
Spreading of Failures in Small-World
Networks: A Connectivity-Dependent
Load Sharing Fibre Bundle Model
Zbigniew Domanski*

Institute of Mathematics, Czestochowa University of Technology, Czestochowa, Poland

A rich variety of multicomponent systems operating under parallel loading may be mapped
on and then examined by employing a family of the Fiber Bundle Models. As an example,
we consider a system composed of N immobile units located in nodes of a network G and
subjected to a growing external load F imposed uniformly on the units. Each unit,
characterized by a load threshold δ, is classified as reliable or irreversibly failed,
depending on whether δ is bigger, or respectively smaller, than the load felt by the
unit. A pair of interdependent units is uniquely indicated by an edge of G. Initially all the
units are reliable. When a unit fails, its load is distributed locally among interdependent
neighbors if they are reliable, or is otherwise shared globally by all the reliable units.
Because of the growing F and the loads that are transferred according to such a see-saw
switch between the local and global sharing rules (sLGS), a set of nodes, that holds the
reliable units, evolves as G→∅. During the evolution, a subset Gc ⊂ G emerges that
represents the limiting state of the system’s functionality when the smallest group of nc
reliable units sustains the highest load Fc. We concentrate on how the Fiber Bundle Model
and switching Local-Global-Sharing conspire to drive the system toward Gc. Specifically,
we assume that {δ}G are quenched-random quantities distributed uniformly over (0, 1) or
governed by the Weibull distribution and networks G are the Watts-Strogatz “small-world”
graphs with the rewiring probability p that characterizes possible rearrangements of edges
in G. We have identified a range of values of p, where the mean highest load
fc(N) � 〈Fc〉/N, supported by reliable units, scales linearly with the average global-
clustering coefficient of the host network. Similar scaling holds for 〈nc〉 and 〈Fc/nc〉.
We have also found that in the large N limit fc(N)→ f∞c > 0, for all values of p and both
considered distributions of {δ}G. The symbol 〈 . . . 〉 represents averaging over {δ}G and a
suitable ensemble of networks {G}.
Keywords: failure evolution, fiber bundle model, switchable load sharing, simulations, small-world network,
statistics

INTRODUCTION

Numerous systems, encountered in nature as well as in different areas of science and technology, are
multicomponent, i.e., they are composed of a great number of functionally identical units. When
loaded, the units process a given task in a fully parallel manner. It happens, however, that a unit
becomes overloaded and fails. Its load has to be undertaken by other units, which in turn may trigger
subsequent overloading followed by resulting failures. Such a chain of failures gradually degrades the
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system performance and leads to an avalanche of failures. It may
even happen that the avalanche becomes self-sustained giving rise
to a catastrophe which overwhelms all the units. Different factors
characterize a given system. This is important to identify those
working together that push the system toward the catastrophic
avalanche.

The Fiber Bundle Model (FBM) is a particular case of a wide
class of cascading processes on networks [1]. It offers a flexible
approach to study how multicomponent systems evolve under
varying load [2–8]. The flexibility refers to such aspects as: a)
range and symmetry of interactions among units [9], b) rate of
load’s variation, c) heterogeneity/uniformity of units [10, 11]),
or d) varying quality of units [12, 13], to name a few. The aspects
a) and b) especially refer to ingredients of the FBM that play a
major role when a given system is mapped onto a bundle of
interacting fibers [14]. Exemplary problems, from an ample set
of systems expressed in the FBM framework, cover research
fields that span from geophysics including earthquakes, snow or
landslides, to technology with electrical and mechanical
engineering systems.

In this context, we consider a toy model of failures spreading
in a set of interconnected units. Our model consists of N units
that reside at nodes of an undirected simple graph G whose
edges represent pairs of interdependent units. The units are
either reliable or irreversibly failed, and we assume that an
externally applied load F is distributed identically on all reliable
units. When F starts growing, some units begin to suffer from
insufficient strength to bear the load and they fail. Their loads
remain in the system and are shared either by the nearest
neighboring units, if they are reliable, or by all other reliable
units. If on a given node a failure emerges, this node is removed
from the graph together with corresponding edges, i.e., G is
reduced to G′ ⊂ G. This means that under growing F, an initially
connected G evolves toward the empty graph. In other words,
unbounded growth of F pushes the set of reliable units to
extinction. If the growth of F is sufficiently slow, then a
distinct group of reliable units may be selected in the course
of evolution:

G0IG(F > 0)IG(F′ > F)I . . .IG(Fc > . . . > F)→∅ (1)

This group, identified by nodes of Gc � G(Fc), is the smallest
group of units that remain reliable under the highest load Fc, i.e., a
load F > Fc will trigger an ultimate, self-sustained avalanche of
failures that overwhelms the entire system. The chain of
inclusions 1 displays graphs that are stable under consecutive
values of F whereas intermediate graphs, induced exclusively by
loads sharing processes to be precise, are omitted for the sake of
simplicity. We use the subscripts “c” to mark that the load Fc is
critical to the systems and that Gc represents the smallest non-
empty stable configuration that precedes extinction. We call this
configuration the critical configuration.

