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This article presents a continuous cascade model of volatility formulated as a stochastic
differential equation. Two independent Brownian motions are introduced as random
sources triggering the volatility cascade: one multiplicatively combines with volatility;
the other does so additively. Assuming that the latter acts perturbatively on the
system, the model parameters are estimated by the application to an actual stock
price time series. Numerical calculation of the Fokker–Planck equation derived from the
stochastic differential equation is conducted using the estimated values of parameters. The
results reproduce the probability density function of the empirical volatility, the
multifractality of the time series, and other empirical facts.
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INTRODUCTION

In financial time series, past coarse-grained measures of volatility correlate better to future fine-scale
volatility than the reverse process. Such a causal structure of financial time series was first reported by
Müller et al. [1]. Since then, the causal structure between time scales, the flow of information from a
long-term to a short-term scale, was investigated empirically in financial markets; it has been
supported by multiple studies [2, 3] as a stylized fact of financial time series [4]. The asymmetric flow
of information resembles an energy cascade found in conditions of turbulence. In a developed
turbulent flow, the energy injected from the outside at macroscopic spatial scales is transferred to
smaller scales and finally dissipated as heat at microscopic spatial scales [5–9]. Gashghaie et al.
investigated details of the self-similar transformation rule of the probability density function of price
fluctuations and the nonlinear scaling law of the structure function (nth moment of fluctuations),
signifying the multifractality of the time series, in their study of the time series of foreign exchange.
They pointed out the similarity of price changes in the financial time series to the velocity difference
between two spatial points in turbulence [10, 11]. The intermittency in turbulence is a phenomenon
characterized by the sudden temporal change of the statistical feature of fluctuations and the spatial
coexistence of large and small fluctuations. Such intermittency, which is frequently encountered in
heterogeneous complex systems, is well known in financial markets as volatility clustering [4, 12].
Intermittency at each time scale produces a characteristic hierarchical structure designated as
multifractality [8, 9].

In the developed turbulence, the process by which mechanically generated vortices on a
macroscale deform and destabilize according to the Navier–Stokes equation and then split into
smaller vortices is regarded as an energy cascade. A similar idea of modeling multifractal time series
by a recursive random multiplication process from a coarse-grained scale to a microscopic scale has
offered an attractive means of describing financial time series [13, 14]. Chen et al. verified the
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statistics of multiplier factors in the random multiplication
process of turbulent flow by empirical studies using measured
data and numerical experiments of Navier–Stokes equations [15].
Results show that the multiplier factors connecting two adjacent
layers follow a Cauchy distribution in which all moments diverge
and show that they are not independent. They show strongly
negative correlation between the multiplier factors of adjacent
layers. The authors verified the statistics of multipliers calculated
backward from actual stock price fluctuations, finding a Cauchy
distribution of multiplier factors and also the strongly negative
correlation between the multiplier factors in financial markets.
Results show that the discrete cascade model using the random
multiplication process did not reproduce the statistical property
of the multiplier factors. Therefore, as an alternative model, a
discrete random multiplicative cascade process with additional
additive stochastic processes [16–18], or a model formulated as
the Fokker–Planck equation considering the cascade process as a
continuous Markov process [19–23] was proposed. Those models
have been applied to stock market or foreign exchange market
data, yielding empirical results including the statistics of
multipliers.

This study examines a continuous cascade model of volatility
formulated as a stochastic differential equation including two
independent modes of Brownian motion: one has multiplicative
coupling with volatility; the other has additive coupling as in the
discrete random multiplicative cascade process with additional
additive stochastic processes described above. The model
parameters are estimated by its application to the stock price
time series. Numerical calculation of the Fokker–Planck equation
derived from the stochastic differential equation is conducted
using the estimated values of parameters resulting in successful
reproduction of the pdf of the empirical volatility and the
multifractality of the time series.

MATERIALS AND METHODS

Continuous Random Cascade Model
Stochastic Differential Equation
These analyses examine the following wavelet transform of the
variation of the logarithmic stock price denoted by
Z(t) � logS(t)/S(0), t ∈ [0, L]:

WψZ[u, s] � ∫ +∞

−∞
Z(t) 1

s
ψ*(t − u

s
)dt, u ∈ [0, L], (1)

where the function ψ is designated as the analyzing wavelet. When
using the delta function ψ(t) � δ(t − 1) − δ(t) as the analyzing
wavelet, the wavelet transform WψZ[u, s] � Z(u + s) − Z(u) is
exactly the logarithmic return of the period s. Here, we use the
second derivative of the Gaussian functions as

ψ(t) � d2

dt2
(e− t2

2) � (t2 − 1)e−t22 . (2)

In general, by using the nth derivative of the function having
asymptotic fast decay as the analyzing wavelet, one can remove
the local trend of mth order (m≤ n − 1) because the function is
orthogonal to mth-order polynomials. For the second derivative

of the Gaussian functions, the linear trends of Z(t) with scale s
have been eliminated in the wavelet transform WψZ[u, s].

