diagonal for bosons φ, and is
symplectic for fermions ψ,ψ,

(cabφ ) � 1 , (cabψ ) � ( 0 1
−1 0

) , (A3)

with the Northwest-Southeast convention

ϕa � cabϕb , ϕa � ϕbcba . (A4)

These definitions entail

cab � δab , and(cφ)ab � δab , (cψ)ab � −δab , (A5)

more details can be found in Ref. 21.

APPENDIX B PONTRYAGIN INDEX IN U(1)
GAUGE THEORIES

The Pontryagin index P of a four-dimensional U(1)-gauge theory
in flat space is a simply example for a topological index in quantum
field theory. For general field configurations it is a non-vanishing
integer on manifolds such as T4, the four-dimensional torus, e.g.,
underlying standard lattice simulation. We write in general

P[A, θ] � 1
32π2

∫
x

θ(x)Fμ]~Fμ]
, P[A, 1] ∈ Z , (B6)

with the Pontryagin index P[A] � P[A, θ � 1]. The (dual) field
strength, Fμ] and ~Fμ], are given by

Fμ] � zμA] − z]Aμ , ~F
μ] � ϵμ]ρσ

2
Fρσ . (B7)

In momentum space P[A, θ] reads
P[A, θ] � ϵμ]ρσ

16π2
∫
p,q

θ(−(p + q)) pμA](p) qσAρ(q) , (B8)

The flow of θ has been studied in Ref. 193 for the topological
charge in Yang-Mills theories. Two derivatives with respect to the
gauge field in momentum space lead us from Eq. B8 to

δP[A, θ]
δAα(p)δAβ(q) � ϵαβρσ

8π2
pρqσ θ(−(p + q)) . (B9)

For a topological term with constant θ � θtop we have
θ(l) � θtop(2π)4δ(l). Inserting this choice into Eq. B9, the
term vanishes with ϵαβρσpρpσ � 0.
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