Within this work we are interested in questions like: how small
a group of units can be and/or to what extent we can apply the
external load while still preventing the extinction of reliable units.
Subsequently, we apply the FBM to study evolving failure on
“small-world” networks that are omnipresent in life and
technology. Specifically, we will focus on a family of random

graphs generated by theWatts-Strogatz model [15]. The reason is
that such graphs reveal short average path lengths and high
clustering that are key features of social networks [16].

MODEL DESCRIPTION

Take a locally overloaded system which detects a failure of a unit.
In the first instance the system attempts to solve the problem
locally by distributing the load among nearest neighbors of the
failed unit. If such a neighborhood does not exist, the entire set of
reliable units is engaged into sharing the load from the unit being
lost. Such a mode of load transfer yields a significant impact on
the system’s strength. Whenever an island of reliable units
emerges during the evolution, its terminal load is shared
globally by the system. This means that the net load
transferred to reliable units that are located on the outer
island’s perimeter is lower than it would be if the local load
sharing (LLS) rule has been in operation. In consequence, the
switching Local-Global-Sharing (sLGS) mitigates the expansion
of a dominantly large cluster (DLC) of failed units and thus, the
strength of the system becomes higher than that one
corresponding to the LLS rule [5].

In the following, we consider an ensemble of units assigned
to nodes of a graph G and characterized by quenched load
thresholds {δ}G. Each unit, initially considered reliable, either
stays reliable or switches irreversibly to failed if the load, acting
on the unit becomes higher than corresponding δ. Units are not
perfect and differ in their efficiency to sustain the load. Hence,
the corresponding δs are different. For the sake of simplicity we
assume that {δ}G are quench-random quantities. We employ two
distributions, assuming that thresholds are: i) uniformly
distributed over the segment (0, 1) or ii) assigned according
to the Weibull pdf. Specifically, the second distribution is
employed to analyze networks with components of
technological nature.

Watts-Strogatz Model and Small-World
Networks
There exists an ample set of papers that discuss the Watts-
Strogatz model in details [17]. Hence, for the purpose of our
model, it is sufficient to present the simplest exemplary graph and
sketch how its modifications enable a smooth passage from an
ordered network to disordered ones through a multitude of
“small-world” graphs. One such passage is shown in Figure 1.
The presented graphs are generated in two steps:

• a ring over N nodes is created and each node is connected
with its k nearest neighbors, k is even.

• for every node with uniform independent probability p, each
edge is rewired to a node that is selected uniformly at
random while avoiding loops and edge duplication.

These steps are illustrated in Figure 1, e.g., the first step
corresponds to the graph with p � 0. In simulations we will
employ graphs with k � 4.
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Among the different characteristics of a network, one is
particularly important in the view of our study, namely the
global clustering coefficient C defined as:

C � 3 × number of triangles
number of connected triples

, (2)

where nodes of a triangle form a 3-clique, and a connected triple
is a tree.

Applying External Load
We have assumed the external load F is distributed identically on
all reliable units. Consider a load fi that locally acts on i-th unit,
out of M reliable ones that are present at a given stage of
evolution. This fi combines F/M with a load generated by
shared loads agglomerated from previous failures that affected
other units. An important feature of such a process is that the
shared loads transferred from failed units and the externally
applied load may together activate bursts of subsequent
failures. The bursts may become self-sustained and they either
eliminate all the reliable units or they cease and freeze the system
in a stable configuration.

We consider a configuration G(F) being stable, if under a
given F all reliable units keep their states unchanged. When no
reliable unit exists the corresponding configuration is the empty
graph ∅. Along with this notation, { f (Ft)}G(Ft ) is the pattern of
load detected locally at nodes of G(Ft).

In order to identify Fc, along with the size of the smallest set of
reliable units, we increase the load stepwise, according to the
method known as quasi-static loading. In detail, when F � 0 all
units are reliable and the initial configuration is stable.
Consecutive load steps are adjusted according to the rule: if
Ft > 0 and the system attains a stable configuration G(Ft), then
Ft+1 � Ft +min[{ f (Ft) − δ}G(Ft)] will either drive the system to
another stable configuration G(Ft+1) or initiate an avalanche of
failures that destroys all still reliable units, i.e., the system reaches
the configuration ∅.

From this, we derive the stopping rule:

G(Ft)≠∅∧G(Ft+1) � ∅0Ft � Fc∧nc � |G(Fc)| (3)

where nc � |G(Fc)| is the size of G(Fc), i.e., the size of the smallest
group of reliable units. We use this rule in simulations.