In actual financial market, the price fluctuation is
nonstationary and the volatility is not observable. The quantity
used herein is the absolute value of the wavelet transform x(λ) �∣∣∣∣WψZ[t0, s(λ)]

∣∣∣∣ for arbitrary t0 as a volatility proxy, where we use
the variable λ � logL/s. The quantity x(λ) is thought to be a
generalization of empirical volatility, whereas the wavelet
transform WψZ[u, s] is exactly the absolute value of
logarithmic return when we use ψ(t) � δ(t − 1) − δ(t).

The following stochastic equation is used to start.

x(λ + dλ) � x(λ) · eσdB(λ)+μdλ (dλ> 0) (3)

In that equation, B(λ) represents the Brownian motion. Equation
3 expresses that the value of the quantity x(λ + dλ) at scale λ + dλ
is obtained stochastically from x(λ) at just a slightly larger scale λ
by multiplying the stochastic variable W(λ, λ + dλ) � eσdB(λ)+μdλ.
The stochastic multiplier W(λ, λ + dλ) follows a logarithmic
normal distribution LN(μdλ, σ2dλ) because dB(λ) ∼ N(0, dλ).
One can derive the following stochastic differential equation
using dB(λ)2 � dλ as

dx(λ) � x(λ + dλ) − x(λ)
� x(λ) · (eσdB(λ)+μdλ − 1)

� x(λ) · [σdB(λ) + (μ + 1
2
σ2)dλ].

(4)

The solution is obtained easily using Ito’s formula as [24].

x(λ) � x(0) · eσB(λ)+μλ. (5)

The power law behavior of the qth moment E[x(λ)q] (qth
structure function) as a function of scale s is proved by the
solution of Eq. 5 as follows:

E[x(λ)q] � E[x(0)q]exp{μλq + 1
2
σ2λq2}

� E[x(0)q](s
L
)− μq− 1

2σ
2q2

(6)

The multifractality of signal Z(t) for which the wavelet transform
follows the stochastic Eq. 4 is verified because the scaling exponent
τ(q) � −μq − 1

2σ
2q2 − 1 is a convex upward nonlinear function.

However, in this model, the stochastic multiplier W(λ2, λ1) �
x(λ2)/x(λ1) (λ2 ≤ λ1) linking two scales follows the logarithmic
normal distribution LN(μ(λ1 − λ2), σ2(λ1 − λ2)). It is independent
of the multiplierW(λ3, λ2) (λ3 ≤ λ2) linking two adjacent scales. That
result is contrary to the empirical results described in Introduction.

We introduce an additional additive stochastic process as we
have done in the discrete cascade model. We first consider the
following stochastic differential equation.

dx(λ) � x(λ) · ( − cMdλ + σMdBM(λ)) + aA(λ)dλ + bA(λ)dBA(λ)
(7)

The equation is produced on the assumption that Brownian
motions dBM(λ) and dBA(λ) are mutually independent. The
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first two terms correspond to Eq. 4. The origin of those random
sources triggering volatility cascade in financial markets remains
unclear.

To solve the stochastic differential Eq. 7, we consider the
following stochastic differential equation:

dw(λ) � w(λ) · ( − cMdλ + σMdBM(λ)), (8)

which is the same as Eq. 4. Using the solution of Eq. 8

w(λ) � w(0) · exp{ − (cM + 1
2
σ2
M)λ + σMBM(λ)}, (9)

the solution of Eq. 7 is expressed as shown below:

x(λ) � w(λ) · (∫ λ

0

aA(u)
w(u) du + ∫ λ

0

bA(u)
w(u) dBA(u) + x(0)

w(0)). (10)

Statistics of Multipliers
We have mentioned the statistics of multipliers in Introduction:

(1) The stochastic multiplier W(λ2, λ1) � x(λ2)/x(λ1) (λ2 ≤ λ1)
linking two different scales follows a Cauchy distribution.