Load Sharing Rule
The load transfer requires a rule that indicates how a load released
by a failure is shared by other reliable units. We define our rule in
a following way: the reliable network neighbors are obliged to
equally share the load if they are accessible and all the reliable
units acquire the load in the contrary case.

From this definition’s point of view, our rule “dynamically”
switches between two rules, which are known in the FBM
framework as global load sharing (GLS) and LLS. These rules
correspond to two extremal ranges of load transfer. In the GLS
rule, a load originating from a failed unit is transferred equally to
all the reliable units and thus, the range of transfer is maximal.
The LLS rule, in turn, engages only the nearest neighbors of a
node that fails, so the range of load transfer is minimal. As a
consequence, the load distributed according to the GLS rule is the
least harmful for the system, whereas the LLS represents the most
damaging method of the load distribution.

In simulations, we call this rule the sLGS and assume that the
load transfer is an almost instantaneous process that happens
simultaneously. We can mathematically express the sLGS in a
framework for cascading processes on networks [18]. For this
purpose, let ÂG be the adjacency matrix of G, whose nonzero
entries Aij

G � 1 appear only if the units i and j are interdependent
and let ki � ∑ |G|

j≠ i A
ij
G denotes the degree of node i at the stage tG of

evolution characterized by G. With this notation, a fraction of
load fi transferred from the failed unit i to a reliable unit j reads

Δfj←i � [Aij
G ·

1
ki
+ (1 − Aij

G) 1

|G| − nG
] · fi, (4)

where nG represents the number of nodes that fail at the stage tG
and are not neighbors to site i.

Equation 4 has a structure that resembles schemes of load
transfer known from the literature. Namely the mixed-mode load
sharing (MMLS) [19] and the heterogeneous load sharing (HLS)
[20] merge together the LLS and the GLS in order to study a

FIGURE 1 | Exemplary “small-world” networks generated by the Watts-Strogatz model with mean node degree k � 4 and growing probability p of rewiring.
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crossover behavior in FBM on regular lattices. The MMLS
employs a constant quota q to split each transferred load into
two streams: a portion q of the load goes to nearest neighbors
under the LLS rule and the remaining portion is transferred
according to the GLS rule. Thereby, the MMLS folds the LLS and
the GLS in a manner that both rules are simultaneously activated
in each failure. This is in contrast to the HLS, which in turn
assigns units to two groups in order to discriminate between units
located in “rigid nodes” and those residing in a “flexible” fraction
of the support. If the “rigid” unit fails then the GLS transfers its
load whereas the LLS governs the transfer from the “flexible” unit.
The MMLS and the HLS are static, i.e., the corresponding values
of q and sets of nodes at which q-weighted sharing rules operate
are chosen and fixed prior to loadings. We also want to mention
the modified LLS rule [21]. By employing the scheme
Δfj←i � Aij

G · (fi/ki), this rule sheds loads released from isolated
clusters of failed nodes rather than transferring these loads to
remaining intact parts of the system.

It is worth noting that rules, similar to the sLGS have been
applied recently in such contexts as a strategy for stopping failure
cascades [22] or clogging in multichannel supply systems [23].

A Range of Possible Applications
The above-described load sharing rule operating among units
interconnected through a small world network may serve as a toy
model of cascading failures in economy or technology. A general
scenario we have in mind concerns a default initiated by an
unsupported on-site demand that spreads through the system in a
form of a contagion from the defaulter, either to units which are
closely associated or to other ones. Clearly, when a unit switches
into default this affects other units. Depending on the context,
units could be: a) institutions, as, e.g., banks belonging to an
interbank network, b) workers with beneficial loans from a

company, borrowers in micro financial markets or c) elements
of power grids, especially of small scale smart grids. With this
same spirit a load could be seen as a demand, e.g., for liquidity or
electric power. Below we list some basic facts that are relevant to
our model.

Interbank Market
Undirected graphs are suitable to modeling interbank networks,
especially in the context of a financial contagion [24, 25]. Among
representations which are convenient and applied in studies, a
possible one connects a pair of banks by an undirected edge
whenever there exists an interbank liability or claim [25]. When
an ensemble of interdependent banks is mapped onto a graph,
one can analyze its static and dynamic properties. A class of small
world graphs certainly is relevant in this context. It was shown,
e.g., that the interbankmarket of ∼ 900 Austrian banks is a small-
world network [25].

Microeconomy
Many companies offer beneficial loans to its employees.
Specifically, to those suffering financial troubles. These
employees-debtors, being colleagues and friends, are frequently
mutual guarantors and can thus be considered as members of a
resulting social network.

Power Grids
The small world topology is frequently reported as present in
power grid networks [26–28]. This is equally true for large scale
installations involving nationwide power systems in the US or
Europe as well as for medium or small power grids [29, 30].
Particularly, in smart grids of renewable energy sources, such as
small-scale photovoltaic systems or small-wind turbines [31, 32],
the small world topology is beneficial. For example, networks

FIGURE 2 | Calculated distributions of Fc/N (left diagram) and nc/N (right diagram) for an increasing number of units: N � 100 (white triangles), N � 200 (black
triangles), N � 400 (white diamonds) and N � 600 (black diamonds). Each value of N corresponds to a population of 2,500 load thresholds {δ i}i ∈ {1,...N} distributed
uniformly over (0, 1) and an exemplary Watts-Strogatz graph with p � 0.2. The solid lines are drawn according to Eq. 5with parameters estimated from the simulations.
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with small world connectivity can significantly enhance their
robustness against different attack by simultaneous increase of
the rewiring probability and average degree [33].

RESULTS AND DISCUSSION

In order to acquire data necessary to build reliable empirical
distributions, we have adopted two computational schemes that
correspond to small and large numbers of units. In the first
scheme, for each N, an ensemble of Mδ load-threshold
distributions {δi}i∈ {1,...N} is generated. Then, for each selected
value of p ∈ [0, 1] a separate ensemble {G(s)(N , p)}s�1,...,MG of
Watts-Strogatz graphs G(N , p) is formed and stored. This
means that for each chosen pair (N , p), two corresponding
ensembles {δi}i�1,...,N and G(N , p) allow us to probe Mδ ·MG
different realizations of failure evolution for the uniform as well
as for the Weibull distributions of {δ}. To study networks with
N ≤ 103, we employ the first scheme with Mδ � 2500 and
MG � 400. The second scheme involves systems with
1, 200≤N ≤ 21, 600. For each chosen values of (N , p), a set
consisting of 104 pairs ({δi}i�1,...,N,G(N , p)) is generated. The
two computational schemes allow us to probe 106 or 104

different realizations of failure evolution for a small or large
N regime, respectively.

We use both computational schemes for uniformly distributed
load thresholds. In simulations with the Weibull distribution we
consider ρ � 2, 3, 5 and 8. For all these ρ we conduct simulation
following the first computational scheme. In the large N limit, we
restrict ourselves to distributions with ρ � 2 only.

Subsequently, when averaging a quantity Y over either {δ} or
{G} alone, we denote the respective mean by Y

δ
and Y

G
, whereas

the symbol 〈Y〉 refers to averaging Y over both ensembles.

Maximal Supported Load and Minimal
Number of Reliable Units
Following the described computational schemes, we have
collected large data sets containing detailed information about
how the maximal load, together with the minimal number of
units, vary when we pass through all pairs {δi}i�1,...,N,G(N , p) of
stored ensembles.

The gathered data turn out to be skewed independently of
what distribution governs {δ}. Specifically, the data pointed to Fc
are positively skewed whereas the data related to nc reveal
negative skewness. This can be seen in Figure 2 for chosen
values of N and p � 0.2. Interestingly, we were able to fit all
data by one family of probability distributions (p.d.), namely by
the three-parameter skew-normal p.d. [34] defined as:

ϕ(x) � erfc( − α x−μ�
2

√
σ)���

2π
√

σ
exp[ − (x − μ�

2
√

σ
)2], (5)

where μ, σ and α are the location, scale and shape parameters,
respectively.

We have rigorously examined the data sets employing a
number of goodness of fit tests, including the Cramer-von
Mises and Anderson-Darling tests [35] and have accepted
ϕ(·), Eq. 5, as the distribution that best fits the empirical
distributions of Fc/N and nc/N . A selection of correct
distribution for gathered data sets is an important task.

FIGURE 3 | Estimated functional dependence of μF on rewiring
probability p: μF � a + b(1 − c · p)3, with a � 0.2128 ± 0.0006, b �
0.01228 ± 0.005 and c � 0.741 ± 0.079 for N � 100. Each data point
corresponds to averaging over 106 samples.

FIGURE 4 | Scaled mean critical number of reliable units 〈nc〉/N for
N � 100. The sample size equals 106. The Inset shows empirical distribution
of nc/N computed from 2,500 uniform distributions of load thresholds for an
exemplary Watts-Strogatz graph with p � 0.2.
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Appropriate methods exist to establish confidence sets and
perform hypothesis tests, including an universal procedure
[36]. In this regard we should mention that a substantial
portion of our data sets is satisfactorily modeled by the three-
parameterWeibull p.d. also.We opt, however, for representing all
data by Eq. 5 because the skew-normal p.d. works correctly for
almost all data sets and for those when both models are

acceptable, the skew-normal p.d. returns higher values of
maximized likelihood function and greater p-values than the
Weibull p.d.