(2) When considering the three scales λ1 < λ2 < λ3 (s1 > s2 > s3),
the adjacent multipliers W(λ2, λ1) � x(λ2)/x(λ1) and
W(λ3, λ2) � x(λ3)/x(λ2) show strongly negative correlation.

Here, we show property (1) and infer the existence of correlation
between adjacent multipliers under some reasonable
approximations. The parameter σM is an important model
parameter for the signal to have multifractality. As presented in
a later section, in spite of the importance, the value of the parameter
σ2M is small, about 0.02 to − 0.03 in stock markets, irrespective of
the stock issue. To specifically examine the role of additional
stochastic processes, we investigate the 0th-order approximation
of small σM . When setting σM � 0, the solution of Eq. 10 becomes

x(λ) � (∫ λ

λ0

aA(u)ecM(u− λ0)du + ∫ λ

λ0

bA(u)ecM(u− λ0)dBA(u)

+ x(λ0)) (11)

Therefore, the difference Δx(λ, λ0) � x(λ) − x(λ0) follows a
normal distribution.

N(∫  λ0

λ
aA(u)ecM(u−λ0)du,∫  λ

λ0
(bA(u))2e2cM(u−λ0)du). If one

simply assumes that x(λ0) follows a normal distribution, then
the ratio Δx(λ0, λ1)/x(λ0) of two independent stochastic variables
following normal distributions follows a Cauchy distribution. So,
x(λ1)/x(λ0) is the same.

By defining the differences Δx(λ2, λ1) � x(λ2) − x(λ1) and
Δx(λ3, λ2) � x(λ3) − x(λ2) for the three scales λ1 < λ2 < λ3, it is
readily apparent that W1 � x(λ2)/x(λ1) � 1 + Δx(λ2, λ1)/x(λ1)
and W2 � x(λ3)/x(λ2) � 1 + Δx(λ3, λ2)/x(λ2) show correlation.
In this framework, it was difficult to show that they have
strongly negative correlation. Those statistics of multipliers
have also been considered in earlier work by Siefert and
Peinke [22]. The same result can be shown using a
Fokker–Planck equation under some approximations. In a

later section, we show a similar Fokker–Planck equation
derived from the stochastic differential Eq. 7.

Relation to Discrete Random Cascade Model
Assuming that Δλ is sufficiently small, then when we use the
following approximation of Ito’s stochastic integration [24] as

∫ λ+Δλ

λ

bA(u)
w(u) dBA(u) ∼ bA(λ)

w(t) (BA(λ + Δλ) − BA(λ)), (12)

we obtain the discrete random cascade equation as

x(λ + Δλ) � WM(λ, λ + Δλ) · (x(λ) + aA(λ)Δλ
+ bA(λ)(BA(λ + Δλ) − BA(λ)), (13)

where WM(λ, λ + Δλ) � e−(cM+1
2σ

2
M)Δλ+σM(BM(λ+Δλ)−BM(λ)). The

conditional expectation value of the square of x(λ + Δλ), as the
function of x2(λ),
E(x2(λ + Δλ)∣∣∣∣x(λ)) � e(2μM+2σ2M)Δλ(x2(λ) + (2aA(λ)x(λ)

+ b2A(λ)),Δλ)) (14)

shows that deviation of the quadratic curve from the origin results
from the parameter bA(λ), as demonstrated from an empirical
study in [18].

Constraint Condition From the pdf of x(λ).
A remarkable feature of the probability density function (pdf) of the
quantity x(λ) � ∣∣∣∣WψZ[., s(λ)]

∣∣∣∣ is the coincidence of the expected
value E(∣∣∣∣WψZ[., s(λ)]

∣∣∣∣) with standard deviation
V(∣∣∣∣WψZ[., s(λ)]

∣∣∣∣)1/2, as shown in Figure 1 for the data
examined in this study (see also Figure 10 for the pdf of x(λ)).
It indicates the constraint condition as

FIGURE 1 | Scaling properties of E(∣∣∣∣WψZ[., s(λ)]
∣∣∣∣) and

V(∣∣∣∣WψZ[., s(λ)]
∣∣∣∣)1/2. The expected value almost perfectly coincides with the

standard deviation at all scales. The solid line represents the least-squares fit
to the power law function, 2.27s0.5.
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FIGURE 2 | Results of multifractal analysis. (A) Z(t). (B) Z(q, s) for q � −20, . . . , 20 (+) and regression lines. (C) Scaling exponent τ(q) (solid line). The dashed blue
line is the least-squares fit to the quadratic function τ(q) � −1 + 0.52q − 0.013q2. The dotted red line τ(q) � −1 + 0.5q corresponds to Brownian motion. (D) Singular
spectrum D(α).
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aA(λ)E(x(λ)) � b2A(λ). (15)