We have also estimated values of the parameters μ, σ and α.
The gathered data yield estimate functional dependences of μ, σ
and α on model parameters N , p and ρ. As an example, consider
empirical p.d. of Fc/N related to different values of rewiring
probability p ∈ [0, 1]. The corresponding skew-normal p.d.
reads:

FIGURE 5 | Left panel: The logarithmic size dependence of system strength for networks that: are ordered (p � 0), disordered (p � 1) and correspond to the
weakest system (p � 0.06). The lines are drawn following Eq. 7 with coefficients shown in the right panel. Right panel: The ultimate system strength f∞u and exponent α
(Inset) computed for different values of p according to the best fit given in Eq. 7. Black marks represent the best fit to data of which some examples are shown in the left
panel. The error bars indicate 95% confidence intervals. Data in both panels refers to {δ} distributed uniformly over (0, 1).

FIGURE 6 | The system’s strength scaled by size in the large N limit.
Inset: the logarithmic dependence of scaled system strength for: p � 0.02
(minimum of f∞w ), p � 0.11 (Bw ∼ 00f∞w ∼ 1/log(N), see Eq. 8 and Figure 7)
and p � 1 (maximally disordered network). Data correspond to the
Weibull distribution of {δ} with ρ � 2. The sample size is equal to 104 for each
data point.

FIGURE 7 | Amplitudes Aw (Inset) and Bw of fc in the large N limit for
systems with {δ} governed by the Weibull p.d., see Eq. 8. Each data point
results from an averaging of over 104 samples.
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ϕ(Fc/N , N , p) � erfc( − αF(N , p) Fc/N−μF(N ,p)�
2

√
σF(N,p) )���

2π
√

σF(N , p)
exp[ − (Fc/N − μF(N , p)�

2
√

σF(N , p) )2].
(6)

We have directly written that μ, σ and α are functions of N
and p whereas parameters characterizing distributions of {δ} are
omitted. We have estimated the functional dependences of
these coefficients on model parameters. For instance, in
Figure 3, we present how the location parameter μ varies
with p, while keeping constant values of N. The resulting
fitting function turns out to be a polynomial of the third
order in p.

Since the location parameter μF grows with p and Fc/N is
positively skewed (αF > 0) then the corresponding mean 〈F〉c/N
increases. This is because 〈Fc〉/N � μF +

�
2

√ · αF · σF/
��������
π(1 + α2)√

.
Similar calculations yield estimators related to nc and Fc/nc. As an
example, an average critical number of units 〈nc〉/N is presented
in Figure 4 for uniformly distributed {δ}. Data related to the
Weibull distribution with exemplary values of ρ are displayed in
Figure 12.

It should be pointed out that when p is growing, the resulting
networks become more and more disordered and the
probability that a given node has a low degree increases.
Hence, the sLSG activates all the reliable units more
frequently than it happens in networks generated with a
small value of p.

Large N Limit
Even though the applications mentioned in Section 2.4 refer to
networks composed of about 102–104 units, it is worth addressing
the questions on how the sLGS drives a very large system and how
such the system converges to attain its ultimate strength. In the
following we report relevant details.

It is known that the LLS model on a complex network behaves
similarly to the GLS model giving rise to a non-vanishing critical
strength fc in the large N limit [5]. Formally, the family of Wats-
Strogatz graphs covers the spectrum of networks ranging from
the locally regular (p � 0) to the maximally disordered (p � 1)
ones. The locally regular network is the only exception in this
family because under the LLS the strength fc decays
as ∼ 1/log(N). Is this thus obvious that, the sLGS, by
switching between the LLS and the GLS, does the same?

Based on results of simulations of large-N systems, we have
found that: i) fc → f∞c > 0, ii) f∞c depends quantitatively on p and
{δ}G0

, and iii) f∞c depends qualitatively on probability distribution
that generates {δ}G0

. For the uniform p.d.

f uc (z � 1/log(N), p) ∼ f∞u (p) + Au(p) · zα(p) (7)

while for the Weibull p.d. the best fit reads

f wc (z � 1/log(N), p, ρ) ∼ f∞w (p, ρ) + Aw(p, ρ) · z + Bw(p, ρ) · z2,
(8)

where the subscripts u and w stand for the uniform and Weibull
distributions, respectively. The estimated system’s strength f∞u
and the exponent α are displayed in Figure 5. Correspondingly,
for the Weibull p.d. f∞w is presented in Figure 6 whereas the
amplitudes Aw,Bw are shown in Figure 7.

These plots illustrate a variety of ways in which fc converges
toward f∞c . For both distributions of {δ}, the locally regular
network (p � 0) sustains f∞c > 0. For small values of p the
ultimate system strength rapidly decreases, attains its
minimum and then increases. Until p ∼ 0.2 the growth of fc is
fast, then moderate, until p ∼ 0.5. For p> 0.5 the strength varies a
little and saturates around value 0.77 × f∞c (GLS), where
f∞c (GLS) is the ultimate strength for the GLS rule,
i.e., f∞c (GLS) � 0.25 for uniformly distributed {δ} and f∞c (GLS) �
(ρ · e)− 1/ρ for the Weibull distribution. As shown in Figure 7,
except for p<∼ 0.003, the amplitude Bw is negative up to
0.11< p* < 0.12, then becomes positive. This means that
f wc (1/log(N)) is concave down for p< p*. Therefore, the speed
of convergence of f wc (1/log(N)) grows when 1/log(N) tends to
zero. Passing p*, the function f wc becomes concave up and the
speed of its convergence toward f∞w slows down.

A deep minimum of f∞u at p ∼ 0.06, seen in Figure 5, and
correspondingly that of f∞w at p ∼ 0.02, displayed in Figure 6,
result from an interplay between a slightly perturbed order of the
locally regular network and the activity of the GLS-component of
the sLGS rule. This can be qualitatively explained by adopting
arguments formulated in [5]: (i) when a complex network is
progressively loaded, the FBM with the LLS rule behaves as the
GLS model because clusters of failed units appear, continuously
grow and glue into a DLC, (ii) due to the small-world effect,

FIGURE 8 |Mean critical load per reliable unit: white plot marks - internal
load 〈Fc/nc〉 and black plot marks - external load 〈Fc〉/〈nc〉. The sample size
is equal to 106 for each data point. The dashed lines are only visual guides.
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reliable units remain closely to each other and to the DLC and
thus, the system resembles the GLS model, (iii) on an ordered
network which is spatially uniform, clusters of failed units
originate and extend in an equal condition and the DLC
emerges abruptly. Now consider the argument (iii) in
conjunction with the sLGS rule engaged on a network with
p ∼ 0. Since the network is almost regular and highly clustered
the LLS component prevails over the GLS one in the early stages
of the loading process. The sLGS rule with its frequently activated
LLS component continues operating until the network becomes

fragmented. Then, the GLS component starts to allocate
terminal loads from failed fragments to units that are still
reliable. From there, the process behaves similarly to that
with the GLS rule. Contrary to the case of the LLS rule, the
resulting system strength does not vanish. It is, however, smaller
than that corresponding to the GLS rule. When p increases, the
arguments (i) and (ii) come into the picture. First,
for 0.01<∼ p<∼ 0.1, the average path length begins to decrease
whereas networks are still highly clustered albeit no more locally
ordered. Even that such conditions support a gradual DLC
emergence, the average path length is not sufficiently small
to facilitate the DLC growth. This, combined with the lack of
local ordering favor the LLS component activity on clusters
bigger than those appearing within an almost ordered network.
In consequence, the system strength passes through its
minimum. Networks with p roughly bigger than 0.1 enter a
scenario characterized by the argument (i). The sLGS differs
from the LLS, however. As it was already stated in the beginning
of Section 2, whenever an island of reliable units appears its

TABLE 1 | Estimated coefficients in Eq. 9: 〈Y〉 � u + w · (1 − ξ · p)3, for systems
with N � 100 units and uniformly distributed δs.

〈Y〉 u w ξ

〈Fc〉/N 0.2309 ± 0.002 −0.0120 ± 0.02 1.039 ± 0.032
〈nc〉/N 0.5802 ± 0.004 0.0569 ± 0.002 0.707 ± 0.078
〈Fc/nc〉 0.4042 ± 0.002 −0.0519 ± 0.0015 0.734 ± 0.061
C
G

0.0358 ± 0.0004 0.4605 ± 0.0008 1.099 ± 0.007

FIGURE 9 | (A)Calculatedmean empirical global clustering coefficientC
G
as a function of p for employed sets of 400Watts-Strogatz graphs, each with connectivity

k � 4. The solid line is given by Eq. 9 with: u � 0.0358 ± 0.0004,w � 0.4605 ± 0.0008, ξ � 1.1 ± 0.007, for N � 100 and u � 0.0085 ± 0.0017,w � 0.488 ± 0.001, ξ �
1.076 ± 0.001 for N � 600). The dash-dotted line represents C∞(p) � C(0)(1 − p)3, valid in the limit N→∞, where C(0) � (3/4)(k − 2)/(k − 1) [37]. The diagrams
(B–D) refer to: 〈Fc/N〉, 〈nc/N〉, and 〈Fc/nc〉, respectively on a linear scale for the C

G
. Straight lines represent Eq. 10 and are drawn in accordance with parameters

presented in Table 2. The dashed lines are visual guides. The sample size is equal to 106 for each data point. Load thresholds are distributed uniformly.
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terminal load is transferred by the sLGS to all other reliable units
and not to the closest ones. This inhibits the DLC growth and
increases the system strength correspondingly.