Derivation of the constraint condition Eq. 15 is given inAppendix 1.
The additional additive stochastic process in model Eq. 7 is

expected to be a small perturbation to basic model Eq. 4 to avoid
violating multifractality. We also impose the following condition
for all scales s:

aA(s)
E(∣∣∣∣WψZ[., s]

∣∣∣∣) < < 1, bA(s)
E(∣∣∣∣WψZ[., s]

∣∣∣∣) < < 1. (16)

The power law scaling shown in Figure 1,

E(∣∣∣∣WψZ[, s]
∣∣∣∣) ∼ s0.5, (17)

and condition Eq. 16 show the following constraint condition:

aA(s) ∼ s0.5, bA(s) ∼ s0.5. (18)

Inserting Eq. 18 into Eq. 15, we also have the equation:

aA(1)E(∣∣∣∣WψZ[, 1]
∣∣∣∣) � b2A(1). (19)

Fokker–Planck Equation
We can derive the Fokker–Planck equation for the stochastic
process {x(λ)} expressed by the stochastic differential Eq. 7 as the
following [24], which is the master equation that the density of
the transition probability p(x, λ|x0, λ0) follows:

z

zλ
p(x, λ|x0, λ0)

� [ − z

zx
D1(λ, x) + 1

2
z2

zx2
D2(λ, x)]p(x, λ|x0, λ0).

(20)

Therein, the functions D1(λ, x) and D2(λ, x) are defined as

D1(λ, x) � aA(λ) − cMx,
D2(λ, x) � bA(λ)2 + σ2Mx

2.
(21)

The kthmoment of the change δx(λ) � x(λ + δλ) − x(λ) induced by
the infinitesimal scale transformation δλ is derived as shown below:

E(δxk∣∣∣∣x(λ) � x) � ∫  +∞

−∞
(y − x)kp(y, λ + δλ

∣∣∣∣x, λ)dy
� ∫  +∞

−∞
(y − x)k⎛⎝p(y, λ∣∣∣∣x, λ)

+ δλ
z

zλ′
p(y, λ′∣∣∣∣∣x, λ)|λ′�λ + O(δλ2)⎞⎠dy

� ∫  +∞

−∞
(y − x)k(δλ[ − z

zy
D1(λ′, y)

+ 1
2

z2

zy2
D2(λ′, y)]p(y, λ′∣∣∣∣∣x, λ)|λ′�λ + O(δλ2))dy

� ∫  +∞

−∞
(δλ[k(y − x)k− 1D1(λ, y)

+ 1
2
k( z

zy
(y − x)k−1)D2(λ, y)]δ(y − x) + O(δλ2))d

(22)

Therein, we used the identity p(y, λ∣∣∣∣x, λ) � δ(y − x). Coefficients
D1(λ, x) and D2(λ, x) show a relation to the first and second
moments of δx(λ) in the following way:

lim
δλ→ 0

E(δxk∣∣∣∣x(λ) � x)
δλ

� {Dk(λ, x) k � 1, 2
0 others

(23)

Coefficients Dk are designated as Kramers–Moyal coefficients [24,
25]. We use Eq. 23 to estimate the function aA(λ) and bA(λ) and
parameters cM and σM . To validate model Eq. 7, it is necessary to
confirm vanishing of the kthmoments for 3≤ k in the limit of δλ→ 0.
Renner et al. proposed almost identical equations (Eq. 20) within the
literature [20, 21], in which they deal with the price change itself as an
analogy of the velocity difference in turbulence [19]. They derived a
Fokker–Planck equation as a result of their empirical studies using
Kramers–Moyal expansion of the Chapman–Kolmogorov equation,
regarding the process as a Markovian process.

Empirical Study
Data
We analyze the normalized average of the logarithmic stock
prices of the constituent issues of the FTSE 100 Index listed
on the London Stock Exchange for November 2007 through
January 2009, which includes the Lehman shock of September 15,
2008 and the market crash of October 8, 2008.

Data Processing
First, we calculate the average deseasonalized return of each issue
δZi(t) � log(Si(t)) − log(Si(t − δt)), which describes the average
change of the portfolio as follows:

δZ(kδt) � 1
NF

∑NF

i�1

δZi(kδt) − μi
σ i

, (24)

where μi and σi, respectively, denote the average and the standard
deviation of δZi and where NF represents the number of constituent
stock issues (stocks). The constituents of the FTSE 100 Index are
updated frequently.We selectedNF � 111 stocks that remained listed
on the London Stock Exchange throughout the period. Here, we set
δt � 1 min and examine the 1-min log return. We excluded the
overnight price change and specifically examine the intraday
evolutions of returns. To remove the effect of intraday U-shaped
patterns of market activity from the time series, the return was
divided by the standard deviation of the corresponding time of the
day for each issue i. Then, we cumulate δZ(t) to obtain the path of
process Z(kδt) (k � 1, . . . , L) (Figure 2A) as follows:

Z(kδt) � ∑k
k
′
�1
δZ(k′δt). (25)

The data size L is 217.

RESULTS

Multifractal Analysis
First, we analyze the multifractal properties of the path Z(t) using
an approach with wavelet-based multifractal formalism proposed
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by Muzy, Bacry, and Arneodo [26, 27]. Initially, we define two
mathematical terms. The Hölder exponent α(x0) of a function
f (x) at x0 is defined as the largest exponent such that there exist
an nth-order polynomial Pn(x) and constant C that satisfy∣∣∣∣f (x) − Pn(x − x0)

∣∣∣∣≤C
∣∣∣∣x − x0

α,| (26)

where x in a neighborhood of x0, characterizing the regularity of
the function f (x) at x0. The singular spectrum D(α) is the
Hausdorff dimension of the set where the Hölder exponent is
equal to α, as follows:

D(α) � dimH{x|α(x) � α}. (27)

For multifractal paths, the Hölder exponent α is distributed in a
range; for paths of the Brownian motion, which are fractal,
D(0.5) � 1 and D(α) � 0 for α≠ 0.5.

Muzy, Bacry, and Arneodo proposed the wavelet
transform modulus maxima (WTMM) method based on
continuous wavelet transform of function to calculate the
singular spectrum D(α). We briefly sketch the WTMM
method in Appendix 2. We calculate the partition
function Z(q, s) of the qth moment of wavelet coefficients
using Eq. 37 for the path of our data. Results are presented in
Figure 2B. The partition function Z(q, s) for each order q
shows power law behavior in the range of scales s/L< 2−5.
Exponents τ(q) are derived by Eq. 38. Figure 2C shows that it
is a convex function of q. Those results underscore the
multifractality of the data path. The singular spectrum
D(α) derived as the Legendre transformation of the
function τ(q) by Eq. 39 is a convex function that has
compact support [0.25, 0.79] taking the peak at α � 0.53, as
shown in Figure 3D.

Parameter Estimations
aA and cM

Parameters aA(λ) and cM are estimated by taking the limit λ1 −
λ2 → 0 of the first moment E(x1 − x2|x2 � x)/(λ1 − λ2)
(LABEL : K −M). The first moment E(x1−x2|x2�x)/(λ1−λ2)
is fitted by a linear function as follows:

E(x1 − x2|x2 � x)
dλ

� aA(λ2, dλ) − cM(λ2, dλ)x, (28)

where dλ � λ1 − λ2. As shown in Figure 3A, the first moment is
well fitted by a linear function. Fitting of this kind is applied to
various λ1 � log(L/s1) and λ2 � log(L/s2) combinations
(Figure 3B). Taking the limit dλ→ 0 (ds/s � (s2 − s1)/s2 → 0),
one obtains, aA(λ2) � limdλ→ 0aA(λ2, dλ) (aA(s2) � limds/s→ 0

aA(s2, ds/s)) and cM � limdλ→ 0cM(λ2, dλ) (cM � limds/s→ 0cM(s2,
ds/s)). Figure 4A presents examples of aA(s2, ds/s) and nonlinear
fittings by the function log(aA(s, ds/s)) � a + b(ds/s) + c(ds/s)2.
We estimate aA(s) by aA(s) � exp(a) for each line. The result is
presented in Figure 4B. The solid line is the least-squares fit aA(s)
to a power law function as follows:

log(aA(s)) � −1.50(0.41) + 0.58(0.11)logs, (29)

where the standard errors are in parentheses. The estimated
exponent 0.58(0.11) is consistent with the constraint
condition (Eq. 18) within the standard error. By a similar
extrapolation log(cM(s, ds/s)) � a + b(ds/s) + c(ds/s)2, we
estimate cM(s) � exp(a). Figure 5A presents examples of
cM(s2, ds/s) and nonlinear fittings. We estimate cM(s) by cM(s) �
exp(a) for each line. The result is presented in Figure 5B. We
estimate the parameter cM by the average value weighted by the
reciprocals of the standard errors as follows:

cM � 0.64(0.21), (30)

where the standard error is the value in the parenthesis.