Within our numerical approach, it is difficult to precisely
estimate f u,wc in the very close vicinity of p � 0. For this reason, we
were unable to analyze the continuity of f∞u,w when p→ 0.
Therefore the question arises whether f∞u,w(p � 0) is an isolated
point of the ultimate system strength.

Internal vs. External Load From a
Reliable-Unit’s Point of View
When considering its future reliability, a prospective unit behaves
as an outer observer whose forecast is limited to the external load
F. When entering the system, the unit is confronted with an
internal-load impact. It is thus worth discussing to what extent
these two points of view differ.

We have assumed that during the evolution, the external load
F is distributed identically on reliable units and is growing
stepwise along the rule that was discussed in Subsection 2.3.

Having initially G0 ≠∅, F0 � 0, { f (0)}G0
� {0}G0

, the rule yields
consecutive Ft :

if G(Ft)≠∅ then

Ft+1 � Ft +min[{δ − f (Ft)}G(Ft )]∧G(Ft)→G(Ft+1) ⊂ G(Ft)
else
Fc � Ft∧nc � |G(Fc)|

end if

This iterative chain involves successive patterns of local load
{ f (Ft)}G(Ft) that are strongly affected by the load-sharing rule,
i.e., the mLGS in our case.

Now, consider nt units that are reliable at the stage t of the
evolution. Let us choose one of them, say the i-th unit. This means
that δi > fi, where fi is the local load at node i. When Ft → Ft+1 > Ft
then nt → nt+1 < nt and the pattern of local load becomes
{ f (Ft+1)}G(Ft+1). The state of our chosen unit is now
determined by the difference between the quenched value of δi

and the updated ~f i. While δi remains unchanged, the updated ~f i
increases because of a growing Ft+1/nt+1 > Ft/nt and new shared
loads, possibly assigned to the unit at the stage t. Clearly, internal-
load distributions are subject to non-trivial variations that can be
observed during the evolution.

It is important to make a distinction between impacts of
external and internal loads on units. To obtain a closer look at
these different impacts, we compare Ft/nt with { f (Ft)}G(Ft) for a
given network G(Ft) in the course of evolution. As an illustrative
example, we compare the impacts at critical configuration
resulting from averaging over 106 samples. Figure 8 displays
〈Fc〉/〈nc〉 and 〈{ f (Fc)}Gc

〉 � 〈Fc/nc〉.
Analyzing computed values, we detect that the mean internal

load prevails over the mean external one for all values of p. In
networks withN ∼ 102, the relative difference is of the order of 0.01
and thus, is relevant to a prospective unit. Such a difference should
be taken into account when forecasting long-term reliability,
especially when considering units with low values of their δs.

Small-World Properties at Critical
Configuration
When the sLGS rule is in operation, a load is assigned according
to accessibility of reliable units, i.e., either locally or globally. If the
hosting network reveals a relatively strong local connectivity, then
the sLGS looks like the LLS.

A lasting presence of reliable nearest-neighbours depends on a
connectivity of an underlying network. Independently of the
value of rewiring probability p, random graphs generated by
the Watts-Strogatz model preserve the number of edges and
mean-node degree. This means that when p grows, we pass from
ordered to disordered networks, keeping the numbers of nodes
and edges unchanged. For intermediate values of p, the resulting
networks turn out to be locally clustered, whereas randomly

TABLE 2 | Estimated coefficients in Eq. 10: 〈Y〉 � aN + bN · CG
N , N � 100 and 600, {δ}: distributed uniformly over (0, 1).

〈Y〉 a100 b100 (p− ,p+ )100 a600 b600 (p− ,p+ )600
〈Fc〉/N 0.232+0.001−0.001 −0.0255+0.0003−0.0003 (0.02, 0.60) 0.2127+0.0004−0.0004 −0.0395+0.0005−0.0005 (0.10,0.38)
〈nc〉/N 0.586+0.001−0.001 0.120+0.005−0.005 (0.12, 0.40) 0.5924+0.0008−0.0008 0.2130+0.006−0.006 (0.10,0.38)
〈Fc/nc〉 0.398+0.001−0.001 −0.105+0.005−0.005 (0.12, 0.50) 0.3579+0.0008−0.0008 −0.1640+0.005−0.005 (0.24,0.40)

FIGURE 10 | Mean strength of the system vs. mean global clustering
coefficient for growing number of units. The linear scaling (11) between the
ultimate strength f∞c and C∞ � 1

2 (1 − p3) is clearly seen.
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rewired edges reduce the mean path lengths. Thus, there exists a
range of p, where networks belonging to {G0(N , p)} resemble a so-
called “small-world” environment, i.e., they reveal a relatively
strong clustering and a short mean path length.