FIGURE 3 | Regression of E(x1 − x2|x2 � x)/(λ1 − λ2). (A) The standard
errors are denoted by an error bar. (B) Fitting is applied to various s1 and s2
combinations.
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bA and σM
Similarly, we estimate parameters bA and σM by taking the limit
λ1 − λ2 → 0 of the second moment E((x1 − x2)2

∣∣∣∣x2 � x)/
(λ1 − λ2)(LABEL : K −M). The second moment E((x1 − x2)2

∣∣∣∣
x2 � x)/(λ1 − λ2) is fitted by a quadratic function (a regression
against x2) as follows:

E((x1 − x2)2
∣∣∣∣x2 � x)

dλ
� bA(λ2, dλ) + σM(λ2, dλ)x2. (31)

As shown in Figure 6A, the second moment is well fitted by a
quadratic function. Fitting of this kind is applied to various λ1 and
λ2 combinations (Figure 6B). Taking the limit dλ→ 0, one obtains
b2A(λ2) � limdλ→ 0b2A(λ2, dλ) and σ2M � limdλ→ 0σ

2
M(λ2, dλ).

Figure 7A presents examples of b2A(s2, ds/s) and nonlinear
fitting by the function log(b2A(s, ds/s)) � a + b(ds/s) + c(ds/s)2.
We estimate b2A(s) for each line by b2A(s) � exp(a). The result is
presented in Figure 7B. The solid line is the least-squares fit b2A(s)
to a power law function as follows:

FIGURE 5 | Estimation of the parameter cM . (A) The parameter
cM(s,ds/s) obtained by the regressions shown in Figure 3 and nonlinear
fitting log(cM(s)) � a + b(ds/s) + c(ds/s)2. The standard errors of regression
Eq. 28 are denoted by an error bar. (B) cM(s) � exp(a) (see the text).
Standard errors of nonlinear fittings are denoted by an error bar.

FIGURE 4 | Estimation of the parameter aA(s). (A) The parameter
aA(s2 ,ds/s) obtained by the regressions shown in Figure 3 and nonlinear
fitting log(aA(s,ds/s)) � a + b(ds/s) + c(ds/s)2. The standard errors of
regression Eq. 28 are denoted by an error bar. (B) aA(s) � exp(a) (see
the text). The standard errors of nonlinear fittings are denoted by an error bar.
The solid line shows the least-squares fit of aA(s) to the power law function.
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log(b2A(s)) � −1.67(0.56) + 1.26(0.13)logs, (32)

where the standard errors are in parentheses. The estimated exponent
1.26(0.13) is slightly higher than the constraint condition (Eq 18)
(b2A(s) ∼ s). However, it is acceptable with accuracy. By a similar
extrapolation log(σ2M(s, ds/s)) � a + b(ds/s) + c(ds/s)2, we estimate
σ2M(s) � exp(a). Figure 8A presents an example of σ2M(s2, ds/s). and
an estimate σ2M(s) by σ2M(s) � exp(a) for each line. The result is
shown in Figure 8B. We estimate parameter σ2M by the average value
weighted by the reciprocals of the standard errors.

σ2
M � 0.05(0.03) (33)

Therein, the standard error is in the parenthesis.

Higher Moments
Similarly, it is possible to show the kth (3≤ k) moment
E((x1 − x2)k

∣∣∣∣x2 � x)/(λ1 − λ2) of the transition probability
density p(x1, λ1|λ2, x2) vanishes in the limit λ1 − λ2 → 0. As
portrayed in Figure 9A, the fourth moment is well fitted by a
quartic function. Applying the fitting to various λ1 and λ2

combinations (Figure 9B), we have convinced that the fourth

FIGURE 7 | Estimation of the parameter bA(s). (A) The parameter
bA(s2 ,ds/s) obtained by the regressions shown in Figure 6 and nonlinear
fitting log(b2

A(s,ds/s)) � a + b(ds/s) + c(ds/s)2. The standard errors of the
regression Eq. 31 are denoted by an error bar. (B) b2

A(s) � exp(a) (see
the text). Standard errors of nonlinear fittings are denoted by an error bar. The
solid line shows the least-squares fit of b2

A(s) to the power law function.

FIGURE 6 | Regression of E((x1 − x2)|x2 � x)/(λ1 − λ2) against x2. (A)
Standard errors are denoted by an error bar. (B) Fitting is applied to various s1
and s2 combinations.
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moment vanishes in the limit dλ→ 0. The Pawula theorem states
that all higher Kramers–Moyal coefficientsDk (3≤ k) vanish ifD4

vanishes [25]. Therefore, we verified Eq 23.

Numerical Calculation of the Fokker–Planck Equation
We confirmed that estimation of the parameter aA(λ) and bA(λ)
by the E((x1 − x2)k

∣∣∣∣∣x2 � x/(λ1 − λ2 ))(k � 1, 2) is consistent with
the constraint condition (Eq. 18) with accuracy. If one imposes
the other constraint (Eq. 19, then the parameters take the
following functional form:

aA(λ(s)) � ϵs0.5

b2A(λ(s)) � 2.27ϵs, (34)

where ϵ is a small parameter. The consistent range of ϵ found by
estimation of Eq 29 and Eq 32 is 0.15≤ ϵ≤ 0.34. To fix parameters
cM and σM , we use the empirical value of the scaling exponent
τ(q), which is fitted by the quadratic function τ(q) � −1 + 0.52q −
0.013q2 (see Figure 2C). One can derive τ(q) � −1 + (cM +
1
2σ

2
M)q − 1

2σ
2
Mq

2 for the basic model (Eq. 4 without additional
stochastic processes. Again using the assumption of slight
perturbation, then from the coefficients of the quadratic
function, the parameters cM and σM are expected to exist

FIGURE 9 | Fitting of E((x1 − x2)4
∣∣∣∣x2 � x)/(λ1 − λ2) by a quartic

function. (A) Standard errors are denoted by the error bar. (B) Fitting is applied
to various s1 and s2 combinations.

FIGURE 8 | Estimation of the parameter σM . (A) The parameter
σM(s,ds/s) obtained by the regressions shown in Figure 6 and nonlinear
fitting log(σ2M(s)) � a + b(ds/s) + c(ds/s)2. The standard errors of regression
(Eq. 31 against x2 are denoted by an error bar. (B) σ2M(s) � exp(a) (see
the text). Standard errors of nonlinear fittings are denoted by an error bar.
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respectively in the neighborhood of cM � 0.51 and σM � 0.026.
Next, we try the value of the parameters cM � 0.51, σM � 0.026,
and ϵ � 0.16 for numerical calculation of the Fokker–Planck
equation. Results are presented in Figure 10. The initial pdf of
the numerical calculation represented by the dashed line was
based on the measured pdf on scale s � 128(min). In the initial
values, the fine fluctuation was smoothed using a spline function
with the rationale that small fluctuations in the measured pdf
are attributable to the finiteness of the number of observations.
The tails are extrapolated using a power function with index
−4.9 which is obtained empirically. For time evolution, the
fourth-order explicit Runge–Kutta method was used. The
solid line is the calculation result obtained using the
estimated value of the parameters cM � 0.51, σM � 0.026, and
ϵ � 0.16. The dotted line is the result obtained when ϵ � 0. The
difference between the two was very small. The results closely
matched the actual pdf. In the data and the numerical
calculation, the probability density function does not
converge to zero at the origin because of the finite size of the
bin. Although the details around the origin x � 0 cannot be
empirically discussed due to the finiteness of the observed data,
the probability density function must converge to zero at the
origin if the negative qth moment of the fluctuation is requested
to converge.

Using results of the numerical calculation of the pdf obtained
at each scale, we calculate the scaling exponent τ(q) as shown
follows:

E(∣∣∣∣WψZ[u, s] q) ∼ sτ(q)(0≤ q)∣∣∣∣∣ (35)

The result is presented in Figure 11. No difference exists between
the two numerical calculation results. Both curves are convex

upward, indicating multifractal properties. Comparison with
measured values is also good. These results, when combined
with consideration of the statistics of multipliers given in 2.1.2,
underscore the effectiveness of the continuous cascade model Eq.
7 with additive stochastic processes proposed.