We thus expect that the “small-world” properties would mark
their presence in data sets related to Fc, nc and Fc/nc. When
analyzing the data together with values of the global clustering
coefficient C, defined by the Eq. 2 and computed for
corresponding networks, we notice that for a given value of N,
formula

〈Y〉(p) � u + w · (1 − ξ · p)3 (9)

best fits the quantity 〈Y〉 that represents the following mean:
〈Fc/nc〉, 〈Fc〉 and 〈nc〉. Detailed information is presented in
Table 1. Because the same fit (9) also holds for C

G(N , p) we
can relate 〈Y〉 directly to C

G
. Interestingly, it appears that the

corresponding relation is linear for a range p ∈ {p−N , p+N } that
depends on N, namely:

〈Y〉 � a + b · CG
(10)

Figure 9 displays respective relations for systems with
uniformly distributed {δ}. Appropriate coefficients are
presented in Table 2. In the large N limit, the relation (10) is
valid for uniformly distributed {δ}G. An example of such
persistence is shown in Figure 10 where for p ∈ (0.14, 0.44)
the ultimate strength scales linearly as:

f∞u � (0.1982 ± 0.0013) − (0.089 ± 0.007) · C∞, (11)

with C∞ � (1/2) · (1 − p)3 [37]
When sets {δ}G are drawn from the Weibull distribution the

relations (9) and (10) are present in systems with N ∼ 102, see
Figure 11. When ρ>∼ 5 the relation (10) disappears gradually with
an increase in N, as it is shown in Figure 12. This indicates that
when ρ grows an ascending degree of order among load
thresholds homogenizes the system and suppresses the linear
relation between network’s clustering and system’s strength.

FIGURE 11 | Upper panels: Mean system’s strength per reliable unit at critical configuration: (left) as function of pwith solid lines drawn according to 9 and (right)
on a linear scale for the respectivemeanC

G
. Bottom panels: Mean system’s strength andmean number of reliable units at critical configuration, scaled by systems sizeN,

as functions of mean empirical clustering coefficient calculated for corresponding networks. Results were obtained from 106 samples with the Weibull distribution of {δ}
for each data point.
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It should be noticed that the expressibility of 〈 · 〉 in
C
G(N , p) is not due to a kind of approximation or

simplification that come from beyond the model but reflects
a role that the small world structure of networks plays in
maintaining functionalities of systems with strong to moderate
load-threshold-disorder. It is also worth mentioning that the
presented scaling results from: (i) the sLSG rule that allocates
loads and (ii) the quasi-static method of load’s growth. It
remains to be verified whether the scaling (10) is valid for other
loading schemes.

SUMMARY

We have investigated the evolution of failure among units that
live at nodes of “small-world” networks and are exposed to a
growing load. By introducing the sLGS rule of load transfer,
which switches between the LLS and GLS rules depending on
the accessibility of local interdependent nodes, we were able to
mimic unit failures, and thus follow the evolution of the system
toward the limit of its functionality. In particular, by

employing the Watts-Strogatz random graphs to simulate
the networks, we have collected data sufficient to form
empirical distributions of the maximal load Fc, that would
be safely supported by the minimal number nc of reliable units.
These quantities have turned out to be skewed and adequately
fitted by appropriate skew-normal distributions. The obtained
distributions reflect: i) how Fc, nc and Fc/nc depend on number
of units, and ii) how strongly they are affected by an amount of
a network’s disorder, which is controlled by the rewiring
probability p with which the links among interdependent
nodes are modified.

The simulations show that if p is within the range of values
given in Table 2 then 〈Fc〉, 〈nc〉 and 〈Fc/nc〉 are linearly related
to the global clustering coefficient averaged over the set of
employed graphs. It should be noted, however, that even
though our model sits on the Watts-Strogatz “small-world”
networks, the obtained results are insensitive to the mean
shortest path between pairs of nodes. This due to the sLGS
rule that engages either the nearest-neighbouring nodes of a
given node or all the other ones. Therefore, no distribution of
distances appears in the presented results.

FIGURE 12 | Scaled mean critical quantities: 〈Fc/nc〉, 〈Fc〉/N and 〈nc〉/N for different values of Weibull shape parameter ρ and system sizeN as functions of p. The
solid lines represent Eq. 9 with coefficients estimated from data. The sample size equals 106.
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We are conscious of the fact that our simplified model of
failure evolution involves some less realistic assumptions. Among
the most serious is that we have considered each link between a
pair of units as a reciprocally profitable relation. The other less
strict assumption is that we allow the load thresholds be
identically distributed. Our model can be tailored to fit a
particular realistic scenario, e.g., by employing directed graphs,
we would prevent some less reliable units from being
interdependent.
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