DISCUSSION

The random cascade model has evolved as a model of developed
turbulence. The original model, in which the stochastic process
that connects each layer of the spatial scale is an independent
random multiplication process, contradicts results obtained
through empirical research. Therefore, an improved discrete
random multiplicative cascade model with additional additive
stochastic processes was proposed along with a model formulated
as a Fokker–Planck equation by considering cascade processes as
a continuous Markov process. Moreover, those models have been
applied to data analysis of the stock market and the foreign
exchange market, where they have been successful. Herein, we
propose a continuous cascade model formulated as a stochastic
differential equation of volatility including two independent
modes of Brownian motion: one has multiplicative coupling
with volatility; the other has additive coupling, as in an
improved discrete cascade model for the stock market, with
effectiveness clarified by results of earlier research [18]. The
model parameters were estimated by application to a stock
price time series. The Fokker–Planck equation was derived
from the stochastic differential equation as a master equation
with the transition probability density function of volatility.
Furthermore, the model parameters were estimated by its
application to the average stock price time series made from
FTSE 100 constituents listed on the London Stock Exchange. At

FIGURE 11 | Scaling exponent τ(q). A representation of each line is
shown in the legend.

FIGURE 10 | Pdf of measured x(λ) and numerical calculation of the
Fokker–Planck equation. The result of numerical calculation is represented by
the solid lines. Marks are measured values. The scale is attached to each line.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 56537210

Maskawa et al. Random Cascade

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


that time, as an alternative variable of volatility, the wavelet
transform coefficient with the second derivative of the
Gaussian function as an analyzing wavelet was used.
Numerical calculation of the Fokker–Planck equation was
conducted using the estimated parameter values. The results
reported herein faithfully reproduce the results of an earlier
empirical study. This model includes information about
neither the time axis nor the sign of the price fluctuation,
which is necessary for a model of price fluctuations. The
actual stock market exhibits well-known properties that break
symmetry with respect to the time axis, such as the causal
structure from long-term to short-term scale volatility
described first in Introduction and price–volatility correlation
(leverage effect) [4, 12]. Therefore, the extension of the random
cascade model to encompass these phenomena remains as a
subject for future work.
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APPENDIX 1

Derivation of Eq 15
We introduce some notation for simplification of the description:

E1(λ) � E(x(λ)), E2(λ) � E(x2(λ)),ΔBλ

� BA(λ + dλ) − BA(λ), μM � −(cM + 1
2
σ2
M).

From Eq. 13, we have

E1(λ + dλ) � E(WM(λ, λ + dλ) · (x(λ) + aA(λ)dλ + bA(λ)ΔBλ))
� E(WM(λ, λ + dλ))E(x(λ) + aA(λ)dλ + bA(λ)ΔBλ))
� E(WM(λ, λ + dλ))(E1(λ) + aA(λ)dλ)
� e(μM+12σ2M )dλ(E1(λ) + aA(λ)dλ),

E2(λ + dλ) � E(W2
M(λ, λ + dλ) · (x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

� E(W2
M(λ, λ + dλ))E(x(λ)2 + (2aA(λ)x(λ) + b2A(λ))dλ)

� E(W2
M(λ, λ + dλ))(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ))

� e(2μM+2σ2M )dλ(E2(λ) + (2aA(λ)E1(λ) + b2A(λ))dλ))
We also have

E2
1(λ + dλ) � e(2μM+σ2M )dλ(E2

1(λ) + 2aA(λ)E1(λ)dλ).
Because of the coincidence of the expected value and the standard
deviation, we have E2(λ) � 2E2

1(λ) and E2(λ+dλ) � 2E2
1(λ+dλ).

Inserting those equalities and using approximation eσ
2
Mdλ � 1, we

have the constraint condition 15.

APPENDIX 2

WTMM Method
The WTMM method builds a partition function from the
modulus maxima of the wavelet transform defined at each
scale s as the local maxima of

∣∣∣∣Wψ[f ](x, s)
∣∣∣∣ regarded as a

function of x. Those maxima mutually connect across scales
and form ridge lines designated as maxima lines. The set
L(s0) is the set of all the maxima lines l which satisfy

(x, s) ∈ l0s≤ s0,∀s≤ s00∃(x, s) ∈ l. (36)

The partition function is defined by the maxima lines as

Z(q, s) � ∑
l ∈ L(s)

( sup
(x,s′) ∈ l

|Wψ[x, s′]|)q. (37)

Assuming power law behavior of the partition function

Z(q, s) ∼ sτ(q), (38)

one can define the exponents τ(q). The singular spectrum D(α)
can be computed using the Legendre transform of τ(q):

D(α) � min
q
(qα − τ(q)). (39)
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